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ABSTRACT Hydrofluoroether (HFE) impurities detection is an issue related to detecting chemical contami-
nation within a high volume manufacturing (HVM) chiller caused by a rapid emulated environmental attack.
The aftereffects of the cycle emulated attack may eventually create a micro-crack in the heat-exchanger. This
event eventually causes the contamination of HFE due to multiple chemical interactions. This study proposes
a new classification methodology to detect HFE chemical impurities using induction by a 532nm laser. The
purpose of the laser induction is to leverage its laser speckle contrast attributes and amplify its detection. One
of the reasons for choosing the 532nm laser spectrum is its highest quantum efficiency. Once amplification
of detection is achieved, the detector tends to be in a highly sensitive mode due to low marginality to
differentiate between two different conditions. This mode is prone to be stochastic. Thus, a new form of
architecture known as Deep Learning Laser Speckle Contrast Evolving Spiking Neural Network (DL-LSC-
ESNN) is proposed. The architecture utilizes speckle contrast domain conversion, dimensional additivity of
the receptive neuron of evolving spiking neural network (ESNN), followed by the strength of Convolution
Neural Network (CNN) feature extraction (FE) capability. Ultimately, the evolving and adaptive ability of
ESNN is assimilated and integrated seamlessly. CNN acted to extract only an important spike train, and the
result is its essences of important spikes or spike feature maps. The spike feature maps are then fed into
the ESNN neuron repository, which either assimilates or creates a new neuron repository. The proposed
methods show significant improvement in the accuracy of detection against multiple baseline state of the art
CNN architecture and ultimately demonstrated its capability to detect real-time contamination of HFE thus
improved the detection rate significantly for the HVM environment.

INDEX TERMS Hydrofluoroether, laser speckle contrast, high volume manufacturing, industrial chiller,
ESNN, CNN, deep learning.

I. INTRODUCTION
Industrial chillers are used in a variety of applications in
which a liquid is circulated through processmachinery. In this
case study, the chilled liquid is water from plant chilled
water (PCW), the refrigerant agent is hydrofluoroether (HFE)
with its coolant agent (lubricant oil), and the targeted cool-
ing process is a central processing unit (CPU). This cool-
ing mechanism is to simulate a temperature environmental
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attack via a temperature control into a central processing
unit (CPU) die layer on a high volume manufacturing (HVM)
enviroment. A HVM is known to be continually subjected
to disturbance, which cause deviation and stachostical in
nature [1], [2]. The disturbance of this stachostical are relat-
able to HVM’s process monitoring [1] and tool variation
[3], [4]. Even at optimal HVMpreventivemaintenance sched-
ule to mitigate the risk of sudden failure a failure still occurs
stachostically [5].

The core subjugated issue with HVM is that tempera-
ture changes are in rapid and continuous transformation.
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This leads to a phenomenon known as the kinetic theory of
matter [6]–[10]. Under this rapid continuous transformation,
microcracks are induced in the heat exchanger coil which
creates an environment in which a mixture of chemicals is
induced. The interconnection between these media eventu-
ally creates an environment where HFE and lubricant oil
are forcefully combined. Thus by this effected conditioning,
a pseudo mixture of these two chemicals within the heat
exchanger eventually lead to CPU stain that ultimately con-
tributed to the elimination of the CPU. Further investigation
of the microcrack environment indicated that the contami-
nation is in low sensitivity due to the inadequate amount of
interconnection between these two chemicals. Thus an ampli-
fication and the pre-detection system are needed to assist
and triggered if the microcrack environment happened and
eventually leads to a robust detection system with the usage
of lasers both as a light source and for detection amplification.

The detection methodology and its image capturing system
deployed in HVM environment uses a hybrid technique of
Particle Image Velocimetry (PIV) [11] and Dynamic light
scattering (DLS) [12]. PIV is most commonly used as a
quantitative method that able to measure the particle veloc-
ity on spatial and temporal domains relative to the planar
or tomographic dimension [13]–[15]. References [13], [14],
and [15] also mentioned the application of PIV-CNN on
estimating a dense motion field which able to provide details
(small-scale structures) of the turbulence flow. Reference [13]
architecture starts by inputting a particle image pair and the
output is a velocity field with displacement vectors at every
pixel which provides a final reconstruction of particle image
rather than a pure classification. While [14] architecture
focuses more on regression-based PIV estimator rather than
a classifier. Reference [15] applied an architecture that able
to determines the likelihood of each area containing focused
particles in the re-projected 3D image stacks that recreate
and forecasted the velocity under the influences of flow field
reconstruction. A DLS uses the recording of the fluctuations
in scattering intensity overtime to characterize motion within
the sample [16]. By quantifying these fluctuations, through
either correlation or spectral analysis, diffusion coefficients
can be calculated which in turn can be used to determine
the hydrodynamic properties. In short, DLS measures how
scattering changes over time, regardless of the amplitude of
detection. This fundamental principle is further explained
by [17]. In [18], the research emphasis is on predicting fluids
containing nanoparticles and microparticles against the tradi-
tional DLS process. Reference [18] described the challenge
and the objective of the stochastic process was to be gener-
ated using a deterministic method, the time series provided
by consistent light scattered by a suspension. The research
results concentrate on proof of concept using neural net-
works (NN) for the processing of DLS time series. Research
in [19] approach of light scattering control to determine
the functional relationship between transmitted and reflected
speckle patterns using NN. In [20], the utilization of SVM is
to predict the holographic conditioning of colloidal spheres

which alignedwith Lorentz-Mie theory that enables it to track
each particle in three dimensions and measure its size and
refractive index. Conclusively, PIV usability was focalized in
a randomness repeatable motion via its statistical properties
measurement which eventually contributed to its velocity
attributes [21]–[23] whereas DLS acted as a backbone appli-
cation for the fundamental of detection of a particle in static
liquid form [17].

The basic foundation of HFE impurities detection can
be described by imaging a condition where a laser hits the
container (polycarbonate transparent coupler), the coupler is
illuminated with a laser source, the scattered light yields a
speckle pattern in the far-field. Thus the lightning distribution
is by default consistent. All of the molecules in the HFE
are being hit with the light and all of the molecules diffract
the light in all directions [12]. The diffracted light from all
of the molecules can either interfere constructively (light
regions) or destructively (dark regions). The stochastical ele-
ment described is the velocity in liquid form which being
constantly bombarded with diaphragm pump fins. This to
mimic quick and transformative chemical reactions between
these two chemicals.

Ultimately both techniques focalize on detecting the
stochastic behavior of the particle using a laser as main source
illumination. This is due to the nature of detection, which
is stochastic, eccentric and unpredictable. As stated by [24],
the illumination with a laser source eventually scattered light
yields with a speckle pattern. The speckle pattern is the
property that eventually is harnessed to amplify the chemical
contamination detection.

Due to the condition of HVM, which is stochastic by
nature, a new architecture known as deep learning laser
speckle contrast evolving spiking neural network (DL-LSC-
ESNN) is introduced. The DL-LSC-ESNN utilizes CNN for
its feature extraction layers. This is due to CNN’s ability to
represent its input as a tensor in which local elements are
correlated with one another [25].

