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Abstract: Nanofluid bioconvective channel flow is an

essential aspect of the recent healthcare industry appli-

cations, such as biomedical processing systems. Thus,

the present work examined the influence of nth order

chemical reaction in an unsteady nanofluid bioconvective

channel flow in a horizontal microchannel with expanding/

contracting walls. The suitable form of the similarity

transformation is exercised to transform the governing

boundary layer equations into a more straightforward

form of system to ease the computation process. The

Runge–Kutta method of fifth-order integration technique

solved the reduced boundary layer system and generated

the numerical results as the governing parameters vary. It

is found that the destructive second-order chemical reac-

tion enhances the mass transfer rate at the lower wall but

deteriorates the mass transfer rate at the upper wall. The

upper channel wall has a better heat transfer rate than

the lower wall when the Reynolds number increases.

Keywords: bioconvection, boundary layer, channel flow,

chemical reaction, nanofluid

Nomenclature

a length of the channel ( )m
ǡ time-dependent rate ( / )m s

A injection coefficient (−)
b̃ chemotaxis constant ( )m
C nanoparticle volume fraction (−)
C0 reference nanoparticle volume fraction (−)
C1 nanoparticle volume fraction on lower wall (−)
C2 nanoparticle volume fraction on upper wall (−)
cp specific heat at constant pressure ( / / )J kg K

DB Brownian diffusion coefficient ( / )m s2

Dn variable microorganism diffusion coeffi-

cient ( / )m s2

DT thermophoretic diffusion coefficient

( )f η dimensionless stream function (−)→
j vector flux of microorganisms ( / / )kg m s2

k thermal conductivity ( / )W mK

k1 rate of chemical reaction ( / )1 s

Kr chemical reaction parameter (−)

Lb bioconvection Lewis number = (−)







Lb

α

D

0

n

Le Lewis number = (−)







Le

α

D

0

B

Nb Brownian motion parameter( )= (−)( − )
Nb

τD C C

α

B 2 0

0
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Nt thermophoresis parameter ( = ) (−)( − )
Nt

τD T T

α T

T 2 0

0 0

N number of motile microorganisms (−)
N1 lower wall motile microorganisms (−)
N2 upper wall motile microorganisms (−)
n power-law index

p pressure ( / ) (−)N m2

Pe bioconvection Péclet number ( )= (−)Pe
bW

D

˜
c

n

Pr Prandtl number ( )= (−)Pr
υ

α0

Re Reynolds number










av

υ

w (−)

t̄ dimensional time ( )s

T temperature ( )K
T0 reference temperature ( )K
T1 temperature at the lower wall ( )K
T2 temperature at the upper wall ( )K
ū velocity components along the -x̄ axis ( / )m s
→
v velocity vector ( / )m s
→
v̂ average swimming velocity vector of micro-

organism ( / )m s2

v̄ velocity components along the -ȳ axis ( / )m s

v̄w dimensional inflow/outflow velocity ( / )m s

Wc maximum cell swimming speed ( / )m s

x̄ dimensional coordinate along the surface ( )m
ȳ coordinate normal to the surface ( )m

Greek letters

α0 effective thermal diffusivity ( / )m s2

α wall expansion ratio (−)
η independent similarity variable (−)
( )θ η dimensionless temperature (−)
θ1 constant (−)
μ dynamic viscosity ( / / )kg m s

υ kinematic viscosity ( / )m s2

ρ fluid density ( / )kg m3

( )ρc f volumetric heat capacity of the fluid ( / / )J m K3

( )ρc p volumetric heat capacity of the nanoparticle

material ( / / )J m K3

τ ratio of the effective heat capacity of the nano-

particle material to the fluid heat capa-

city ( )(−)( )
( )
ρc

ρc

p

f

( )ϕ η
dimensionless nanoparticles volume fraction (−)

ϕ1 constant (−)
( )χ η dimensionless number of motile microorgan-

isms (−)
χ1 constant (−)

Subscripts

( )′ ordinary differentiation with respect to η

( )0 condition at reference

( )1 condition at lower wall

( )2 condition at upper wall

1 Introduction

Nanofluids find applications in many fields of science

and engineering that require heat transfer fluids [1,2].

