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ARTICLE INFO ABSTRACT

In recent years the use of remotely sensed precipitation products in hydrological studies has become increasingly
common. The capability of the products in producing rainfall intensity-duration-frequency (IDF) relationships,
however, has not been examined in any great detail. The performance of four remote-sensing-based gridded
rainfall data processing algorithms (GSMaP_NRT, GSMaP_GC, PERSIANN and TRMM_3B42V7) was evaluated to
determine the ability to generate reliable IDF curves. The work was undertaken in Peninsular Malaysia. The best-
fitted probability distribution functions (PDFs) of rainfall totals for different durations were used to generate the
IDF curves. The accuracy of the gridded IDF curves was evaluated by comparing observed versus estimated IDF
curves at 80 locations. The results revealed that a generalized extreme value (GEV) distribution had the best fit
to the rainfall intensity for different durations at 62% of the stations, and this was then used to develop the IDF
curves. A comparison of these remote sensing derived IDF curves with the observed IDF data revealed that the
GSMaP_GC product performed best. In general, the satellite-based precipitation products tended to under-
estimate the IDF curves. The GSMaP_GC IDF curves were found to be the least biased (8%-27%) compared to the
TRMM_3B42V7 IDF curves (65%-67%). The biases in rainfall intensity of different return periods for GSMaP_GC
for all grid points were estimated. These results can be used in designing hydraulic structures where gauged data
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are unavailable.

1. Introduction

The changing nature of the earth's climate is now widely recognised.
One result of this climate change is that the water holding capacity of
the atmosphere is likely to increase (Trenberth, 2011). This has serious
implications for the distribution of global precipitation (IPCC, 2014).
Changes in extreme rainfall events will occur due to increased eva-
poration and atmospheric moisture content (Wang et al., 2016,
Abbaspour et al., 2015; Pour et al., 2020a). Since rainfall is the major
element of the hydrological cycle, any additional change in its dis-
tribution and volume may result in large scale flooding (Pour et al.,
2014; Hajani et al., 2017; Pour et al., 2020b), resulting in significant
damage to infrastructures such as dams, stormwater drainage systems
(Shahid et al., 2017; Almazroui et al., 2019).

Global intensity-duration-frequency (IDF) curves are typically used
to incorporate hydrological information into water infrastructures de-
sign (Watt and Marsalek, 2013; Koutsoyiannis et al., 1998; Sen, 2019).

Such curves are based on the relationships between the frequency, in-
tensity and duration of rainfall data (Koutsoyiannis et al., 1998), and
the use of probability distribution functions (PDFs) of maximum rainfall
depth (for a specific duration). This enables a relationship to be defined
between the properties of a specific rainfall episode and the likelihood
of rainfall totals (Chow et al., 1988). IDF curves can therefore be used to
estimate probable extreme rainfall totals over differing durations and
intensities. A number of studies have employed these IDF curves, uti-
lising data from: a) in-situ rain-gauge (Willems, 2000; De Paola et al.,
2014; Al-Amri and Subyani, 2017; Noor et al., 2019) remote sensing
rainfall products (Endreny and Imbeah, 2009; Liew et al., 2014;
Ombadi et al., 2018; Courty et al., 2019); both at local and global
scales.

Traditionally ground-based rain gauge data has been used to con-
struct IDF curves. Unfortunately a lack of consistent rainfall records at
high temporal resolutions (hourly or sub-hourly) and a spatial sparse-
ness of weather stations in many locations, are major barriers to the
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successful generation of IDF curves, particularly in countries where
data is scarce Nashwan and Shahid, 2019a, Prein and Gobiet, 2017,
Nashwan et al., 2018). As the spatial nature of IDF curves vary widely
due to variations in the pattern of rainfall intensity and duration (Kidd
et al., 2017; Sorooshian et al., 2011), it is common to use data from
nearby recording stations to generate IDFs. This, however, may not be
an ideal solution when used in the design of water infrastructure as it
has been found that the accuracy of IDF curves tends to decrease sig-
nificantly with distance from rain gauge locations (). To overcome the
difficulties associated with sparse observational records, alternative
data source is suggested to tackle engineering challenges (Courty et al.,
2019), induced by climate warming (Liew et al., 2014).

A range of global, gridded precipitation products are now available
which may be categorized as gauge-based (Herrera et al.,, 2012;
Schiemann et al., 2010; Yatagai et al., 2009; Faiz et al., 2018), remote
sensing-based (Nashwan and Shahid, 2019b; Huang et al., 2018;
Palornino—f\ngel et al., 2019; Almazroui and Saeed, 2020), reanalysis-
based (Belo-Pereira et al., 2011; Yao et al., 2020), as well as a combi-
nation of the above three (Alijanian et al., 2017; Laiti et al., 2018).
Because their spatial and temporal (hourly or sub-hourly) resolution is
reasoanbly high, remotely sensed data products are particularly useful
in developing IDF curves for hydro-climatic studies conducted at un-
gauged and data-sparse locations (Yang et al., 2014; Prakash et al.,
2015; Belo-Pereira et al., 2011; Herrera et al., 2012; Schiemann et al.,
2010; Yatagai et al., 2009; Nashwan and Shahid, 2019b). Furthermore,
gridded precipitation data can assimilate the variability and dynamics
of extreme rainfall events at ungauged locations which cannot be
captured by rain gauges, and can thus help in overcoming issues related
to the interpolation of point data (Chen et al., 2013; Marra et al., 2016;
Panziera et al., 2016). The use of remotely sensed precipitation pro-
ducts in hydrological studies is, therefore, an area of increasing re-
search focus.