The nature of HVMHFE contamination is highly erratic in
its random particle displacement. To combat this a computa-
tional model is needed to capture and learn the whole patterns
from data streams to more accurately predict future events for
new input data. The brain-inspired ESNN has the ability to
learn patterns using trains of spikes [26]. Furthermore, the 3D
topology of a spiking neural network (SNN) reservoir has
the potential to capture an entire pattern at any given time
point [27]. This feature is a focal requirement and eventually
leads to the choosing of ESNN architecture. A further charac-
teristic of ESNN, as stated by [28], is that it can quickly adapt
the new knowledge. The system performs dynamic adaptation
to its synaptic weight either by assimilating similar infor-
mation or creating a new synaptic weight repository [29].
Thus, this study will investigate and explore a highly robust
mechanism for adaptability and evolving ability, eventually
leadings to an image classification technique with the core
combination strength of CNN (spike features extraction) and
evolving ability of ESNN.
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II. MONOCHROMATIC POLYCARBONATE LASER
ATTRIBUTES
This study experimented with the HFE laminar flow. As the
HFEwithin the cylindrical polycarbonate containment cham-
ber occurs when the laser hits the polycarbonate transpar-
ent coupler; the coupler is illuminated with a laser source,
the scattered light yields a speckle pattern in the far-field.
The spatial intensity distribution of speckles is dictated by the
summation of the angular-dependent scattering efficiencies
of the density fluctuations in the illumination/detection vol-
ume and by the phase relationship of the scattered fields [24].
Thus, the lightning distribution is by default consistent. All
of the liquid molecules in the HFE polycarbonate chamber
are hit with the light and all of the molecules diffract the
light in all directions [12]. The diffracted light from all of the
molecules can either interfere constructively (light regions)
or destructively (dark regions). As in liquid form, light
delays its traverse time, thus creating a pseudo-event of light
absorption [12].

Further investigation of this study indicated that a laser
speckle pattern is generated on the rough surface by laser
irradiation, and the laser speckle particles relate to the
laser wavelength and sample surface roughness and have
a more standardized distribution [30]. To simplify the
attribute dependencies, laser speckle is not directly influ-
enced by temperature and is thus appropriate for the mea-
surement of deformation in an extremely high-temperature
setting that may compensate for the exclusion of artificial
speckles. Here. the temperature can be excluded as not a
dependency.

The correlation of the speckles which pass through a
dynamic scatter was studied by [31], who found that this
feature is related to the structure of the surface of scatter and
laser coherence [32]. As the speckle pattern dependencies is
on its surfaces, impurities in the HFE smart coupler designed
with polycarbonates has to go through a process control to
maintain its surface consistencies. Reference [33] mentioned
that coherence for laser beams passing through a movement
diffuser is based on the period of time of observation; time
coherence and spatial coherence were considered. Speckle
noise can obviously be caused by a spatially incoherent laser
light source [34]. This can be countered by using a control
mechanism to capture the laser images through a smart feed-
back system.

Over the years, the study of speckle was delineated by
speckle contrast (SC)whichwas defined as the relationship of
the standard deviation between intensity fluctuation andmean
intensity. The fact that SC has a clear physical meaning and
is mathematically convenient makes it appealing. SC varies
according to changingmean intensity [35]. If translated by the
similarity approach, the comparison is similar to the contrast
representation.

Further research has indicated that the SC is sup-
ported by point spread function (PSF) tuning technique
as a countermeasure. Due to its essential deconvolu-
tion processing and retrieving the object’s image [36],

FIGURE 1. Flow of monochromatic laser attributes.

the PSF polarization is implemented, as it has proven useful
for imaging targets in dispersing media and for enhancing the
contrast of images [37]. Ultimately, the path indicated that a
monochromatic lasers are subdivided into three categorical
approaches: irradiation, coherence and randomize phases.
Each categorical can be translated into a speckle contrast
core attributes which are subdivided on two categories of
fluctuation and mean intensity.

Further investigation for the study as per observed
indicated that either mean or fluctuation intensity are not
completed without proper representation via an encoding
technique. This is due to the encoding will represented the
information in much deeper and different perspective.

Fig. 1 shows the attributes of monochromatic lasers that
will be used to encode the laser from its original images
with SC properties, using the mean intensity approach [38] to
spike train encoding of rank order population (ROP) by [39].
The encoding approach is to amplify the spike train domain
before FE layer. This ensures that only the strongest essences
of spike are captured and represented on the final FE before
being fed into the ESNN layer.

The laser image will be divided into nine sections. Refer-
ring to Fig. 2, each section represent contrast attributes. Fig. 2
section 1, 3, 4, 5, 6, 7 and 9 heavily align with SC concept.
Fig. 2 section 2 and 8 shows heavy contrast and brightness
intensity. These attributes will be further encoded with the
encoding scheme. This is to boost its dimensional additive.

A. QUANTIFICATION AND FORMULATION OF
MONOCHROMATIC POLYCARBONATE LASER SPECKLE
CONTRAST ENCODING
Laser Speckle Contrast Imaging (LSCI) is a sophisticated
and useful imaging method that uses the speckles of a highly
coherent light source (laser source), that are randomly gener-
ated on the image sensor. This imaging technique is regarded
as an economical method to obtain information on the move-
ment or flow of the target medium [38].

The speckle contrast can be determined by analyzing the
reflection intensity of the image [38], [40]–[43]. The speckle
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FIGURE 2. Impurities HFE polycarbonate sectional analysis.

FIGURE 3. The SC mean intensity 5× 5 windows conversion.

contrast, K, can be calculated using Equation (1).

K =
σstd

〈I 〉
(1)

In Equation (1), K represents the speckle contrast, σstd is the
standard deviation, while 〈I 〉 is the mean of the intensity of
the reflectance image in a region of interest (ROI). The raw
images (1920× 1080 with original 96dpi) were first interpo-
lated by resizing it to (800×680 with default 96dpi) to reduce
the computational cost [44], [45] and also due to limitation
of resources [46]. As mentioned by [47], the resizing has
minimal impact upon resolution loss. The resized image array
of 800 × 680 pixels is split into 5 × 5 pixel windows in this
experiment prior to computing the SC. Consequently, the ROI
of 25 pixels in the initial images is converted into one pixel
and the lateral laser speckle image pixel size is decreased by
five times compared to the raw image. Fig. 3 is the conversion
result from normal RGB to SC mean intensity using the 5×5
window.

As for the spike train encoding, this study utilizing ROP.
The ROP is being chosen due to drawbacks of conventional
spiking neural network (SNN) long simulation rate coding
probabilistic conversion [48]. The ROP is proposed to alle-
viate this issues by encoding the SC images to pixel-based
spikes. Further justification of this conversion process is the
requirement to comply to ESNN usability. From a biological
perspective, as the retina cells fire with remarkable tempo-
ral precision [49], a single spikes can, in principle, carry
substantial information about visual stimuli [50]. Extensive
justification indicates that the underlying idea behind ROP
is that individual cells by themselves do not carry much
information, but together, as a population, they are or could be
sufficient. Reference [51] suggests that in synergistic encod-
ing of information in the relative activities of a neuronal
population is a feature of the retinal ganglion cells (RGC)
responses at the population level. This observation indicates
the effectiveness of applying ROP-based encoding, which in

reality nearly emulates nature. The spiking encoding scheme
accomplishes an information ventral stream. This means that
both spiking rate and time can be used to represent the
structural information within ventral stream. As the intensity
of a stimulus increases, the rate of spikes increases to con-
vey much more important information [52]. To summarize,
the ROP true functionality is its ability to generated spikes by
sequentially sorting input values from its pre-layers [48] after
SC conversion.