Generally, conventional heat transfer fluids are poor

heat transfer fluids as their thermal conductivity is very

low [3]. Metals have superior thermal conductivity com-

pared to usual heat transfer fluids. Therefore, a “tech-

nique” has been developed for the enhancement of the

thermal conductivity of the base fluids by incorporating

nano/micro-sized metallic particles in liquids. A suitable

method to increase the heat transfer coefficient is via the

suspension of ultrafine solid metallic particles in indus-

trial fluids [4]. Nanofluid is the composition of subatomic

particles in the base fluid, with a dimension of order

10−9, which plays a remarkable role in improving the

thermal conductivity and convective heat transfer [5].

Usually, these particles (called nanoparticles) are oxides

of metals, pure metallic particles, or even carbon nano-

tubes [6]. Nanofluid formation is possible through dif-

ferent combinations of base fluid and nanoparticles.

Many models have been developed by scientists to

account for how much the thermal conductivity increase

would be, and many experiments have been carried out

to compare experimental data with results of analytical

models. In modelling nanofluid flows, generally, two

approaches (single-phase model and two-phase model)

are used. When nanoparticles are dropped in the base

fluid that is very small (less than 10 nm) in size, the

nanoparticles easily fluidize, and as a result, nanoparti-

cles are uniformly dispersed and suspended stably in the

base fluid. Consequently, the solid particles and the fluid

both remain in the same phase and behave as a homo-

geneous fluid. On the other hand, some nanofluid models

have been proposed to assist the researchers to investi-

gate the nanofluid phenomena. Khanafer et al. [7] have

proposed a nanofluid model, which is assumed to be in a

single phase, achieves thermal equilibrium and omits velo-

city slip between base fluid and particle. However, the nano-

fluid model of Khanafer et al. [7] disregarded some crucial

factors such as size, shape and distribution of the particle

and focused on investigating the dispersion effect. Then,
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Tiwari and Das [8] came up with a simpler nanofluid single-

phase model than the model introduced by Khanafer

et al. [7], which is known as the Tiwari and Das model.

Meanwhile, Buongiorno [9] presented another nanofluid

model to improvise those homogenous single-phase and

thermal dispersion models by defining the base fluid

effect and the nanoparticle’s relative velocity more

mechanically than in the thermal dispersion model pro-

posed by Khanafer et al. [7]. Buongiorno [9] pointed out

that Brownian motion and thermophoresis were the

primary sources for heat transfer improvement in nano-

fluids. These are the recent literature depicting the flow

of nanofluids/hybrid nanofluids on a moving surface

with several effects (see ref. [10–14]).

Bioconvection is a result of an unbalanced density

stratification that is caused by up-swimming microorgan-

isms [15]. The unbalanced density stratification happens

as soon as the microorganisms accumulate at the top of

the fluid [16]. There are two useful types of up-swimming

microorganisms, frequently utilized in bioconvection

experiments, namely, stable oxytactic bacteria and bottom-

heavy algae [1]. Bioconvection usually occurs with smaller

nanoparticle concentration (≤1%). Consequently, the

viscosity of the base fluid remains unaltered. For prac-

tical purposes, it is necessary to understand the char-

acter of suspensions containing both nanoparticles

and self-swimming microorganisms in microsystems.

Enhancement of mass transportation ability and mixing

and reduction in the sedimentation of species are among

the applications of bioconvection in bio-microsystems

and the pharmaceutical industries [1,17–19]. Nanofluids,

together with bioconvection, termed nano-bioconvection,

are helpful to attain improved thermal performance as

well as green, sustainable features. This makes them

well-suited to be used as next-generation bio-fuels [16].

In geophysical phenomena, thermo-bioconvection (with

heat-loving microorganisms) plays a key role in hot

spring areas [20]. It can also be applied to microbial

enhanced oil recovery field; in this industry, microorgan-

isms and nutrients are exploited by mounting them in

oil-bearing glaciers to adjust a permeability variation.

Uddin et al. [21] reported the effects of bioconvection

parameters on the flow of a nanofluid full of suspended

gyrotactic microorganisms. Various researchers, see ref.

[22–26], have investigated the nano-bioconvective flow

for Newtonian as well as non-Newtonian fluids.