Despite extensive use of gridded precipitation products obtained
from satellite observation, such as stream flow simulation (Kumar and
Lakshmi, 2018), flood modelling (Yuan et al., 2019; Nashwan et al.,
2019), aridity assessment (Hasan et al., 2019), statistical structure of
rainfall behaviour (Dewan et al., 2019), drought observation (Jiang
et al., 2017; Yang et al., 2018), only a handful works have been con-
ducted to date in developing IDF curves in different regions. This in-
cludes areas of the United States (Wright et al., 2013; Ombadi et al.,
2018), eastern Mediterranean region (), Netherlands (Overeem et al.,
2009) and Ghana (Endreny and Imbeah, 2009) and nine different cities
of the world (Courty et al., 2019). The studies that have used gridded
precipitation products, either from satellite or reanalysis, have shown
immense potential, particularly in locations where precipitation data is
scarce. For example, Courty et al. (2019) developed a universal IDF
formula at the global scale using ERA5 reanalysis data. (Ombadi et al.,
2018) developed IDF curves over the USA using PERSIANN-CDR data.
developed IDF curves for East Mediterranean regions using radar and
satellite (CMORPH) rainfall. Endreny and Imbeah (2009) used TRMM
and observed rainfall data to develop IDF curves in Ghana. These stu-
dies suggest that a potential issue could be the reliability of the satellite-
derived rainfall products as this differs from place to place, depending
on the calculation processes and specific weather conditions (Serrat-
Capdevila et al., 2016; Tan and Duan, 2017; Chen and Li, 2016). As a
result, IDF curves developed from gridded rainfall data tend to deviate
from curves developed from the observed rainfall data (Peleg et al.,
2018). An exact match between IDF curves is not possible when the
curves have been generated using two different datasets — (i) gridded,
precipitation-based curves, and (ii) gauged-based IDF curves ().
Endreny and Imbeah (2009) also suggested that the combined use of the
satellite and observed data could provide useful insights for generating
the IDF curves. It is essential to find the best remote sensing data
product in order to generate bias-free or least biased IDF curves, and to
subsequently correct the bias of remote sensing based IDF curves prior
to use in any hydraulic design work.
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The IDF curves at sub-daily scale are of prime importance to design
hydraulic structures (Lima et al., 2018). The urban catchments are
sensitive to shorter rainfall events, and thus, the drainage system should
be based on sub-daily IDF curves (Courty et al., 2019). The curves at
sub-daily resolution are particularly useful for tropical regions where
intense short-duration rainfall is very common (Tien Thanh and Dutto
Aldo Remo, 2018). The current work aims to assess the ability of re-
motely sensed precipitation data to generate sub-daily IDF curves. Four
remote sensing rainfall products, namely Global Satellite Mapping of
Precipitation - Gauge Calibrated (GSMaP), Global Satellite Mapping of
Precipitation - Near Real-Time (GSMaP_NRT), Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) are used
to generate sub-daily IDF curves in countries where such data is difficult
to obtain.

2. Materials and methods
2.1. Study area

The study area is located in Peninsular Malaysia between latitudes
1.20° N and 6.80° N, and longitudes 100.10° E and 104.20° E (Fig. 1).
The area annually records 2000-4000 mm of rain from 150 to 200 wet
days due to the tropical, humid climate (Nashwan et al., 2018; Noor
et al.,, 2019). Monsoon winds, complex land-sea interactions and
mountainous topography control the spatial variation of rainfall in the
region (Pour et al., 2020c¢). Extreme rainfall events usually occur during
the northeast monsoon (November to March), although these rainfall
events can also occur during the inter-monsoon period (September—-
October and March-April), particularly in the west of the Peninsula
(Mayowa et al., 2015; Khan et al., 2019). The mean annual temperature
in the study area ranges from 21 °C to 32 °C.
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Fig. 1. Geographical boundary and topography of Peninsular Malaysia. Rain
gauge stations used in this work are shown.
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Table 1
Remote sensing precipitation datasets used in this study.
Data set Temp resolution Period Pixel size Source
GSMaP_NRT 1h 2000—till 0.1 x 0.1 https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
GSMaP_GC 1h 2000—till 0.1 x 0.1 https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
PERSIANN 3h 2000—till 0.25 x 0.25 https://chrsdata.eng.uci.edu/
TRMM_3B42V7 3h 1997—-2019 0.25 x 0.25 https://pmm.nasa.gov/data-access/downloads/trmm
Observed Hourly Remote Sensing Hourly
Rainfall (2000-2018) Rainfall (2000-2018)
|
[Annual Maximum Rainfall] |Annual Maximum Rainfalll
Fit PDF
(GEV, Gumbel
Exponential, Bayesian)
(Goodness of Fit Test]
|Selection of Best Fit PDF Fit PDF (GEV)
! i
@bserved IDF Curv@ [Remote Sensing IDF Curves ]
| |
|% Biases in Remote Sensing IDF ervesl
!
[Spatial Distribution of % Biases]
!
|IDF Curves at Ungauged Locationsl
Fig. 2. Flowchart showing the development of IDF curves.
Table 2 based products (2000-2018) was used.