Aforementioned the input information must be expressed
in spikes in ESNN, Fig. 3 ’s conversion image must be
encoded in spikes. ESNN is well known to be encoded in ROP
encoding scheme. The ESNN encoding scheme requires the
real valued dataset to be mapped into a sequence of spikes.
To achieve this, a neural encoding technique is required.
The ESNN utilizes ROP encoding as its encoding scheme.
This technique was first described by [53]. Receptive fields
allow continuous values to be encoded using a set of neurons
with overlapping sensitivity profiles. Each input variable is
represented independently by one dimensional receptive field
unit M. For variable n of the interval [Imin, Imax] is defined.
The Gaussian receptive field (GRF) of neuron j is given by
its center Cj.

Cj = Inmin +
2j − 3
2

(
Inmax − I

n
min

N − 2
) (2)

And withWj width:

Wj =
1
β
(
Inmax − I

n
min

N − 2
) (3)

With 1 ≤ β ≤ 2. Parameter β controls the width of Gaussian
receptive field. The output of neuron j is defined as:

outputj = exp

(
−
(x − Cj)2

2W 2
j

)
(4)

where x is the input value. The firing time of each
pre-synaptic neuron j is defined as:

Tj =
∣∣T (1− outputj)∣∣ (5)

Ultimately the enhanced process of introducing the laser
properties ROP encoding produced a higher dimensional vis-
ibility of laser image representation as compared to conven-
tional RGB representation. The laser image is represented
via a spike configuration. A spike as in its raw form can
carry substantial information about visual stimuli [50]. This
representation can be expanded as in the analogue form of
amplitude, phase and frequency. Thus, it may provide bound-
less visibility to further conjecture how the spike functions.

III. CONVOLUTION NEURAL NETWORKS (CNN)
In the last few years, CNN has become an outstanding tech-
nology and has led to better performance in many fields.
A CNN architecture has several iterative levels, including
convolution, ReLu, and pooling layers. This layer is ostenta-
tious, but non-linear [54]. The difference is that the impor-
tance of feature extraction layers is emphasized by CNN.
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FIGURE 4. Conventional CNN with forward and backward propagation flow. Iterative layer of convolution, ReLu and pooling are being utilized for
FE.

To put into perspective, input representation in a low level can
be transformed by each layer into an abstract representation.

IV. SPIKING CNN
A typical Spiking CNN consists of CL, PL, a fully connected
linear classifier, and a spike counter. Its follow conventional
CNN in the same order except the existence of spike counter.
As the CL uses weight sharing to reduce the number of
parameters as in a conventional CNN. The information in a
spiking CNN is transferred via spike trains instead of real val-
ues [55], [56]. The spike train conventional generated via rank
order or population based [48]. This to ensure that the neurons
in CL detect more complex features by integrating input
spikes from the previous layer which detects abstract visual
features. The convolutional neurons emit a spike as soon as
they detect their preferred visual feature which depends on
their input synaptic weights [55], [57]. For each neuron is
selective to a visual feature determined by its input synaptic
weights on its specific map to detect the same visual feature
but at a different locations. To this end, synaptic weights
of neurons belonging to the same map should always be
the same. As for the PL provide translation invariance using
maximum operation, and also help the network to compress
the flow of visual data [58]. Neurons in PLs propagate the
first spike received from neighboring neurons in the previous
layer which are selective to the same feature [57], [58]. The
Spiking CNN’s CL and PL are arrange in consecutive order
if the magnitude of FE is needed further. Fig. 5 shows the
network architecture of a typical spiking CNN.

Ultimately the justification from Spiking CNN indicated
that the CL are significant due to its ability to extract only
important spike generated after ROP conversion [48], [58].
Each CL extracts features through spiking convolution pro-
cess. Then, the pooling layer combines the outputs of neurons

FIGURE 5. Typical network architecture of spiking CNN [58].

cluster in one feature maps (FM) into the input of one neuron
in the next layer [58]. Pooling layer (PL) also behaves as a FM
reducer by reducing the size of the FM by pooling maximum
amplitudes given by CL [48].

A. QUANTIFICATION AND FORMULATION OF CNN
The CL is parameterized by the size and number of maps,
the size of the kernel, the skipping factors, and the connection
table. Each layer is similarly sized with M maps (Mx, My).
A kernel (blue rectangle in Fig. 6) of size (Kx, Ky) is relocated
over the appropriate region of the image input (i.e. the kernel
must be inside the image completely). The Sx and Sy skipping
factors determine how many pixels the filter / kernel skips
between subsequent convolutions in x and y-direction [59].
The size of the output map is then defined per Equation (6):

Mn
x =

Mn−1
x − K n

x

Snx + 1
; Mn

y =
Mn−1
y − K n

y

Sny + 1
(6)

where index n indicates the layer. Each map in layer
is connected to at most map in later. Neurons of given
map share their weight but have different receptive fields.
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FIGURE 6. Architecture of convolution neural network [59].

The interpretation of Equation (6) can be compared to Equa-
tion (7a). Where theM is M maps or layers of images, s is the
skipping factor or padding and K is the kernel or filters. B is
bias.

Convolvea,b,c =
∑k−1

l=0

∑w−1

m=0
(7a)∑h−1

n=0
Msp+n,sq+m,rKlmn + Blmn (7b)

For Equation (7a), the Convolvea,,b,c is the dot product of
a representation of the summation of single M. For each
M maps depth k, and for every width w of M on every
height h, perform kernel multiplication Klmn added with bias
Blmn. Fig. 6 shows the map representation from it nominal
input layers L0, moves to convolution layer L1 map M1 to
convolution layer L2 map M2. Each layer represents the dot
product of each input representation.

The activation layer, consists of several activation func-
tions. The activation functions include sigmoid, tanh and
ReLu. Nowadays, the activation layer is typically ReLu,
which from a mathematical perspective converts any
non-zero to zero and linear to all positive values. Due to
this, it is computationally cheap. Moreover, ReLu does not
converge faster, as it does not suffer the vanishing gradient
compared to sigmoid and tanh. In a sparse network, it is
more likely that neurons are actually processing meaningful
aspects of the problem. ReLu activation is referred to in
Equation (8).

f (x) =
{
0 for f (x) < 0
f (x) for f (x) ≥ 0

(8)

A PL always is added after the CL. In general, the FM have
been generated by a CL after a non-linearity (e.g. ReLU) had
been applied. The pooling requires the choice of a pooling
operation, similar to a filter for FM. The final size of the
filter or pooling operation is always smaller than the size of
the FM by a division of two. The pooling main objective is
to reduce its FM by applying its function. The most com-
monly used pooling function is max pooling, as stated by

Equation (9a).

f (x ′)d,e,f = max
a,b∈Pi,j

f (x)a,b,c, (9a)

Pi,j is the window for Pooling operation (9b)

V. EVOLVING SPIKING NEURAL NETWORK
The emerging ESNN [60], are definitely appealing in the
context of HFE chemical contamination. An ESNN can grow
and learn new information by evolving (e.g. adding) neurons
without retraining it [61]. ESNNs function on-line by design,
and ESNNs are given a quick updating and functional frame-
work for adaptive online learning. This unique feature gives
them the greatest benefit [62].