Chemical reaction plays an essential part in certain

applications involving heat and mass transport [27]. Che-

mical reactions may be considered as either homogenous

or heterogeneous chemical reactions. All the reactants

are in the same phase in the case of homogeneous

reactions, while in heterogeneous reactions the reactants

are in two or more phases. A reaction is said to be of order

n if the rate of reaction is directly proportional to the nth

power of species concentration. The concentration differ-

ence is the primary motivating force for mass transfer

[28]. Moreover, fluid flow through a channel made of

two porous parallel plates has attracted significant

interest in the last few years [29]. The fluid flow through

extending/contracting walls has been applied in biophy-

sical flows such as respiratory system, dialysis, filtration

in tissues and oxygen diffusion in capillaries [30]. Due

to its vast applications, several researchers, such as

Ahmed et al. [31], Darvishi et al. [32], Javanmard et al.

[33], Mosayebidorcheh [34] and Odelu and Kumar [35],

considered many multi-physical effects on the channel

flow between the extending/contracting walls.

With this regard, in the present work, we expanded

the analysis of a study conducted by Xinhui et al. [36]

and Bég et al. [30] in that we take into consideration the

nth order chemical reaction. The channel consists of the

expanding/contracting upper and lower walls, which

are parallel and permeable. The Runge–Kutta fifth-order

method associated with the shooting technique has been

employed to produce numerical solutions. To the best of

the authors’ knowledge, all presented results on the pre-

sent model are novel.

2 Mathematical model

Figure 1 illustrates a two-dimensional view of unsteady

laminar forced bioconvective slip flow of a nanofluid in a

horizontal semi-infinite channel. The distance between

the two walls is ( )a t¯ ¯ . The upper wall and lower wall of

the channel are subjected to wall velocity, v̄w, and it is

expanding or uniformly contracting at a time-dependent

rate,
∂
∂ .
a

t

¯

¯
Consequently, the plate separation is a function

of time and equals ( )a t¯ ¯

The following assumptions are made:

• Nanoparticle suspension is stable and does not allow

agglomeration in the fluid.

• Water-based nanofluid with the presence of gyrotactic

microorganisms is considered.

• Unsteady two-dimensional incompressible flow.

• Nanoparticles independent of the direction of micro-

organisms swimming.

• Water is considered as the base fluid and spherical (or

close to spherical)-shaped nanoparticles are chosen in

the present study. ū and v̄ refer to the velocity compo-

nents in both x̄ and ȳ directions.T C, and N denote the

Nano-bioconvection in channel flow  1013



fluid temperature, nanoparticle volume fraction and

motile microorganism density, respectively. The lower

wall temperature is symbolized by T1 while T2 is the

upper wall temperature. Next, the nanoparticle volume

fractions at the lower and upper walls are given as C1
and C ,2 respectively. The densities of motile microorgan-

isms at the lower and upper walls are indicated by N1

and N ,2 respectively. Based on these assumptions and

the reliability of Buongiorno’s model, the governing

boundary layer equations of mass, momentum, thermal

energy, nano-particle concentration and microorganism

density conservation are stated as follows [37]:

∇⋅ → =v 0, (1)

∂→

∂
+ (→ ⋅∇)→ = − ∇ + ∇ →v

t
v v

ρ
p υ v

¯

1
,2 (2)

∂
∂
+ (→ ⋅∇)

= ∇ + ∇ ⋅∇ + ∇ ⋅∇



















T

t
v T

α T τ D T C
D

T
T T

¯

,0
2

B
T

0

(3)

∂
∂
+ (→ ⋅∇)

= ∇ + ∇ − ( − )


















C

t
v C

D C τ
D

T
T k C C

¯

,T n
B

2

0

2
1 0

(4)

∂
∂
+ ∇⋅→ =N

t
j

¯
0, (5)

where
→ = ( )v u v¯, ¯ are the velocity components along x and

y axes, respectively. ∇ = ⇀ + ⇀∂
∂

∂
∂i j

x y
is the del or gradient

operator,∇ = ⇀ + ⇀∂
∂

∂
∂i j

x y
2

2

2

2

2 is the Laplacian operator, p is

the pressure, = ( )( )τ
ρc

ρc

p

f
is the ratio of nanoparticle heat

capacity and the base fluid heat capacity, = ( )α
k

ρc0
f
is

the thermal diffusivity of the fluid, ρ is the density of

the base fluid, υ is the kinematic viscosity, DB is the

Brownian diffusion coefficient, DT is the thermophoresis

diffusion coefficient,T0 is the reference temperature, C0 is

the reference concentration, k1 is the rate of chemical

reaction and n is the concentration power law index.

