MORPHOLOGICAL CHANGES AT DESARU BEACH, JOHOR

MD SYAFIQ BIN MOHAMAD DAUD

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Hydraulics & Hydrology)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2017

ACKNOWLEDGEMENTS

Firstly, I am thankful to Allah that has given me the opportunity to finally complete my report successfully. I also would like to express my gratitude to my supervisors, Dr. Mohamad Hidayat Jamal and Dr. Radzuan Sa'ari for all the hard work, motivation and patience that enable me to enhance my knowledge and practical skills.

Further thanks go to all the technicians of Hydraulics and Hydrology laboratory and to all my friends especially Faizal Ahmad and Pangiran Saadan, my research mate Kak Suhaila, Tawfiq, Hazamy and Azimah.. Not to forget, great appreciation goes to Department of Irrigation and Drainage (DID) Johor for providing the data needed in this study.

Last but not least, thanks to my beloved family, whom never give up in giving me encouragement and enthusiasm to finish my master project. May Allah SWT rewards all of them for their kindness and sincerity. Finally, I would also like to thank everyone who has contributed whether directly or indirectly to this project. This project would have been impossible without your guidance, advice and support. I hope this project will be useful for future use.

ABSTRACT

East coast of Peninsular Malaysia experiencing serious coastal erosion due to the influence of the Northeast monsoon. This study mainly investigates the beach profiles changes of Desaru Beach. The scope of the study focused on accretion and erosion process of beach profile using short-term and long-term data set. The short term field data collection was carried out in three different periods through August, September and October 2016. While, the long term analysis used current data collection and previous collected data since 2013. Beach profiles were measured using Real Time Kinematic Global Positioning System (RTK-GPS) technique. Samples of sediment were also collected and analysed to determine the sediment grain size distribution. Sediment samples analysis showed that the beach consist of uniform sediment. The median size of sediment at the beach is 0.35mm. The shortterm results indicated that the beach profiles eroded on August 2016 and slowly accreted towards October 2016. For long-term analysis, the comparisons between mid-year annual changes showed equal accretion and erosion process from 2013 to 2015. However, there were significant erosion occurred between 2015 and 2016. Another long-term analysis was seasonal monsoon changes from December 2013 to December 2015. There were gradual erosion occur throughout the period with severe erosion occurred on December 2015. From long-term analysis, Desaru Beach was severely eroded in December 2015 and the beach profile showed that the shoreline is retreat.

ABSTRAK

Pantai Timur Semenanjung Malaysia mengalami hakisan pantai yang serius disebabkan oleh pengaruh monsun Timur Laut . Kajian ini terutamanya mengkaji perubahan profil Pantai Desaru. Skop kajian ini tertumpu kepada proses pertambahan dan hakisan profil pantai menggunakan data jangka pendek dan jangka panjang. Pengumpulan data lapangan jangka pendek telah dijalankan dalam tiga tempoh yang berbeza antara Ogos, September dan Oktober 2016. Manakala, analisis jangka panjang data semasa dan data yang telah dikumpul sebelumnya sejak 2013. Profil pantai diukur menggunakan teknik Real Time KinematicGlobal Positioning System (RTK-GPS). Beberapa Sampel sedimen juga telah diambil dan dianalisis untuk menentukan taburan saiz sedimen. Hasil analisa menunjukkan bahawa keseluruhan pantai terdiri daripada sedimen seragam. Saiz median sedimen di pantai adalah 0.35 mm. Keputusan jangka pendek menunjukkan bahawa profil pantai terhakis pada Ogos 2016 dan bertambah menuju Oktober 2016. Untuk analisis jangka panjang, perbandingan antara pertengahan tahun menunjukkan proses pertambahan dan hakisan yang seimbang daripada 2013 hingga 2015. Bagaimanapun, terdapat hakisan yang ketara berlaku di antara 2015 dan 2016. Satu lagi analisis jangka panjang ialah antara musim monsun dari Disember 2013 hingga Disember 2015. Terdapat hakisan secara beransur-ansur berlaku sepanjang tempoh itu dengan hakisan teruk berlaku pada Disember 2015. Hal ini menunjukkan Pantai Desaru mengalami hakisan teruk pada Disember 2015 dan jarak pantai sedang memendek.