The above-mentioned developments in the use of large
amounts of HFE data for online forecasts pose significant
challenges linked to its stochastic character and its evolution
over long periods [63], [64]. Without explicit specific plant
models, ESNN’s most obvious advantage is that its neural
networks can learn to carry out satisfactory tasks. In circum-
stances in which identical copies are hard to find, this is
strongly favored [65].

ESNNs are modular decentralized-based systems that
continuously, independently coordinate, on-line, adaptively,
evolving, and interactively build their structure and function-
ality on the basis of incoming information [28]. Its topology
is purely feedforward, arranged in several layers, and the
relations between the neurons of existing layers are subject to
changes in weight. Based on the evolution and the topology,
for a complex and unpredictable nature of HVM, an extensive
version of ESNN is needed. As mentioned earlier, an ESNN
by nature has the ability to evolve its neuron repository.
The evolving nature is a key element of its success, as dis-
cussed [28], [66]. The purpose of the learning method is to
generate output neurons, each of which is marked with a
class label. The number and value of class labels depend on
the classification problem to solve. The learning algorithm
generates successively during the presentation of training
samples a pool of trained output neurons. The idea is a single
repository is evolved for each class label.

A. QUANTIFICATION AND FORMULATION OF EVOLVING
SPIKING NEURAL NETWORKS
ESNN originated from the Evolving connectionist sys-
tems (ECoS) methodology, it was initially proposed by [61],
and the architecture was intended to be used in visual pattern
recognition [60]. From the perspective of a neural model, fun-
damentally it used a Leaky Integrated-and-Fire (LIF). This
model was described by [67], as the information transfer is
in spike domain. It describes the spike response as dependent
upon arrival time. The early spike response is important due
to the fact that the post-synaptic potential on the earlier spike
is critical. This principle is fascinating because the brain is
able to quickly and accurately measure even complex tasks
using the information provided by these early spikes.

These early spikes generation fully utilizing the dynamism
of Thorpe and Gautrais model are describe by dynamic of the
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post-synaptic potential ui(t) of a neuron i:

ui(t) =

{
0 If fired∑

j|f (j)<t
wjim

order(j)
i Otherwise (10)

where is the weight of a pre-synaptic neuron j, f(j) is the firing
time of j, and 0 < mi < 1 is a parameter of the model, namely
the modulation factor. Function order (j) represents the rank
of the spike emitted by neuron j. For example, if j is the first
among all pre-synaptic i neurons to emit a spike in the rank
order (j) = 0. In a similar fashion, the spikes of all pre-synaptic
neurons are ranked and then used in the computation of ui.
A neuron i produced a spike if it exceeds a certain level of 0.
After emitting a spike, the potential resets to ui = 0. Each
neuron is allowed to emit only a single spike at most.

As for the learning methodology of ESNN, it used the
algorithm from [66]. ESNN algorithm is an equivalent to feed
forward and organized in multiple layers. The objective of the
ESNN’s learningmethod is to create output neuron, each with
its own class label I ∈ L. Below is the equation used in the
training algorithm.

w(i)
j = (mod)order(j) ∇j|j pre− synaptic neuron of i

(11)

γi = PSPmax(i).C (12)

PSPmax(i) =
∑

jwj.imod (j) (13)

Wj,i =
wnew + (wj,i.M )

M + 1
(14)

γi =
γnew + (γi.M )

M + 1
(15)

These early spikes generation fully utilizing the dynamism
of Thorpe and Gautrais model are describe byEquation (11)
to Equation (13), and indicate the relation between the
pre-synaptic neuron j and the neuron generated i. Parameter
mod is the modulation factor of the Thorpe and Gautrais
neural model. Different labelled output neurons may have
different modulation factormod. The function order (j) repre-
sent the rank of the spike emitted by neuron j is the maximal
possible potential of R{0 < C < 1}.
Equation (14) and Equation (15) compare the trained neu-

ron with the stored neuron in repository. If the Euclidean
distance is smaller than (SIM), the trained output neuron is
considered equivalent. As a result, the thresholds and weight
vectors are assimilated according to Equation (14) and Equa-
tion (15) respectively. The merging uses an averaging of the
connection weights and the average of two firing threshold.
The merging will eliminate the trained neuron i and the next
sample is processed. If no similarity is found as compared to
trained neuron i, the neuron i is added to the repository as a
new output neuron.

VI. PROPOSED DEEP LEARNING LASER SPECKLE
CONTRAST EVOLVING SPIKING NEURAL NETWORK
(DL-LSC-ESNN)
Due to the stochastical state of HVM, a new DL-LSC-ESNN
architecture is proposed. As the core issues of the essence of

HVMHFE contamination are highly unpredictable in random
particle displacement in its laminar flow. To counter this a
computational model must capture and learn all the trends
from data streams in order to predict the most probable future
events for new input data. One of DL-LSC-ESNN known
components of ESNN has the ability to learn patterns by
using ROP spikes [26] and is supported by a reservoir that
has the potential to capture a whole pattern at any given time
point [27]. ESNN, as described by [28], can quickly adapt the
new knowledges by performing a dynamic adaptation to its
synaptic weight [29]. Other components from the proposed
DL-LSC-ESNN such as SC conversion at the input stages
exist as a method to amplify the detection. As discussed,
the SC conversion idea came from the fundamental of LSCI.
The outcome of the investigation of this LSCI shown that
the properties of laser speckle pattern generated on the rough
surface of polycarbonate by laser irradiation, and the laser
speckle particles relate to the laser wavelength and sample
surface roughness have a more standardized distribution [30].
This eventually leads to straight forward and highly econom-
ical methodology to obtain the information on the laminar
flow inside the polycarbonate chamber. This put the LSCI in
the position of being harness as part of SC formulation and
quantification. As for the CNN component integration with
DL-LSC-ESNN, the integration aforementioned argument is
on its reliable FE performance. CNN’s FE ability together
with SC’s ROP integration eventually lead to tougher transla-
tional invariances immunity [58]. This distinctive ability and
performance leads to the combination of all component and
strengthens DL-LSC-ESNN adaptability to stochastic nature
of HVM.

DL-LSC-ESNN architecture input starts by receiving the
default image state in RGB format. The first step is the
RGB conversion to SC domain. Next the SC domain con-
version to grayscale pixel intensity in range (0,1) [55] is
executed to intensify the brightness of laser speckle contrast
(LSC). Fig. 7(B) is the LSC conversion. As a stimulation of
actual pulses of human vision replication, the conversion of
LSC to ROPE needs to be initiated. The conversion takes
place from Equation (2) until Equation (5). Fig. 7 (C) visu-
ally depicts the conversion using ROP encoding [28], [62],
[66], [68]. This concept previously used ROP as per stated
in [52], [56], [57], [69].

Due to ESNN architecture being using as the backbone of
this architecture, the sample sequence of spikes is encoded
(spike trains) by using ROP scheme. Fig. 7(D), shows the
conversion of the image into a newly formed image based
neuron depth. The next step is to pre-process the image
conversion of neural encoding into a convolution Equa-
tion (7a) using stochastic kernel and bias. This process
generates the FM of the CL. By following a conventional
flow of CNN architecture, the FM is fed into an activa-
tion function (ReLu) layer. ReLu function is to convert the
negative value to zero and linear all passive value. Refer
to Equation (8) and Equation (9a) for clarification and
Fig. 7(E,F,G).
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FIGURE 7. Proposed Deep learning Laser Speckle Contrast Evolving Spiking Neural Network (DL-LSC-ESNN) architecture.