Furthermore,
→
j represents the flux of microorgan-

isms and can be written as follows:

→ = → + → − ∇j N v N v D Nˆ .n
2 (6)

Also, ( )→ = ∇−v Cˆ bW

C C

˜
c

1 0
is the average swimming velocity

vector of microorganisms in nanofluids, Dn is the species

diffusivity of microorganisms, b̃ is the chemotaxis con-

stant and Wc is the maximum cell swimming speed.

Now, for the two-dimensional nano-bioconvection

case, equations (1)–(5) can be written as:

∂
∂
+ ∂
∂
=u

x

v

y

¯

¯

¯

¯
0, (7)

∂
∂
+ ∂
∂
+ ∂
∂
= − ∂
∂
+ ∂
∂
+ ∂
∂











u

t
u

u

x
v

u

y ρ

p

x
υ

u

x

u

y

¯

¯
¯

¯

¯
¯

¯

¯

1

¯

¯

¯

¯

¯
,

2

2

2

2
(8)

∂
∂
+ ∂
∂
+ ∂
∂
= − ∂
∂
+ ∂
∂
+ ∂
∂











v

t
u

v

x
v

u

y ρ

p

y
υ

v

x

v

y

¯

¯
¯

¯

¯
¯

¯

¯

1

¯

¯

¯

¯

¯
,

2

2

2

2
(9)

∂
∂
+ ∂
∂
+ ∂
∂

= ∂
∂
+ ∂
∂

+ ∂
∂
∂
∂
+ ∂
∂
∂
∂
+ ∂

∂
+ ∂
∂





























































T

t
u

T

x
v
T

y

α
T

x

T

y

τ D
T

x

C

x

T

y

C

y

D

T

T

x

T

y

¯
¯

¯
¯

¯

¯

¯ ¯ ¯ ¯ ¯ ¯
,

0

2

2

2

2

B
T

0

2 2

(10)
∂
∂
+ ∂
∂
+ ∂
∂

= ∂
∂
+ ∂
∂

+ ∂
∂
+ ∂
∂
− ( − )





















C

t
u

C

x
v
C

y

D
C

x

C

y

D

T

T

x

T

y
k C C

¯
¯

¯
¯

¯

¯ ¯

¯ ¯
,n

B

2

2

2

2

T

0

2

2

2

2 1 0

(11)

∂
∂
+ ∂
∂
+ ∂
∂
+
−

∂
∂
∂
∂
+ ∂
∂
∂
∂
= ∂
∂
+ ∂
∂





































N

t
u

N

x
v
N

y

bW

C C

x
N

C

x y
N

C

y
D

N

x

N

y

¯
¯

¯
¯

¯

˜

¯ ¯ ¯ ¯ ¯ ¯
.

c

1 0

n

2

2

2

2

(12)

The relevant boundary conditions are given as follows:

= = = ( )
= = = = − ( )
= = − = − ( )
= = = = ( )

u v v Aa t

T T C C N N y a t

u v v Aa t

T T C C N N y a t

¯ 0, ¯ ¯ ¯̇ ¯ ,

, , at ¯ ¯ ¯ ,

¯ 0, ¯ ¯ ¯̇ ¯ ,

, , at ¯ ¯ ¯ ,

w

1 1 1

w

2 2 2

(13)

Figure 1: A schematic diagram of the physical flow problem

(Hatami et al. [29]).
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where = / ( )A v a t¯ ¯̇ ¯w refers to the injection coefficient; it is a

wall measure of permeability. The following similarity

transformations are specified:

=
( )
( )

=
( )

=
( )
′( ) = −

( )
( )

( ) = −
−

( ) = −
−

( ) =

ψ
υx

a t
F η t

η
y

a t

u
υ

a t
xF η t v

υ

a t
F η t

θ η
T T

T T
ϕ η

C C

C C
χ η

N

N

¯

¯ ¯
, ¯ ,

¯

¯ ¯
,

¯
¯ ¯

¯ , ¯ , ¯
¯ ¯

, ¯ ,

, , .