Description of the statistical metrics used for evaluation of remote sensing data.

Metric formula Range Optimal value
\g‘%*E,”:l(yi—xl')z Oto e 0
NRMSE = 100 * o e—
N (i —x; -o0 tO + o0 0
PBIAS = 100 5 Z1=1017%)
1
R > S TUE 0to1 1
Sy =1+ g =X 1)
_ sd(x) 0 to 1
rSD = Ti(y,-)
—1to - 1

KGE=1-(r—12+ @ -1+ @B - 17

where n is the samples number; x; and yrefer to the observed and remote
sensing data, respectively for time step i; sd is the standard deviation; X and y
are the mean of the observed and remote sensing data, respectively. r is
Pearson's correlation of the remote sensing data (y) and observed data (x), y
represents the bias which is normalized by the standard deviation of the ob-
served data, and f is a fraction of the coefficient of variation representing
spatial variability.

2.2. Observed rainfall data

Hourly rainfall data from the 80 rain gauge stations distributed
across the Peninsula were obtained from the Department of Irrigation
and Drainage (DID), Malaysia. Locations of these stations are shown in
Fig. 1. A common period of data for observed rainfall and satellite-

DID uses a standardised procedure for the measurement and ar-
chiving of rainfall data. In previous hydro-climatic studies conducted in
this area, the quality of the DID rainfall data was found to be fit-for-
purpose (Mayowa et al., 2015), however as part of the normal due di-
ligence process, the quality of the rainfall data to be used in the current
study was evaluated prior to processing using both subjective and ob-
jective evaluation methods. DID has 199 rain gauges available to record
rainfall in Peninsular Malaysia. Data from 80 stations missing less than
1% of the hourly data for the 2000 to 2018 period were selected.
Checks included looking for an absence of negative values, presence of
hourly rainfall figures showing more than 50 mm, and one-day cumu-
lative rainfall figures of more than 200 mm. Hourly, daily and monthly
rainfall time series and histogram plots were prepared to find any ir-
regularity in the dataset (Ahmed et al., 2019). Hourly and daily average
values over a day and a year respectively were prepared to evaluate the
consistency of the data. Data quality was also assessed using sequential
student t-tests. All the rainfall data was deemed to be of adequate
quality for the work and no abnormalities in the plots was noted. No
significant differences among the different subsets of data was noted
using the t-test.

2.2.1. Remote sensing precipitation data

Four remotely sensed precipitation data products were acquired and
evaluated in the present study (Table 1). The GSMaP precipitation
product is collected and compiled by Core Research for Evolutional
Science and Technology (CREST) of the Japan Science and Technology


https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
https://chrsdata.eng.uci.edu/
https://pmm.nasa.gov/data-access/downloads/trmm
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Table 2
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Results of goodness-of-fit test for different probability distribution functions and parameter estimation methods for rainfall amounts of differing duration at a location

in Southern Malaysia (station Johor 2,025,001).

Estimator Distribution Duration (hours)
1 3 6 12 24 48 72
MLE GEV 175.25 194.05 199.39 202.48 206.24 216.27 217.67
Gumbel 279.44 299.13 304.49 307.05 309.87 322.57 323.93
Exp 222.61 238.37 241.84 244.98 249.55 257.89 263.14
GP 296.27 330.07 343.16 354.56 374.85 358.47 356.47
GMLE GEV 185.62 197.89 203.30 204.28 212.53 219.23 222.62
Gumbel 279.44 299.13 304.49 307.05 309.87 322.57 323.93
Exp 222.61 238.37 241.84 244.98 249.55 257.89 263.14
GP 487.07 495.39 493.95 496.71 498.34 478.35 491.01
L-Moments GEV 440.55 669.89 733.69 808.03 744.84 817.29 882.53
Gumbel oo oo oo oo oo oo oo
Exp oo oo oo oo oo oo oo
GP 487.07 495.39 493.95 496.71 498.34 478.35 491.01
Bayesian GEV 436.67 669.32 763.45 753.54 703.70 777.73 793.23
Gumbel oo oo oo oo oo oo oo
Exp oo oo oo oo oo oo oo
GP oo oo oo oo oo oo oo