FIGURE 8. The technique to captured and stored final FM for
visualization on the CNN approach.

The PL’s function is to reduce the size of feature map.
As stated, the kernel will scan for max value within its kernel
window. The kernel window is known as max pooling, as it is
commonly used throughout the research community. Pooling
important information will always reduce the size of each
feature map by a factor of two.

After pre-processing, the essence of this neuron conversion
is fed into an ESNN neuron repository learning algorithm.
The learning algorithm eventually create output neuron, each
with its own class label I ∈ L. The equations used in the
training algorithm are Equation (11) until Equation (15).
Fig. 7 (H) shows the high level evolving repository.

The algorithm composed of combination of LSC, CNN and
ESNN. Fig. 10 is the DL-LSC-ESNN algorithm flow. Its start

FIGURE 9. The technique to captured and stored final FM for
visualization on the proposed DL-LSC-ESNN approach.

by initializing the neuron repository NR = {}, ESNN and
CNN parameter (line 1 until 4). All the imagess in R{images}
is converted from RGB to LSC domain (line 5 until 6). LSC
aforementioned will use Equation (1). Equation (1) acted as
ROI conversion of 5× 5 windows for each imagess. The next
step is to convert every pixel value in the into a neural encod-
ing representative of the SC Conversion{a,b}. This change
SC Conversion{a,b} into a spike train domain (line 6 until
11), where Tp,q,r is the simulation or spike interval. Fig. 7
(C) exemplifies the GRF encoding process for the feature
of any given sample. The next step is to utilize conventional
CNN flow (convolve, ReLu and pooling).

As mentioned above, CNNs are known to be good feature
extractor. Their core utilization is to capture the essences
of converted neural encoding Tp,q,r . A CNN algorithm
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FIGURE 10. DL-LSC-ESNN Algorithm.

convolutes the row ( ) and column (q) followed by its neural
encoding depth (r) with kernel acting as a pseudo filtration.
This convolute is limited by boundaries within the converted
neural encoding R[p,q,r]. The skipping factor (s) determine
the resolution of convolution. Equation (7a) is the represen-
tation of a feedforward neural network by interpreting it is
as a dot product between input tensor (Tp,q,r ) and it kernel
(Kl,m,n) by adding it with bias (Blmn). Fig. 10 line 13 represent
the equation. Fig. 10 line 13 until 15 is repetitive of the CL,
Relu and PL. Its start with static kernel as first layer, followed
by stochastic layer subsequently. The repetition of the layer
depth is dependent on the input neuron conversion.

By capturing only the essences of its core neural encoding
scheme, only the most important spike is contain. Next step
is to utilize the ESNN training algorithm. For every pattern
originating from the similar group, a new output neuron is
generated and connected via weights wg,h to the previous
layer of all pre-synaptic neurons. The value of wg,h is calcu-
lated through a synapse g based on the spike order as wg,h =
modorder(Poolingd,e,f ), where g is the presynaptic neuron of the
output neuron h (Fig. 10 line 19). Each neuron in this model
can spike at most once, andwhen its PSP exceeds its threshold
value, a neuron will be triggered. The PSP of a neuron i
is defined as per Equation (12). A numerical threshold γh
is set for the recently created output neuron as the fraction

FIGURE 11. System hardware setup.

C ∈ R (0, 1) of its maximum postsynaptic potential Fig. 10
(line 20) i.e. γh = PSPmax(h).C (line 21). A progressively
generated output neuron’s weight vector is then matched
to the previously trained output neurons in the repository.
When the Euclidean distance is smaller than the similarity
parameter (SIM) between a newly generated output neuron
weight vector and that of one or more of the already trained
output neurons, they are regarded as similar. Consequently,
their thresholds and vectors are accordingly combined. This
can be observed from Fig. 10 in line 22 until 26, where M is
the amount of prior neuronal combinations comparable to the
ESNN’s learning history. The latest created output neuron is
discarded after assimilating and the latest model updates its
weight vector. If similarity is not found (parameter logic of
SIM) to recently created output neurons, it will be appended
to its repository. The testing stage propagating spike via its
trained output, which eventually encoded the test sample.
Eventually, the class label of the test sample output neuron
is fired first. It fires after a threshold value γh is activated.

VII. EXPERIMENTAL HARDWARE SETUP
Due to the HVM chiller’s unpredictable nature, the experi-
ment needed to further expand the detection method using a
radical hardware approach. The discussion on the hardware
setup is provided to clarify the technique of data collection
and its main component. Fig. 11 is the high definition (HD)
camera and laser chamber. The camera and laser chamber
are designed to ensure the camera and laser are in a con-
trolled environment. The chamber is designed using alu-
minum enclosure with black background as a control environ-
ment. On the lighting control, a monochromatic green laser
(532nm) is chosen with a feedback control system via its
switching regulator for a constant current and voltage supply.
All the setup is obligated to ensure no external lighting will
distort the internal chamber environment. Fig. 11 also shows
the diaphragm pump, the functionality of the pump is to
distort the targeted HFE chemical by using forceful kinetic
motion of the diaphragm blade.
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The system key element of detection is the observation
windows. The observation windows used a polycarbonate
material. The material is chosen to ensure that it was able
to withstand extreme pressure and temperature. The system
monitored chiller behavior via its internal tank circulatory,
and the tank acted as a central collective for HFE chemical
that is connected to heat exchanger and closely simulated
the after effect condition. The after effect condition is when
the evaporator and condenser are being process and thru its
pseudo contact via heat exchanger eventually will provide
the highest chemical combination. As the objective of the
system is to detect the contamination of HFE inside the chiller
tank, this method of testing uses ambient temperature; this is
important for a safety perspective.

VIII. RESULTS AND DISCUSSION
A. DATASET VISUALIZATION AND SIMILARITY
MEASUREMENT
The visualization of impurities HFE dataset eventually pro-
vide an understanding of the level of difficulties of how the
dataset structures are associated with each other. To per-
form this task, the visualization mechanism of t-distributed
stochastic neighbor embedding (t-SNE) is applied. Histori-
cally, t-SNE [70] has been efficient when it comes to finding
the underlying data structure. The main idea behind t-SNE is
to preserve the local data structure through the preservation of
pairs of data from the original space to the future space [71].
As previously discussed, the stochastic behavior of the impu-
rities HFE detection relies on that to visualize the nature of the
image data distribution. This visualization provides extensive
understanding on the interaction of each sample of the data
structure. The t-SNE with its ability to persevere and finding
underlying data structure is the most suitable visualization
technique for stochastic based dataset. On the other hand,
t-SNE is particularly designed to avoid this dense clustering
of impurities in HFE detection, which makes it possible to
visualize large, high dimensional data systems in a clearer
way [70]. Due to the research nature and inspired by the
parametric t-SNE [72], the usage of tSNE is presented with an
explicit nonlinear function in this research. The visualization
of the raw image dataset is shown in Fig. 12.
The qualitative visualization of Fig. 12 shows that the data

are non-separable or non-linear (PHFE indicated - Pure HFE
and xPHFE indicated contaminated HFE). For a sample of
impurities HFE dataset, there are no clear boundaries between
subtypes of sample. They are highly comingled and certain
data points see complete assimilation. This gives a clear
picture of the difficulties to classify the HFE contamination
and thus required LSC domain conversion and RN cubic form
creation to increase the dimensional additive.