2

0

1 0

0

1 0 1

(14)

Equation (14) is substituted into equations (7)–(12)

jointly with boundary conditions (13). The pressure gradient

terms are eliminated from the momentum equations (8)

and (9). Consequently, the system of similarity differential

equations concerning space and time can be attained:

+ ( ‴ − ′ ″) + ( ‴ + ″) =( )f ff f f α ηf fRe 3 0,iv (15)

″ + ′ + ′ ′ + ′ + ′ =θ fθ ϕ θ θ αηθPr Re Nb Nt Pr 0,2 (16)

″ + ′ + ″ + ′ − =ϕ fϕ θ αηϕ K ϕPrLeRe
Nt

Nb
PrLe 0,n

r (17)

″ − ( ′ ′ + ″ )+ ′ + ′ =χ ϕ χ χϕ fχ αηχPe LbPr Re LbPr 0,(18)

where =f ,
F

Re
=Re

av

υ

¯ ¯w is the Reynolds number, =α a a

υ

¯ ¯̇
is

the wall expansion ratio, =Pr
υ

α0
is the Prandtl number,

= ( − )
Nb

τD C C

α

B 1 0

0
is the Brownian motion parameter,

= ( − )
Nt

τD T T

α T

T 1 0

0 0
is the thermophoresis parameter, =Le

α

D

0

B

is the Lewis number, = ( − ) −
K

k a C C

υr
¯ n

1
2

1 0
1

is the chemical

reaction parameter, =Lb
α

D

0

n
is the bioconvection Lewis

number and =Pe
bW

D

˜
c

n
is the bioconvection Péclet number.

It is worth noting that <α 0 corresponds to a con-

tracting wall and on the other hand >α 0 corresponds

to an expanding wall. If =α 0, it means the wall is static

i.e. fixed channel plate separation. The corresponding

boundary conditions are as follows:

(− ) = − ′(− ) = (− ) = (− ) = (− )
=

( ) = ′( ) = ( ) = ( ) = ( ) =

f f θ ϕ χ

f f θ θ ϕ ϕ χ χ

1 1, 1 0, 1 1, 1 1, 1

1,

1 1, 1 0, 1 , 1 , 1 ,1 1 1

(19)

where = = =−
−

−
−θ ϕ χ, ,

T T

T T

C C

C C

N

N1 1 1
2 0

1 0

2 0

1 0

2

1
are constants. In this

study, we restrain to the positive values of the Reynolds

number ≥Re 0. It physically corresponds to injection at

the upper/lower wall.

As far as the practical interest quantities are con-

cerned, they are introduced as the skin friction coeffi-

cient ( )C ,fx̄ the local Nusselt number ( )Nu ,x̄ the local

Sherwood number ( )Sh ,x̄ the local density numbers of

motile microorganisms ( )Nn ,x̄ the wall skin friction ( )τ ,w

the wall heat flux ( )q ,w the wall mass flux ( )qm and the

microorganism flux ( )qn , which can be defined as

follows:

At the lower wall:

= = − ( )
( − )

= − ( )
( − )

= − ( )

C
τ

ρ U

a t q

k T T

a t q

D C C

a t q

D N

2
, Nu

¯ ¯
,

Sh
¯ ¯

, Nn
¯ ¯

,

x x

x x

f ¯
w

f R
2 ¯

w

1 0

¯
m

B 1 0
¯

n

n 1

(20)

where

= ∂
∂

= − ∂
∂

= − ∂
∂

= − ∂
∂

= ( ) = ( )

= ( ) = ( )









































τ μ
u

y
q k

T

y

q D
C

y
q D

N

y

¯
,

¯
,

¯
,

¯
.
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At the upper wall:

= = − ( )
( − )

= − ( )
( − )

= − ( )

C
τ

ρ U

a t q

k T T

a t q

D C C

a t q

D N

2
, Nu

¯ ¯
,

Sh
¯ ¯

, Nn
¯ ¯

,

fx

f

x

x x

¯
w

R
2 ¯

w

2 0

¯
m

B 2 0
¯

n

n 2

(22)
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Here,UR is the average channel flow velocity and μ is the

dynamic viscosity. By substituting equations (14), (21)

and (23) into equations (20) and (22), the resulting

expressions are as follows:

= ″(− ) = − ′(− )

= − ′(− ) = − ′(− )

= ″( ) = − ′ (− )

= − ′ (− ) = − ′(− )

C f θ

ϕ χ

C f
θ

θ

ϕ
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χ
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1

Re
1 , Nu 1 ,

Sh 1 , Nn 1 ,

1

Re
1 , Nu 1 ,

Sh 1 , Nn 1 .

fx x

x x

fx x

x x

¯ 2 ¯

¯ ¯

¯ 2 ¯
1

¯

1

¯

1

(24)