Agency (JSTA) in collaboration with the Japan Aerospace Exploration
Agency (JAXA) Precipitation Measuring Mission (PMM) Science Team
(Okamoto et al., 2005; Ushio et al., 2009). It comprises two products -
(i) GSMaP_NRT, developed by integrating global precipitation rates
extracted from passive microwave radiometers and cloud moving vec-
tors derived from infrared images, and (ii) GSMaP_GC, which is an
adjusted product of GSMaP_NRT using the NOAA Climate Prediction
Center (CPC) precipitation data (Nashwan and Shahid, 2019b). PERS-
IANN is precipitation estimated from geostationary satellite-based in-
frared brightness temperature using a neural network function (Nguyen
et al., 2018). It is produced by the Center for Hydrometeorology and
Remote Sensing (CHRS) at the University of California, Irvine (UCI).
Tropical Rainfall Measuring Mission (TRMM) data is a joint mission
between JAXA and NASA (Huffman, 2016). In this study, 3 h real time
TRMM multi-satellite precipitation analysis information
(TRMM_3B42V7) (Mission, 2011) is used.

3. Methodology
3.1. General IDF relationship for different distributions

The intensity-duration-frequency (IDF) relationship is a popular
method that relates rainfall intensity with its duration and annual fre-
quency. For a given duration d, return period T and the maximum in-
tensity i(d, T) of rainfall at a specific location, the general form of the
intensity-duration-frequency (IDF) curve (Koutsoyiannis et al., 1998)
can be formulated as:

i(d,T)=a(d,T)(d+ 6)7" (€8]

where a(d, T) and i(d, T) are functions of d and T, 6 and 7 are parameters
with® > 0and 1 < 5 < 0. Koutsoyiannis et al. (1998) established
the relationship between the cumulative distribution function (CDF) of
the maximum intensity and the return period T given as:

1

d,T) = R =1-=

a( ) Y (VT) T )

The IDF relationship (Koutsoyiannis et al., 1998) between the

maximum amounts of rainfall with distribution function Fy(-) with T for
d is, therefore, presented as:

yr=a(d,T)=F'Q-1/T) 3)

In this study, we consider four widely used probability distributions
to fit IDF curves and evaluate the individual performances. These are
Exponential, Generalized Pareto (GP), Gumbel and Generalized

Extreme Value (GEV). The exponential distribution is a fundamental
distribution for establishing several other distributions. The exponential
distribution function is broadly applied in hydrological studies
(Kjeldsen et al., 2000). This distribution has applicability in such things
as the frequency analysis of rainfall amount and extreme events (Zhu
et al., 2019). The PDF of the exponential random variable is given by:

F(y) = 1—exp(—%+¢),x20

0, otherwise 4)

where A and y are the scale and location parameters respectively. The
IDF relationship for the exponential distribution (Koutsoyiannis et al.,
1998) can be expressed as:

yy=a(T) =A% +InT) (5)

Pikands (1975) suggested the Generalized Pareto (GP) distribution,
which has been applied in the various fields. GP distribution plays a
significant role in modelling of extreme events e.g., the analysis of the
highest annual flood values, the precipitation data analysis, in the
analysis of flood frequency, etc. The PDF of generalized pareto dis-
tribution is expressed as:

_1
F(y)=1—[1+k(%—1,b)]k,y2/1¢ ©

where k is the shape parameter. For the GP distribution, the IDF re-
lationship (Koutsoyiannis et al., 1998) is obtained as:

yr=am=a(p+ 1)

k @

Gumbel distribution or Extreme Value Type I (EV1) distribution is
often used in the frequency analysis of hydrological extremes e.g.,
floods, storms, wind speed, droughts, etc. (Yue and Wang, 2004; Hong
et al., 2013). The PDF of Gumbel distribution can be given as:

FO)=ew (_eXP( Ty )) ®)

The IDF relationship for Gumbel distribution (Koutsoyiannis et al.,
1998) can be given by

- _ —tn|-mf1- L
yT=a(T)_/1(1,b ln[ ln(l T)]) ©

The Generalized Extreme Value (GEV) distribution (developed
within the extreme value theory) is a family of continuous probability
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GSMaP_NRT

Fig. 3. Annual average rainfall in Peninsular Malaysia derived from observed and satellite data products for the period 2000-2018.
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Fig. 4. Percent of bias in median of annual average of remotely sensed rainfall
data.

distributions. The GEV distribution originated from the extreme value
axiom and is the limit distribution of normalized maxima of an

independent and identically distributed random variable. The PDF of
the GEV is represented as (Jenkinson, 1955),

—1/k
F@):exp[—[1+k(2—¢)] ],yZl(lﬁ—l/k)
4 (10)

Koutsoyiannis et al. (1998) established the IDF relationship for the
GEV distribution can be given as:

[—ln(l - %)]_k —1

yE=aM=1|y+ .

an

3.2. Estimation of parameters and fitting IDF curve

The Maximum Likelihood Estimation (MLE), Generalized Maximum
Likelihood Estimation (GMLE), Bayesian and L-moments are commonly
used methods for fitting PDFs for annual extreme rainfall time series
data (Martins and Stedinger, 2000). In this study, performance of all the
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four methods were compared to find the best parameter estimation
method. Goodness-of-fit test was used as it is the best parameter

estimation method. Several goodness-of-fit tests are available in the
literature, but there are no general criteria for selecting a suitable test
(Rahman et al., 2013). However, the log-likelihood approach, devel-
oped by R.A Fisher (Fisher, 1912), appears to be the most widely used
for performance assessment of PDF (Fienberg, 1997; Zhu et al., 2018;
Bierman et al., 1989; Poudel and Cao, 2013).