To further support the qualitative argument of original
visual dataset assimilation. Fig. 13 (A) and (B) are the repre-
sentation of cosine similarity between Pure and contaminate
HFE. The visualization of the dataset utilized cosine simi-
larity to measure the similarity of each images. As cosine
similarity works really well on comparing each dataset

FIGURE 12. Visualization of Impurities HFE dataset.

FIGURE 13. Dataset similarity result pre and post processing.

irrespective of their size, the technique works by measuring
the cosine angle between two vectors projected in multidi-
mensional space [73]–[79]. As for the highest similarity value
is referring to 1. From Fig. 13 (A), referring to original dataset
the spread is mostly accumulated at 1. Which indicated that
similarity strongly occurs. From Fig. 13 (B), the mean of
similarity is at 0.996, spreading is between 0.997 and 0.995.
This indicated how narrow and accumulated the similarity
between pure and contaminate HFE dataset.

B. BASELINE SETUP AND RESULTS
A proper accuracy validation between state of the art (known
DL architecture) is needed against DL-LSC-ESNN architec-
ture. This to ensure that DL-LSC-ESNN is highly competitive
against well-known DL architecture. Here the study are com-
paring DL-LSC-ESNN against state-of-the-art architecture
such as ResNet [80]–[82], VGGNet [83]–[85] and Inception
Net [86]–[88]. Refer to Table 2 for state-of-the-art accuracy.

216428 VOLUME 8, 2020



A. S. M. Salleh et al.: HFE Impurities—Chemical Detection Using a DL-LSC-ESNN

TABLE 1. Baseline rudimentary CNN architecture.

DL-LSC-ESNN was built upon a layer of rudimentary
CNN. As aforementioned the CNN layers acted as FE for
DL-LSC-ESNN.Due to the usability and functionality a char-
acterization baseline is highly needed to further strengthen
the validation accuracy via a rudimentary CNN baseline case
study. For a rudimentary CNN experimentation the filter
weights of each layer are initialized by randomly generated
from Gaussian distribution (mean value µ = 0 and standard
deviation σ = 0.001), bias is set to stochastic. The kernel size
is 3× 3 or 5× 5. As for convolution layer properties such as
pooling and activation layer, for this research pooling will be
maximum function and for the activation layer, ReLu will be
selected. The learning rate selected is at 0.0001 [13], [89],
[90], epoch is 500 [90] and momentum rate is 0.0001 [91].
Refer to Table 1 for rudimentary CNN accuracy.
The baseline rudimentary CNN accuracy (refer to Fig. 26)

being generated to further investigated the optimized layer for
the highest accuracy for HFE dataset. By adding or lowering
the layer, the accuracy offset gave a quartile of ∼62.66 and
∼58.11with its maximum accuracy is at 63.64. The spreading
indicated the diversity of the layer impacting accuracy. Thus
indicated by adding more layer the accuracy will be further
decreasing. For this experimentation, the CNN setup is a
4 layer with 3× 3 and 5× 5 kernel as a rudimentary baseline
for CNN case study.

C. DL-LSC-ESNN CHARACTERIZATION AND RESULT
From the perspective of architecture differences by referring
to Fig. 4 and Fig. 7, DL-LSC-ESNN adds layers to the LSC
domain by utilizing Equation (1). The initial transformations
of the domain from conventional CNN’s RGB (refer to Fig. 4)
as its inputs to the LSC domain are achieved through Equa-
tion (1). DL-LSC-ESNN also added a dimensional additive
layer of RN after LSC domain (refer to Fig. 7 C and D). Fig. 7
C, utilizing Equation (2) until Equation (5). Equation (2)
and Equation (3) is the definitive parameter that necessitates
being set as initial calculation (Cj and Wj). The purpose of
Equation (4) and Equation (5) is to generate a spike train
from a numeric conversion. The intention is to build a cubic
representative of LSC domain by referring to Fig. 7 D. Fig. 7
D is the finalization of dimensional additive that needs to be
added before feeding the RN cubic form into iterative layers

FIGURE 14. DL-LSC-ESNN Result vs CNN with 3× 3 kernel filter.

FIGURE 15. DL-LSC-ESNN Result vs CNN with 5× 5 kernel filter.

of CL, Relu and PL. After the iterative layers, the final FM
is generated. The final FM which represents the essences of
spike train is fed in an evolving repository (refer to Fig. 7 H).
The distinctive difference by comparing to CNN is that DL-
LSC-ESNN adds layers of LSC domain conversion, RN cubic
form creation, and ESNN neuron repository. The enhanced
architecture of DL-LSC-ESNN eventually strengthen the
classification of HFE impurities detection by improving its
accuracy.

As per Fig. 14 result show the highest accuracy at 64.94%
with similarity (SIM) 0.3 and threshold (TH) 0.6. The char-
acterization of parameter SIM is defined by Fig. 19 is within
SIM R{0.1, 0.9} and TH is within R{0.5, 0.9}, with incre-
mental resolution of 0.1 respectively. By comparing to base-
line CNN experimentation results. The 4 accuracy is at ∼
1.3%. This interesting result advocate for one of our postu-
lated hypothesis. The dimension additive after SC conversion
with GRF able to provide even more noticeable separation
and differentiation of pure and contaminated HFE as per
depicted by Fig. 17. The quantifiedFig. 17 can be viewed in
terms of Fig. 13 (C and D), from the figure the similarity
is spreading rather than accumulated at 1 (the highest sim-
ilarity). Fig. 13 (D) shows that the spreading is widen by
quantile of 0.5 and -0.5 compared with Fig. 13 (B) quan-
tile which is at 0.997 and 0.995 respectively. The spreading
of Fig. 13 (D) thus support the aforementioned postulated
hypothesis that dimensional additive able to separate the pure
and contaminated HFE effectively. The similarity result of
the DL-LSC-ESNN’s FE layer is referring to Fig. 17 which
is the capturing result at Fig. 7 (G) after PL. The result is
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FIGURE 16. tSNE visualization of CNN result of 4 layer 3× 3 and 5× 5
kernel filter. (A) is 3× 3 4l CNN and (B) is 5× 5 4l CNN.

stored and view for better understanding on the after effect of
several iterations of FE layers. Fig. 16 (A) is the CNN using
3 × 3 with 4 layer of convolution. The final FM is captured
and stored after several convolution layer repetitions (refer
to Fig. 8). The active capturing technique is to get a proper
visualization of 4 layer CNN FM conditions and clarifying
the initial result of baseline kernel 3 × 3 CNN accuracy
of 63.64%. The experimentation shows the conglomeration
of pure HFE and contaminate HFE for kernel 3 × 3. The
active capturing and storing method shows that there is no
distinctive separation or non-linear disconnection between
Pure and Non-Pure HFE (refer to Fig. 16 (A)). As stated in
this conglomeration visualization, the accuracy is 63.64% for
baseline CNN. The technique of visualization on the final
FM’s DL-LSC-ESNN is shown in Fig. 9. For this research,
after 4 layer convolutions, the FM is stored and observed.
This is to get a precise outcome of how the data FM’s final
tensor structure of baseline CNN (refer to Fig. 8) against
the proposed method DL-LSC-ESNN (refer to Fig. 9) is
distinguished.