Calculating the skin friction is beneficial in approxi-

mating total frictional drag exerted on a solid surface. At

the same time, the local Nusselt number and the local

Sherwood number are essential for estimating the convective

heat transfer rate and mass transfer rate on a solid surface.
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3 Numerical solution and

validation

Equations (15)–(18) under boundary conditions (19) define

strongly nonlinear two-point boundary problems. Thus, a

computational method, namely, the Runge–Kutta fifth-

order method associated with the shooting technique, is

implemented. These coupled nonlinear differential equa-

tions are converted into a system of first-order ordinary

differential equations and then are transformed into initial

value problem with variables labelled as:

′
″
‴
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′ =
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The system of equations can be formulated as follows:
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The above initial value problem can be solved by

implementing the Runge–Kutta method of order 5 inte-

gration, and S S S S, , ,1 2 3 4 and S5 represent the appropriate

values of unknown initial conditions. They are estimated

by putting Newton’s method to a test until boundary con-

ditions of ( ) → ′( ) → ( ) → ( ) →f η f η θ η θ ϕ η ϕ1, 0, ,1 1 and

( ) →χ η χ1 as →η 1 are satisfied. The mathematical soft-

ware MATLAB was successfully utilized for the computa-

tion purposes. End of the boundary layer region (i.e. when

each group reaches =η 1) is determined as if the values of

unknown boundary conditions at =y 1 remain unchanged

to a successful loop until the far field conditions are met

with respect to a specified tolerance of 10⁻⁶ [38].

As no data are found to compare for this specific

problem, we have compared the values of ″ ′ ′f θ ϕ, , for

some specific values of the parameters obtained by two

methods (shooting and bvp4c built in function in the

MATLAB) and found an excellent agreement (Table 1).

4 Results and discussion

All numerical solutions are obtained through MATLAB

(RKF5 with shooting technique), and they are presented

graphically for a better understanding of several aspects.

The aspects are the effects of several controlling para-

meters on the dimensionless velocity, ′( )f η , temperature

( )θ η , nanoparticle volume fraction ( )ϕ η and motile micro-

organism density function ( )χ η . In this study, water-

based bio-nanofluid has been considered and the value

of =Pr 6.8 has been taken. MATLAB solutions are

presented in Figures 3–27, whereas Figure 1 shows the

flow diagram and Figure 2 presents the flow chart of

Figure 2: Flow chart of shooting method.
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shooting method. The impact of important parameters on

fluid velocity ′( )f η , temperature distribution ( )θ η , con-

centration of nanoparticles ( )ϕ η , and motile density of

microorganisms’ distribution ( )χ η are presented and later

discussed in detail.

Figures 3–27 are plotted to scrutinize the influence

of pertinent parameters. The governing parameters are

the Reynolds number ( )Re , the wall expansion ratio ( )α ,

the Prandtl number ( )Pr , the Brownian motion parameter

( )Nb , the thermophoresis parameter ( )Nt , the Lewis number

( )Le , the chemical reaction parameter ( )Kr , the bioconvec-
tion Lewis number ( )Lb and the bioconvection Péclet

number ( )Pe . The variations of these pertinent parameters

are examined with respect to the channel wall expansion

( > )α 0 . Figure 3 shows the impact of the Reynolds number

on ( )f η . ( )f η increases at the lower wall and has an

opposite effect at the upper wall. Figure 4 portrays the

effect of the Reynolds number on fluid velocity, ′( )f η . It

is evident, as shown in Figure 4, that fluid velocity

decreases as the Reynolds number increases because

viscous forces become dominant when compared to

inertial forces. Hence, velocity reduces and attains its

maximum value for both upper and lower walls. Figure 5

displays the effects of wall expansion ratio parameter α

on fluid velocity. For the lower wall expansion, there is

an increase in fluid velocity; the opposite trend happens

for the upper wall. An increase in velocity produces a

sudden increase in yield stress and as a result increases

velocity at the lower wall; vice versa, at the upper wall,

an increase in yield stress leads to a resistance in the

flow and finally velocity decreases. Influences of the Rey-

nolds number on the temperature distribution ( )θ η are

shown in Figure 6. As the Reynolds number is also a

ratio of inertial to viscous forces, the fluid temperature

is directly affected by enhancing Re. By referring

to Figure 6, the fluid temperature increases positively

Table 1: Numerical values of f θ ϕ″, ′, ′ for =α 1.0, Nb = 0.1, Nt = 0.1, Kr = 0.1, Re = 2.0, Pe = 0.1, Lb = 0.1, Le = 1.3, Pr = 2.5 and n = 2