TABLE OF CONTENTS

TITLE

PAGE

DEC	DECLARATION		
DED	DEDICATIONS		
ACK	ACKNOWLEDGEMENTS		
ABS	ГКАСТ	v	
ABS	ГКАК	vi	
TAB	LE OF CONTENTS	vii	
LIST	OF TABLES	X	
LIST	OF FIGURES	xi	
LIST	OF ABREVATIONS	xiv	
LIST	LIST OF SYMBOLS		
LIST	OF APPENDICES	xvi	
INTE	RODUCTION	1	
1.1	Overview	1	
1.2	Background of Study	2	
1.3	Problem Statement	3	
1.4	Objectives of the Study	3	
1.5	Scope of Study	4	
LITE	CRATURE REVIEW	5	
2.1 O	2.1 Overview		
2.2 C	2.2 Coastal Zone		
2.	2.1 Swash Zone	7	
2.3 B	2.3 Beach Profile		
2.	3.1 Beach Profile Measurement	9	

1

2

2.4	Analysis of Beach Profile Data using	12
	Trapezoidal Rule	
2.5	Beach Classification	14
	2.5.1 Dissipative, Intermediate and Reflective	14
	Beaches	
	2.5.2 Winter and Summer Beaches	16
2.6	Beach Sediments	17
2.7	Wave Theory	20
	2.7.1 Description of Waves	20
2.8	Wave Transformation	21
	2.8.1 Wave Refraction	22
	2.8.2 Wave Diffraction	23
	2.8.3 Wave Shoaling	25
	2.8.4 Wave Breaking	26
2.9	Rainfall and Monsoon	28
	2.9.1 The Northeast Monsoon	29
	2.9.2 First Inter-Monsoon Period	29
	2.9.3 The Southwest Monsoon	30
	2.9.4 Second Inter-Monsoon Period	30
2.10	Tides	30
	2.10.1 Spring Tide	31
	2.10.2 Neap Tide	32
ME	CTHODOLOGY	34
3.1	General	34
3.2	Real Time Kinematic Global Positioning System	36
	3.2.1 RTK-GPS Setup	37
3.3	Sediments Sampling	39
DD	SULTS AND DISCUSSION	43
	Overview	4 3
	Data Collection	43
7.4		r.J

4.3 Data Analysis		44
4.4 Sediment Size Distribution		44
4.5 Beach Profile Changes		46
	4.5.1 Short-Term Beach Profile Changes	47
	(Monthly)	
	4.5.2 Long-Term Beach Profile Changes	54
	(Annually)	
	4.5.2.1 Annual Beach Profile Changes	54
	(Year-End)	
	4.5.2.2 Annual Beach Profile Changes	56
	(Mid-Year)	
(CONCLUSION AND RECOMMENDATION	61
5.1	Conclusion	61
5.2	Recommendations for Future Study	62
REFE	RENCES	64
APPENDIX		68

5

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Wentworth Scale of sediment size classification	18
3.1	Spring tides low-water level	34
3.2	Tide elevation at Tanjung Balau	38
4.1	Summary of cross sectional area changes from	52
	August 2016 to October 2016	
4.2	Summary of year-end annual cross sectional area changes	56
	From 9 th December 2013 to 19 th December 2015	
4.3	Summary of mid-year annual cross sectional area changes	59
	from 28th June 2013 to 8th August 2016	