Fig. 15 and Fig. 20 are the results of 4 layer convolutions
of DL-LSC-ESNN with 5 × 5 kernel filters. The highest

FIGURE 17. tSNE visualization of DLESNN result of 4 layer 3× 3 kernel
filter with neuron of 10.

FIGURE 18. tSNE visualization of DLESNN result of 4 layer 5× 5 kernel
filter with neuron of 10.

4 accuracy compared with CNN baseline is at 0.58%. Again
this aligns with the initial analysis that dimension additive
eventually improved the accuracy of detection. Fig. 18 con-
tains the results of the aftereffect of the FE layer and shows
the effect of dimension additive decomposing and splitting
between Pure and Non-Pure HFE; note the separation of
differentiation through its expansion. Fig. 16 (B) is the 4 layer
5× 5 CNN, the visualization of the conglomeration between
pure HFE and Non-Pure HFE is undeniable. The correlation
between initial experimentation of DL-LSC-ESNN 3×3 and
5 × 5 kernel filter highest 4 accuracy is at 5.02%. Never-
theless, the 4 accuracy is differentiated by minor changes,
demonstrating that the selection of kernel filter size does
affect the accuracy. Fig. 18 is the 4 layer 5 × 5 kernel
filters, aforementioned regarding the method of capturing
and storing the final FM. In Fig. 18 the visualization of the
decomposing of final FM data between Pure and Non-Pure
HFE is properly visualized.
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FIGURE 19. Kernel 3× 3 Accuracy (%) vs Similarity (SIM) parameter
characterization of 10 neuron.

FIGURE 20. Kernel 5× 5 Accuracy (%) vs Similarity (SIM) parameter
characterization of 10 neuron.

Fig. 19 and Fig. 20 provide visibility of observing the
stability of kernel 3 × 3 and 5 × 5. Fig. 19 for SIM
0.3,0.7,0.8 and 0.9 displays a steady variation of accuracy.
The steady variation indicated that the variation is not limited
to inadequate 4accuracy of change. The steady variation of
SIM, therefore, contribute a more eminent indication that
during this episode of mentioned SIM, the assimilation of
ESNN repository weighting via Equation (14) is profoundly
evolving and thus able to get a vaster variation of accuracy.
SIM 0.3 yielded the highest accuracy with a steady variation.
SIM 0.5 and 0.6 were imperceptibly less than the aforemen-
tioned SIM parameter but with a vaster variation of accuracy.
SIM 0.1 shows diminutive and limited variations. Fig. 21
depicted the relationship between Accuracy (%) versus the
Threshold (TH) parameter. From the experimentation analy-
sis, TH 0.6 yielded the highest accuracy with the normalized
distribution. If correlated with TH 0.5 and 0.9, the accuracy
is lower, and the distribution is tight. This indicated a mini-
mum variation of TH 0.5 and 0.9, even though TH 0.7 and
0.8 indicated high variation. Similarly, the accuracy is lower
than TH 0.6. Therefore, the summarization for kernel 3 × 3
with its initial parametric of SIM 0.3 and TH 0.6. From the
results of the experiment in Fig. 21, based on its highest
accuracy, the parameter mentioned is the most suitable to
further expanded the experimentation.

Toward Fig. 20 of 5 × 5 kernel, the variation of accuracy
is less than Fig. 19 3 × 3 kernel by the aforementioned

FIGURE 21. Kernel 3× 3 Accuracy (%) vs Threshold (TH) parameter
characterization of 10 neuron.

maximum 4accuracy 5.02%. Further investigation from
Fig. 20 of parameter SIM 0.2,0.8 and 0.9 indicated similarity
of accuracy variation between the experimental parameters.
Fig. 20 of SIM 0.5,0.6 and 0.7 as observed display similarity
of accuracy variation. By comparing the accuracy variation
between kernel 3 × 3 versus 5 × 5, kernel 5 × 5 shows a
more moderate accuracy variation as per kernel 3× 3. Thus,
the evolving assimilation using Equation (14) is obtained.
Kernel 5 × 5 moderate variation is shown by its FM, which
is lower than kernel 3 × 3. The important aspect is that a
lower variation of final FM parameter also indicated minor
complexity of calculation. With less FM, the computation
is shorter, and thus its computation is quicker than kernel
3×3. The analysis further observed the performance of kernel
5× 5 by referring to Fig. 22. TH 0.5 and 0.6 show restricted
variation. The analysis indicated that the TH parameter does
have an impact on the accuracy of detection. SIM 0.7 and
0.9 display an accuracy variation difference. Fig. 22 of TH
0.8 indicates accuracy variation spreading, thus attesting to
wider optimization. Unfortunately, in the perspective of accu-
racy SIM0.5,0.7,0.8 and 0.9 is lower than SIM0.6. Therefore,
the experimentation referring to Fig. 22 for kernel 5 × 5
presents a parametric value of SIM 0.1 and TH 0.6 to further
extended the experimentation.

Proceeding to Fig. 24 (A) and (B), the experimentation
renders clarity upon Accuracy (kernel 3× 3) on SIM 0.3 and
TH 0.6 versus Receptive Neuron (RN). The aforementioned
parameter is selected as previous experimentation the accu-
racy is at the highest for RN 10. Through experimentation of
characterization sweep referring to Fig. 24(A), by observing
it closely, the accuracy displays a non-linear movement of
every RN. However, the experiment from Fig. 24 (A) reveals
a better understanding of the kernel 3×3 accuracy (%) versus
RN. Due to the detailed performance of the characterization
sweep of every RN parameter. It further increases the under-
standing of the RN’s significant accuracy differences. From
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FIGURE 22. Kernel 5× 5 Accuracy (%) vs Threshold (TH) parameter
characterization of 10 neuron.

FIGURE 23. Accuracy (%) vs Kernel 3× 3 and 5× 5 characterization
of 10 neuron.

Fig. 24 (A) analysis, RN 25 accuracy is at 79.57%, RN 16 is
the lowest at 50.08, which is lower than the baseline CNN
(63.64%). Analysis of Fig. 24 (A) of RN 25 produced the
highest accuracy, to clarify this refer to Fig. 7 (C) on the
encoding scheme. During this condition on the population
encoding, the pulses’ conversions took place. RN 25 provides
the most accurate representation of the numeric value. The
SC spike conversion is correctly represented as a completed
stimulation of spikes. This is due to the previously mentioned
fact that single spikes can, in principle, carry substantial
information about visual stimuli [50]. This is the indication
that during RN 25 with parameter TH is at 0.6 and SIM is
0.3. The highest characterization during kernel 3×3 accuracy
now at 79.57%.

The experimentation extends further by completing the
characterization sweep on kernel 5 × 5 for Accuracy (%)
vs RN (refer to Fig. 25) the parameter is being referred to
previous experimentation SIM 0.1 and TH 0.6 value. This
parameter was selected as it produced the highest accuracy
during the initial experimentation of TH and SIM parameter
characterization sweep for 5× 5 kernel (Fig. 20 and Fig. 22).

FIGURE 24. Characterization of kernel 3× 3 for SIM 0.3 and TH
0.6 accuracy (%) vs Receptive Neuron R ∈ (10, 25).