η f ″ θ′ φ′

Shooting bvp4c Shooting bvp4c Shooting bvp4c

−0.8 2.304949 2.30495 −0.055762 −0.0557715 −0.142846 −0.142874

−0.6 2.06599 2.06600 −0.194536 −0.194538 −0.379509 −0.379447

−0.4 1.567717 1.56773 −0.518418 −0.518346 −0.712428 −0.712474

−0.2 0.848289 0.848287 −0.984156 −0.984159 −0.878276 −0.878271

0.0 0.000001 0.00000 −1.26273 −1.26273 −0.829134 −0.82913

0.2 −0.848287 −0.848287 −1.066823 −1.06683 −0.802026 −0.802025

0.4 −1.567729 −1.56773 −0.598571 −0.598572 −0.674661 −0.674659

0.6 −2.065989 −2.06600 −0.232982 −0.232964 −0.382705 −0.382643

0.8 −2.304949 −2.30495 −0.067787 −0.0677975 −0.145767 −0.145789

Figure 3: Effect of the wall expansion parameter ( )α on ( )f η .

Figure 4: Effect of the Reynolds number (Re) on ( )f η′ .
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Figure 5: Effect of the wall expansion parameter ( )α on ( )f η′ .

Figure 6: Effect of the Reynolds number (Re) on ( )θ η .

Figure 7: Effect of the wall expansion parameter α on ( )θ η .

Figure 8: Effect of the Brownian parameter (Nb) on ( )θ η .

Figure 9: Effect of the thermophoresis parameter (Nt) on ( )θ η .

Figure 10: Effect of the Prandtl number (Pr) on ( )θ η .
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with an increase in Re at the lower wall, whereas reverse

behaviour is seen at the upper wall.

The effects of wall expansion parameters on tempera-

ture profile are summarized in Figure 7. Wall expansion

parameter ( )α increases the temperature at the lower

wall, but the temperature drops down at the upper

wall. Figure 8 describes the impact of Brownian para-

meter ( )Nb for temperature distribution. The Brownian

parameter results in boosting the fluid flow, which con-

tributes to the temperature distribution enhancement.

This effect can be visualized through Figure 8, which

indicates that the temperature increases from the lower

to the upper wall in the channel. The thermophoresis

parameter ( )Nt is directly related to temperature differ-

ence. Figure 9 is an inspection of the temperature

distribution for the variations of Nt. It is evident from

Figure 9 that temperature also increases from the lower

to the upper wall of the channel as Nt increases. The

Prandtl number is related to thermal diffusivity, and

from Figure 10, it is evident that the Prandtl number

results in enhancing the temperature at the lower wall,

whereas the reverse trend is noted at the upper wall of the

channel.

Figures 11–16 illustrate the effects of significant para-

meters for a concentration profile of nanoparticles ( )ϕ η

when the power-law index is n = 1.0 or n = 3.0. It is

observed that the power-law index parameter causes a

minor change in the behaviour of the concentration pro-

file. Figure 11 demonstrates the influence of the Reynolds

number on the concentration profile ( )ϕ η . It is clear that

Figure 11: Effect of the Reynolds number (Re) on ( )θ η when the

power-law index is =n 1, 3.

Figure 12: Effect of expansion ratio α on ( )θ η when the power-law

index is =n 1, 3.

Figure 13: Effect of the Brownian parameter (Nb) on ( )θ η when the

power-law index is =n 1, 3.

Figure 14: Effect of the thermophoresis parameter (Nt) on ( )ϕ η when

the power-law index is =n 1, 3.
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nanoparticle concentration increases at the lower wall

but decreases at the upper wall for the power-law index

parameter, n = 1.0 or n = 3.0. The effect of the wall ex-

pansion ratio parameter is given in Figure 12, which

shows a similar effect to that of the Reynolds number

on concentration profile. Figures 13 and 14, respectively,

demonstrate the impact of the Brownian motion para-

meter and the thermophoretic parameter for n = 1.0 and

n = 3.0 on the concentration profile. The nanoparticle

concentration increases at the lower wall for both =n 1

and n = 3.0 with an increase in Nb (Figure 13), while the

opposite trend is seen in the case of Nt in Figure 14 and

vice versa. The impact of the chemical reaction parameter

( )Kr is displayed in Figure 15. Kr depends on the nano-

particle concentration and the power-law index. It is

Figure 15: Effect of the chemical reaction parameter (Kr) on ( )θ η

when the power-law index is =n 1, 3.