The likelihood is the joint density of n independent observations,
¥ = (J1.... ¥») which can be expressed as,

L@ =f010)=]1]f0:10),
,1} o (12)

where f(y|0) is the PDF and 0 is the unknown parameter (Hilbe and
Robinson, 2013). Often, natural logarithm of the likelihood function L
(6) is called the log-likelihood function (LL(6)), which is used to esti-
mate parameters (instead of the likelihood function) due to mathema-
tical tractability. Due to the monotonicity property, the estimates from
the log-likelihood function LL(6) also gives the same estimates by re-
taining all properties (Hilbe and Robinson, 2013). The LL(0) is defined
as.

LL(©®) =InL(®) = ) logf(; | 9)) as)

For ease of computation, the negative logarithm of the likelihood
estimates or the negative log-likelihood is commonly practised (Bosman
and Thierens, 2000).

The GMLE estimates parameters in a similar manner to that used in
the MLE method (Martins and Stedinger, 2000). Additional conditions
eliminate the set of potential invalid values on some parameters while
estimating the parameter of interest. This is done by setting initial
distributions for those parameters (Martins and Stedinger, 2000). The
GMLE involves solving the following optimization problem,

maxg L, (x;0)

B~gamma (u,v) (14)

where 0 is the parameter of interest and f3 is the other parameter which
follows a gamma prior distribution. The GMLE method is, therefore,
analogous to the Bayes estimation method as it is equivalent to max-
imizing a posterior distribution. Since the posterior form is unknown, in
general, numerical techniques like Markov chain Monte Carlo (MCMC)
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Fig. 7. IDF curves for Pahang station (ID: 3628001), showing suitable PDF and parameter estimate.

is applied to calculate parameters.

Bayesian method of parameter estimation involves specifying a
prior probability density function, say m(6) (Reis Jr and Stedinger,
2005). After the prior has been specified, the posterior distribution of 6
is computed, and from this inferences can be made. Using Bayes The-
orem, the conditional density of 0 given data y, y», ..., ¥, is written as

SO0 Yyndy 1 ©)7(©O) _ [if(;16)]7(6)
F 01 Yoo ) S LG 16)] 7(6)dd

Q

71(9 I yl;yz’n-,yn) =

(15)

where Q is the parameter space. Re-writing I1; f(y; | 6) as the likelihood
function, L(y; | 6), we get

L(y16) 7(6)

7O | Y,V dy) =
f Ly | 6]77(6)(16
Q

(16)

The posterior distribution is then maximized for the parameter va-
lues 6 (Reis Jr and Stedinger, 2005).

Hosking (1990, 1990) proposed the L-moments method which is
frequently used for the characterization of data, characteriztaion of
PDFs, testing of PDF hypotheses and parameter estimation of PDFs. For
a real valued ordered random variate Y of n samples,
Yin < Yon < ... < Ynn for cdf F(y) and quantile function y(F), the r-th
L-moment of Y can be described as a linear function of the expected
order statistics and can be represented as (Hosking, 1990)
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Fig. 8. Remote sensing precipitation product ranking in the replication of ob-
served IDF curves at different rain gauge locations.
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The letter ‘L' in ‘L-moments' reveals the fact that r-th L-moment A, is
a linear function of the expected order statistics. Furthermore, based on
the oberved sample the natural estimate of the L-moment 2, is the L-
statistics. The probable value of order statistics can be represnted as:
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The first four L-moments are derived as (Hosking, 2006):
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3.3. Development of IDF curves

The process used for the development of the IDF curves is shown in
Fig. 2. The parameters of best-fitted PDF are used to generate observed
IDF curves, using hourly rainfall observations and remotely sensed-
based rainfall IDF curves at 80 stations. They are developed by fitting
the PDF to annual precipitation maximum data e.g. annual maximum of
daily one-, two-, three-, or more hour rainfall amount. The parameter of
the fitted PDFs is then applied to calculate the return period of max-
imum rainfall depth for each duration. The return periods of the rainfall
intensities of corresponding durations are then plotted to prepare the
IDF curves. In the present study, IDF curves are constructed for 2-, 5-,
10-, 2-5, 50- and 100-year return periods and 1-, 3-, 6-, 12-, 24-, 48-
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and 72 h rainfall durations.
3.4. Performance assessment

Two approaches can be used for comparing gridded rainfall data
with in-situ rainfall: (i) in-situ rainfall is converted into gridded rainfall
through interpolation, and then a grid-to-grid comparison is made; (ii)
gridded data is interpolated to in-situ location and then compared with
in-situ data (Nashwan et al., 2019; Ahmed et al., 2019; Pour et al.,
2020d). In the present study, the second approach was used as the re-
solution of the remote sensing datasets differed. The satellite rainfall
data of the four nearest grid points of an observed station were inter-
polated at the observed location using an inverse distance weighting
method and then compared with the observed rainfall. Five statistical
metrics were used to assess the performance of the remote sensing data
- normalized root mean square error (NRMSE), percentage of bias
(PBIAS), ratio of standard deviations (rSD), modified index of agree-
ment (md) and Kling-Gupta Efficiency (KGE). The formulas, range and
optimum values of the metrics are presented in Table 2. (See Table 2.)