As kernel 5×5 had lower accuracy compared to kernel 3×3
during the initial experimentation, kernel 5 × 5 thus renders
a more simplistic and moderate FM parameter refinement.
After running several RN characterization sweep R{11, 25}.
From Figure 20, the RN 15 yielded the highest accuracy at
80.51%. As per analysis throughout this condition on the
population encoding, as for the pulses’ conversion took place
the RN 15 learning is substantial enough to represent both
spiking rate and time spatiotemporal structural information
within a ventral stream, refer to Fig. 7 (C) on the encoding
scheme. The result produced by RN 23 is the second-highest
accuracy at 75.535% followed by RN 16 which accuracy
at 69.38%. Further investigation on RN 11-14, 17-22 and
24-25 indicated that during its conversion from SC domain
toward GRF it does, however, contain a spike train overlap,
and the information if translated accordingly is interpreted
as in compression or concentrated state. Where the specific
condition of the spike train is accumulated at a single point
during GRF conversion. By referring to Fig. 7(C), it does,
however, explicates during GRF conversion the spike com-
pression. Aforementioned by the receptive fields which allow
continuous values to be encoded using a set of neurons with
overlapping sensitivity profiles. Each input variable is repre-
sented independently by one-dimensional receptive field unit
M. For variable n of the interval [Imin, Imax] is defined. The

216432 VOLUME 8, 2020



A. S. M. Salleh et al.: HFE Impurities—Chemical Detection Using a DL-LSC-ESNN

FIGURE 25. Characterization of kernel 5× 5 for SIM 0.1 and TH
0.6 accuracy (%) vs Receptive Neuron R ∈ (10, 25).

Gaussian receptive field of neuron j is given by its center.
As shown in Fig. 7(C), the Gaussian receptive interception
is indicated as higher. There’s a state of information com-
pression that impacted the information representation. Lastly,
Fig. 25 (B) shows the variation of RN, this indicated the
variation of the distribution of its accuracy. No compression
or limitation for further optimization exits.

Ultimately, two states of high accuracy are achieved: for
kernel 3 × 3 the selected parameter is SIM 0.3 and TH 0.6.
This parameter’s final result shows an accuracy of 79.57%.
From the analysis of kernel 3×3, the kernel is small and able
to produce a significant accuracy of variation for expanding
optimization as mentioned and shown in Fig. 24 (A and
B). But a small kernel indicates extended time to train as
compared with kernel 5 × 5. Moreover, kernel 3 × 3 does
not show multiple excitations of accuracy fluctuation for its
RN characterization sweep as shown in Fig. 24A. Kernel
5×5 eventually, yielded the highest accuracy at 80.51%. Even
though the kernel is higher and wider, and initial experimen-
tation analysis indicated narrow active optimization. Kernel
5 × 5 is considered suitable and exits in much more direct
optimization (refer to Fig. 22 and Fig. 23). Furthermore,
kernel 5 × 5 does present a distinctive ability to shrink its
parametric FM. Fig. 25 (A and B), indicated improvement
of Accuracy(%) by expanding the experimentation through

FIGURE 26. Rudimentary CNN result.

TABLE 2. Baseline DL state-of-the-art architecture accuracy.

RN variation. From Fig. 25A, the excitation fluctuations of
Accuracy (%) for RN 15, 16 and 23 are shown. This indicates
that for kernel 5 × 5, its ability to access certain accu-
racy excitation is considered an advantage. Conclusively, the
add-on advantages acted as a countermeasure to initial narrow
optimization (refer to Fig. 22 and Fig. 23) for kernel 5× 5 is
by characterization sweeping of the RN within the distinctive
range. By doing this step. It shows a significant improvement
in its accuracy (%) of variation, refer to Fig. 25B. This
indicated the optimization is expanding and thus increased its
probable state of getting high accuracy. The RN variation for
kernel 5 × 5 aforementioned indicated accuracy higher than
kernel 3 × 3. Thus, the finalization of the DL-LSC-ESNN
parameter is concluded as SIM 0.1, TH 0.6 and RN 15 at
kernel 5× 5.
The finalization of DL-LSC-ESNN characterization gave

final accuracy and its configuration, nevertheless by compar-
ing it to RESNet (refer to Table 2), the 4 accuracy now is
at 3.7%. RESNet able to give the highest accuracy due to
its ‘‘identity shortcut connections’’. ResNet stacks up iden-
tity mappings, layers that initially do not do anything, and
skips over them, reusing the activation from previous layers.
This compression ability add extra boost of performance
compared with other state-of-the-art architecture (ResNet vs
VggNet 4 accuracy is at 26.34% and ResNet vs Inception-
Net 4 accuracy is at 19.27%). Further investigation also
shows that by comparing RESNet with rudimentary CNN
the 4 accuracy is at 13.17%. Even though ResNet gave the
highest accuracy, it is hard to train because of the notori-
ous vanishing gradient problem. This is due to the gradient
is back-propagated to earlier layers, repeated multiplication
may make the gradient infinitive small. As a result, as the
network goes deeper, its performance gets saturated or even
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starts degrading rapidly. This behaviors also being observed
for InceptionNet and VGGNet.

IX. CONCLUSION AND FUTURE WORKS
The DL-LSC-ESNN eventually overcome conventional CNN
for HVM HFE impurities LSC polycarbonate application.
This is achievable through the added layers of LSC domain
conversion, RN cubic form creation and ESNN neuron repos-
itory evolving ability to generate and assimilation of new
weight. To put it into perspective DL-LSC-ESNN architec-
ture are purely a feedforward algorithm, while conventional
CNN using a combination of feedforward and backpropa-
gation algorithm. The proposed technique of LSC domain
conversion is highly practical in HFE impurities detection by
significantly improving the4 accuracy of detection by 3.7%
comparing to state-of-the-art CNN architecture. The signifi-
cance of a 3.7% improvement referred to HVM chiller usabil-
ity for industrial application. Each chiller integrated into the
handler that indirectly involved a CPU cyclic thermal vali-
dation. Each hour the handler’s CPU output is in a hundred
thousand units. This reflected upon the detectability accuracy
which is at 3.7% improvement. Under HVM is deemed highly
impactful due to the output vs accuracy improvement. The
DL-LSC-ESNN is also able to get higher accuracy by using
a rudimentary CNN architecture without dependencies in an
increasing layer of CNN. Thus, in term of numbers parameter
to be trained it is considered in a compressed mode. The
research also manages to dictate the separation of the dataset
which eventually assisting in classifying between pure and
Non-pure HFE. The dimensional additive methodology thus
provides a robust process by added a new technique of quan-
tified SC attributes creation on polycarbonate LSC encoding
by seamlessly integrating with GRF encoding. Ultimately,
the proposed enhanced architecture is able to provide signif-
icant improvements for throughput usability throughout the
industry usage model by drastically increased its detection
rate. As mentioned, by adding several features by looking at
different perspective the enhanced technique of integration
and assimilation of multiple attributes eventually contributed
to this significant improvement.

As for accuracy augmentation for LSC HFE impurities
detection, several suggestions to the enhancement of accuracy
need to be considered for future implementation and improve-
ment. The exploration of applying probabilistic evolving
spiking neural network (PESNN) architecture is the next
inline implementation. The PESNN applies quantum proba-
bilistic properties to ESNN weight. The approach is to create
a probabilistic state of each neuron weight connection that
eventually assist in providing a higher ability to assimilate or
generated new neuron repository. The new additive process
methodology should be able to augment accuracy detection
even further.
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