Figure 16: Effect of the Lewis number (Le) on ( )θ η when the power-

law index is =n 1, 3.

Figure 17: Effect of the Reynolds number (Re) on ( )χ η .

Figure 18: Effect of the expansion ratio parameter α on ( )χ η .

Figure 19: Effect of the Péclet number (Pe) on ( )χ η .
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evident from Figure 15 that the concentration ( )ϕ η de-

clines as the value of Kr for both n = 1 and n = 3.0 in-

creases. The effect of the Lewis number is shown in

Figure 16. At the lower wall for =n 1 and n = 3.0, nano-

particle concentration increases with the Lewis number

and it is because of the reduction in the mass transfer

rate. Hence, the concentration of nanoparticles ( )ϕ η in

that region increases. The reverse impact is observed

for the upper wall.

Effects of several parameters on density of motile

microorganisms ( )χ η are demonstrated in Figures 17–20.

The Reynolds number ( )Re acts in reverse at the lower and

upper walls. The microorganisms’ density increases at

the lower wall due to the increment in Re. The opposite

behaviour appears in the case of the upper wall. This

Figure 20: Effect of the bioconvection Lewis number (Lb) on ( )χ η .

Figure 21: Variation of the local Nusselt number with the Reynolds

number.

Figure 22: Variation of the local Nusselt number with the expansion

ratio parameter.

Figure 23: Variation of the local Sherwood number with the

Reynolds number.

Figure 24: Variation of the local Sherwood number with the expan-

sion ratio parameter.
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effect is displayed in Figure 17. Figure 18 shows the con-

tribution of the wall expansion parameter ( )α for the

motile microorganisms’ density. It depicts that ( )χ η is

an increasing function of α at the lower wall and vice

versa at the upper wall. The Péclet number is used in

calculating the convective heat transfer. The impact of

the Péclet number on ( )χ η is shown in Figure 19. Due to

heat convection at the lower wall, the density of micro-

organisms increases and decreases at the upper wall.

The influence of Lb on ( )χ η is presented in Figure 20.

Lb depends on diffusion of microorganisms and increases

when diffusion of microorganisms decreases. Hence, when

Lb increases, ( )χ η increases at the lower wall and vice

versa at the upper wall.

The variation of the local Nusselt number, − ′(± )θ 1 ,

together with the Reynolds number and the wall expansion

ratio parameter is shown in Figures 21 and 22, respec-

tively. The local Nusselt number has positive relation-

ships with both Reynolds number and the wall expansion

ratio parameter. Figures 23–25 depict the variation of

mass transfer rate − ′(± )ϕ 1 at the lower wall as well as

the upper wall for the Reynolds number, the wall expan-

sion ratio parameter and the chemical reaction para-

meter, respectively. The mass transfer rate decreases

from the lower to the upper wall of the channel. In

Figures 26 and 27, the local density rates of microorgan-

isms, − ′(± )χ 1 , for both lower and upper walls are dis-

played for Re and α. It is found that at the lower wall,

the density rate decreases as Re increases, but this does

not occur at the upper wall. Similar impact can be ob-

served for expansion ratio parameter ( )α .

5 Conclusions and future direction

The main difference between this work and previous is

the inclusion of nth order chemical reaction. The present

numerical simulation is based on bioconvection of

Newtonian nanofluids. The conclusions based on the pre-

sent investigation are as follows:

• Reynolds number contributes to enhancing the fluid

temperature, the concentration of nanoparticles and

the density of motile microorganisms at the lower

wall. It also has a reciprocal activity at the upper wall

of the channel.

• Chemical reaction parameter results in a reduction

of the concentration of nanoparticles. Up swimming

of microorganisms enhances the concentration of

Figure 25: Variation of the local Sherwood number with the chemical

reaction parameter.

Figure 26: Variation of the motile density number with the Reynolds

number.

Figure 27: Variation of the motile density number with the expan-

sion ratio parameter.
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nanoparticles, and hence concentration increases with

an increase in Péclet number.

• Reynolds number has been confirmed as an increasing

function of the Nusselt number. However, the Sherwood

number and microorganisms’ density decrease with the

Reynolds number.

• For further research, a hybrid computational technique

is required to explore various non-Newtonian nanofluid

models in a Jeffery–Hamel flow, namely, the homotopy

analysis transform method (Singh et al. [39]).
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