4. Results and discussion
4.1. Performance of satellite-based rainfall data products

The annual average rainfall figures recorded at 80 rainfall gauges is
interpolated to a resolution of 0.1° x 1° (the finest resolution of the
remote sensing data used) using an inverse distance weighting tech-
nique to compare the spatial distribution of the observed and the re-
motely sensed rainfall (Fig. 3). The spatial distribution of GSMaP_NRT
and GSMaP_GC rainfall appeared to have a better match with the spatial
distribution of the observed rainfall than those of PERSIANN and
TRMM. However, the GSMaP_NRT results were found to overestimate
the annual rainfall at more grid points when compared to GSMaP_GC.
PERSIANN and TRMM were found to underestimate the annual rainfall
in the northeast high rainfall regions and overestimate the rainfall in
most other areas.

The bias percent in the median value of the annual average of re-
motely sensed rainfall data is shown in the boxplots in Fig. 4. The re-
sults show an overestimation of rainfall by all the remote sensing pre-
cipitation data. The overestimation in median precipitation was 14.1%
for GSMaP_NRT, 7.2% for GSMaP_GC, 23.9% for PERSIANN and 21.2%
for TRMM_3B42V7. Overall, the results indicate a better performance
by GSMaP_GC in replicating the spatial distribution of annual average
Malaysian rainfall, with the least bias. However, the range of bias in
GSMaP_GC at different grid points was higher than for the other pre-
cipitation products. This indicates a wide variation in the spatial per-
formance of GSMaP_GC in Peninsular Malaysia.

Previous studies conducted on remote sensing precipitation pro-
ducts in the study area have also reported an overestimation of rainfall.
Zad et al. (2018) looked at the performance of TRMM_3B42V7 in the
Pahang river basin of Peninsular Malaysia and reported an over-
estimation of daily rainfall by TRMM at most locations. Tan et al., 2015
also reported an overestimation of rainfall by TRMM and PERSI-
ANN-CDR. Giarno et al. (2018) evaluated the performance of TRMM
satellite rainfall products over the Makassar Strait in Indonesia and also
reported an overestimation of rainfall.

The time series of observed and remote sensing data at all 80 grid
points were compared in order to evaluate the capability of remote
sensing data to replicate the observed time series. The results are pre-
sented in Fig. 5. The GSMaP_GC indicated less NRMSE and PBIAS in
comparison to the other products. Three other statistical metrics of
GSMaP_GC were also found to be nearer to the optimum value when
compared to other products. In construction, PERSIANN performed the
worst of the four products in term of all statistical metrics.

Hur et al. (2018) compared the performance of TRMM and
GSMaP_GC rainfall in Singapore and reported both products were
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Fig. 9. Rainfall intensity at different return periods estimated using observed and remotely sensed rainfall data.

unable to replicate the observed rainfall, although overall GSMaP per-
formed more effectively than TRMM. Islam (2018) compared six remote
sensing products over Bangladesh including PERSIANN, CMORPH,
IMERG (non-gauge-calibrated and gauge-calibrated), and GSMaP_NRT
and GSMaP-GC. GSMaP_GC performed best, while PERSAINN was the
worst performer.

4.2. Fitting PDF and estimation of PDF parameters

An evaluation was conducted on the performance of the four PDFs
and four parameter estimators using negative log likelihood goodness-
of-fit tests. Annual maximum rainfall amount of 1, 3, 6, 12, 24, 48 and
72 h durations for the PDFs and parameter estimation methods were
assessed at all eighty stations. Log-likelihood estimates for one location
in the southern peninsular (station Johor 2,025,001) are presented in
Table 2. The GEV distribution and MLE estimator provided the lowest
log-likelihood estimates for rainfall amount of all durations. No sig-
nificant variation was observed in the log-likelihood estimates for MLE,
GMLE and L-moment approaches. For most of the cases MLE provided
the least likelihood values for estimating the distribution parameters.

The best PDF and parameter estimator of rainfall of different
duration is shown in Fig. 6. Results revealed that GEV is the most sui-
table PDF with MLE and the best parameter estimation method at most

of the stations. The GEV distribution with MLE estimator provided the
least log-likelihood estimates at 62% of the stations, followed by GEV
with a GMLE estimator at 14% of the stations. The GP distribution with
MLE is at 11%, Exponential with MLE is at 5%, GEV with L-moments is
at 4% and Gubmle with MLE is at 4% of the stations. Therefore, the
rainfall properties were fitted with GEV and the distribution parameters
were estimated using the MLE method for the generation of the IDF
curves.

Based on the goodness of fit test, most suitable PDF was selected
using the annual maximum of observed rainfall data in this work. The
PDF selected was fitted to annual maximum of both observed and re-
mote sensing rainfall data for developing IDF curves for observed and
remote sensing data. Therefore, it is suggested to compare various PDFs
separately for developing remote sensing IDF curves in the future.

4.3. Development of IDF curves

IDF curves were developed using both hourly observed and satellite
rainfall data for the period 2000-2018 at all 80 stations. The curves of
Pahang station (ID: 3628001), which is located in the central region of
the Peninsula, are shown in Fig. 7. The y-axis represents rainfall in-
tensity (in mm/h) and the x-axis indicates duration (in hours). IDF
curves for different return periods are also presented. An increase in
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Fig. 10. Percent of bias in median intensity of remote sensing rainfall for different return periods at all stations.

rainfall intensity with different return periods and a decrease in rainfall
intensity with duration is noted (Fig. 7). The result of one station is
shown as an example.

4.4. Assessing the performance of remotely-sensed products

IDF curves, developed using both remotely sensed and observed
rainfall data, were compared in order to estimate the bias in the IDF
curves generated using the satellite-derived rainfall. The bias in median
rainfall intensity for all durations was estimated. The bias of different
remote sensing precipitation products was then used to rank the pro-
ducts at the different stations. The remote sensing precipitation data
which best replicated the observed IDF curves is presented in Fig. 8. The
best precipitation product for estimating IDF curves was found to be
GSMaP_GC (at 51 of the 80 stations, or 66%), followed by GSMaP_NRT
(34%). The PERSIAN and TRMM_3H42V7 products did not perform
well at any of the locations. In Fig. 8 shows locations at which
GSMaP_GC ranked 1st (blue) and at which GSMP_GC ranked 2nd
(yellow). GSMaP_GC performed next to GSMaP_NRT at the locations,
where GSMaP_NRT performed best. Similarly, GSMaP_NRT performed
next to GSMaP_GC at the locations, where GSMaP_GC was found to
perform best. The TRMM_3B42V7 product showed a high bias in its IDF
curves.

The performance of IDF curves estimated using remote sensing
precipitation was assessed by comparing them with IDF curves esti-
mated using the observed rainfall. Rainfall intensity for different return
periods using the observed and remote sensing precipitation data are
presented in Fig. 9. The results show that rainfall intensity for different
duration estimated using GSMaP_GC was most similar to in-situ rainfall
intensity for all return periods. A large difference was observed between
GSMaP_NRT and the observed rainfall intensity for all the return per-
iods (except for the 2-year period). GSMaP_NRT was found to over-
estimate the rainfall intensity for =10-year return periods. PERSIANN
and TRMM appeared to underestimate rainfall intensity for all return
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periods. Previous studies have also reported an underestimation of high
rainfall using remote sensing precipitation products (Hur et al., 2018;
Sharifi et al., 2019; Peng et al., 2020; Yao et al., 2020; Liu et al., 2019;
Mahmoud et al., 2019).

The percentage of bias in the median rainfall intensity for different
durations at all locations were calculated and are presented in Fig. 10.
The figures clearly show that all of the remote sensing precipitation
data underestimated rainfall intensity of all durations, with the excep-
tion of GSMaP NRT for the higher return periods (> 10-year).
GSMaP_GC was found to be the best performer, (underestimating by
8-27%) followed by PERSIANN (28-32%) and GSMaP_NRT (35-49%).
The underestimation was highest for TRMM_3B42V7 (65-67%). Bias in
GSMaP_GC was found to be less (8-12%) for the higher return periods
(> 10-year) and also high for the lower return periods (18-27%). The
bias in other rainfall product was consistently high for all return per-
iods.

It has been reported that most of the remote sensing precipitation
products overestimate light rainfall and underestimate high rainfall
(Sharifi et al., 2019, Peng et al., 2020, Yao et al., 2020, Liu et al., 2019,
Mahmoud et al., 2019). This causes a high bias in IDF curve estimated
using remote sensing precipitation data. Sun et al. (2019) used remote
sensing rainfall for developing IDF curves in Singapore and reported
70% bias in remote sensing based IDF curves compared to observed IDF
curves. Ombadi et al. (2018) evaluated the performance of PERSI-
ANN-CDR against NOAA Atlas 14 for estimating IDF curves in the USA,
with results showing a median bias of between 3 and 22% for pre-
cipitation durations of one to three days.

Rainfall intensity for different durations at all stations was used to
evaluate individual performances using a Taylor diagram (Taylor,
2001). The results are presented in Fig. 11. The circle in black located
on the x-axis represents the observed rainfall while filled circles with
different colours denote precipitation based on remote sensing pro-
ducts. The diagram shows the performance of datasets based on simi-
larity in correlation and variability. The circle nearest to the observed
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Fig. 11. Taylor diagram, showing performance of different remote sensing rainfall products in replicating observed rainfall intensity at different return periods.
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Fig. 13. Observed and bias-corrected GSMaP_CG IDF curves for different return periods of a station located in the south of the Peninsula.

one represents the best product. The analysis shows good performance
of the GSMaP_GC rainfall product for lower return periods (< 10-year),
with an almost similar performance for higher return periods.

A gradual decrease in correlation with return period was observed.
This is mainly due to a higher bias in the rainfall intensity of the higher
return periods. Similar results were also found by when comparing
radar and satellite (CMORPH) IDF curves in the East Mediterranean
region; specifically a high correlation for shorter return period, and
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then a gradual decrease in correlation with increasing return periods.

The study revealed a high bias in the IDF curves which were esti-
mated using the remote sensing data, with the least bias being shown by
GSMaP_GC. The bias in GSMaP_GC for return periods > 10-year was
8-12%, while it was a bit higher for the lower return periods (18-27%).
This indicates that GSMaP_GC rainfall can be used for generating IDF
curves once the small amount of bias has been corrected. The study
revealed that the good performance of remote sensing rainfall data in
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terms of their ability to replicate annual or seasonal rainfall totals, or
the actual spatial distribution of rainfall, does not mean that this data
can be used to provide a better estimation of the IDF curves. The re-
liability of the remote sensing rainfall data should be based on their
ability to reproduce reliable observed IDF curves.

4.5. Spatial distribution of bias

Sixty-four of the 80 stations (80% stations) were randomly selected
for estimation of the spatial distribution of bias in GSMaP_GC rainfall
intensity for differing return periods. The remaining 16 stations (20% of
the total) were used to assess the performance of the bias-corrected IDF
curves at defined ungauged locations. Though the bias in the median
was less for higher return periods and high for lower return periods, the
spatial variability of bias was reduced for the lower return periods and
increased for the higher return periods (Fig. 12). The bias was found to
be higher in the coastal areas and lower in the central region. The
highest bias in rainfall intensity for all return periods was found in the
northeast. Rainfall intensity in this region is high compared to other
regions. As the GSMaP_GC rainfall failed to capture the high rainfall
intensity, the bias is therefore very high.

The biases in remote sensing rainfall data depend on various phy-
siographic factors. This includes topography, elevation and proximity to
shorelines, as well as climatic factors such as wind speed and cloud
cover type (Yao et al., 2020; Kalimeris and Kolios, 2019; Cavalcante
et al., 2020; Sobral et al., 2020). Future studies should concentrate on
correlating specific physiographic and climatic factors with the noted
bias in remote sensed rainfall in order to better understand the various
factors affecting the bias. These factors can then be incorporated into a
bias correction process to provide a better estimation of IDF curves
generated from remotely sensed precipitation products.

4.6. Performance bias corrected IDF curves

Bias estimates for the 16 stations not used to estimate the spatial
distribution of bias (Fig. 12) were used to assess the performance of the
bias-corrected GSMaP_GC IDF curves at ungauged locations. An ex-
ample of the evaluation results for the observed and bias-corrected
GSMaP_CG IDF curves for different return periods of a station located in
the south of the peninsula (Johor 2,025,001) are shown in Fig. 13. This
shows a good match between observed and bias-corrected GSMaP_GC
IDF curves for the different return periods. The graphed results are
presented in Fig. 14, showing a perfect match in rainfall intensity be-
tween observed and GSMaP_GC data. The respective median values
agree well for the lower return periods (< 10-year). The bias in the
median of the rainfall intensity of GSMaP_GC for the higher return
periods was also found to be very close to the intensity of the observed
rainfall and the range of rainfall intensity for the different return per-
iods was also found to match well. These results indicate that the bias-
corrected IDF curves derived from GCMaP_GC rainfall are eminently
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suitable for hydrological studies and hydraulic design work.
5. Conclusion

In a study, four satellite-derived rainfall data products were eval-
uated to determine their ability to replicate IDF curves in Ppeninsular
Malaysia. An analysis of the initial results indicated that all the remote
sensing rainfall underestimated the rainfall intensities for different
durations and return periods. When the results were corrected for bias,
however, the outcomes looked more promising. This shows that the
correction for bias is essential when generating IDF curves using remote
sensing precipitation data. The results indicate that GSMaP_GC is the
best product to use for the IDF curves (with an 8-27% bias). The spatial
distribution of bias for different rainfall return periods for GSMaP_GC
was also generated in this study, and can be used for correction of bias
in the IDF curves estimated using GSMaP_GC. This enables use at lo-
cations where actual rainfall data is not available and so the procedure
used in this study can be used to develop IDF curves in any regions
where suitable data is lacking. These study results can be used when
designing hydraulic structures in the regions of Peninsular Malaysia
where gauged data are unavailable. Biases in remote sensing data can
be corrected before being use in IDF curve development and compared
with the results obtained in this study. The performance of different
bias correction methods can be evaluated to improve the performance
of remote sensing rainfall in generating IDF curves. The best PDFs can
be estimated for both observed and remote sensing data when pre-
paring corresponding IDF curves to allow a better comparison with
remote sensing rainfall products. The performance of remote sensing
data based on different rainfall extremes such as intensity, duration and
frequency can also be evaluated. Besides, the performance of other
high-resolution satellite-based rainfall products that offer data for
shorter period can be compared and evaluated.
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