LIST OF FIGURES

FIGUR	E NO. TITLE	PAGE
1.1	Malaysia coastlines and its length	1
2.1	Coastal zone	6
2.2	The Emery board method	10
2.3	RTK-GPS operation	11
2.4	The area of the region that can be approximated using	13
	trapezoids	
2.5	Steps of calculating area of rectangle and triangle	13
2.6	Reflective, intermediate and dissipative beach	15
2.7	Winter beach	16
2.8	Summer beach	17
2.9	Progressive wave surface parameter	21
2.10	Wave refraction at shallow water	23
2.11	Headlands and bay	23
2.12	Definition sketch for wave diffraction in the lee of	24
	a barrier	
2.13	Wave shoaling	25
2.14	Breakers type	28
2.15	Spring tide	32
2.16	Neap tide	33
3.1	Work progression chart	35
3.2	Base station and rover	36
3.3	Data logging process	37
3.4	Field data collection	38

3.5	Conversion from ACD to LSD	39
3.6	Location of sampling points	40
3.7	Sediment sampling at low-tide	41
3.8	Sand samples were dried in the oven	41
3.9	Dried samples were sieved in mechanical shaker	42
3.10	Weighing retained samples	42
4.1	Location of cross-section	44
4.2	Grain size distribution of sediment sample at Line 4 (45
	(High-tide)	
4.3	Grain size distribution of sediment sample at Line 4	46
	(Low-tide)	
4.4	Beach profile changes between 8 th August	48
	2016 and 5 th September 2016	
4.5	Beach profile changes between 5 th September 2016 and	49
	20 th September 2016	
4.6	Beach profile changes between 20 th September 2016	50
	and 3 rd October2016.	
4.7	Summary of short term beach profile changes from	51
	8 th August 2016 to 3 rd October 2016	
4.8	Wave rose diagram for August and September	53
4.9	Beach profile changes between 9 th December 2013	54
	and 25 th December 2014	
4.10	Beach profile changes between 25th December 2014	55
	and 19th December 2015	
4.11	Annual beach profile changes from 9th December 2013 to	55
	19th December 2015	
4.12	Beach profile changes between 28th June 2013 and	57
	21st May 2014.	
4.13	Beach profile changes between 21st May 2014 and	57
	8th June 2015	

4.14	Beach profile changes between 8th June 2015 and	
	8th August 2016.	
4.15	Annual beach profile changes from 28th June 2013 to	59
	8th August 2016	

LIST OF ABREVATIONS

ACD	Admiralty Chart Datum
ASTM	American Society of Testing Materials
dGPS	Differential Global Positioning System
DID	Department of Irrigation and Drainage Malaysia
GPS	Global Positioning System
LSD	Land Survey Datum
METMalaysia	Malaysian Meteorological Department
MHHW	Mean Higher High Water
MHLW	Mean Higher Low Water
MHWS	Mean High Water Spring
MLHW	Mean Lower High Water
MLLW	Mean Lower Low Water
MLWS	Mean Low Water Spring
MSL	Mean Sea Level
RTK-GPS	Real Time Kinematic Global Positioning System

LIST OF SYMBOLS

a	Initial distance
b	Final distance
С	Wave celerity
C _u	Coefficient of uniformity
C _c	Coefficient of gradation
D ₁₀	10% grain size
D ₃₀	30% grain size
D ₅₀	50% grain size (median)
D ₆₀	60% grain size
f	Wave frequency
Н	Wave height
km/h	Kilometre per Hour
L	Wave length
m	Metre
n	Number of interval
S	Second
Т	Wave period
t	Time

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Beach Profiles of Line 1, Line 2, Line 3, Line 5	68
	Line 6 and Line 7	

CHAPTER 1

INTRODUCTION

1.1 Overview

Malaysia is known as one of Asian country which located near the equator that experience hot and humid climates throughout the year. Since Malaysia is surrounding by sea, the morphology of the coastal zone keep changing. In other word, coastline all over Malaysia is facing erosion especially during monsoon season. The total length Malaysia's coastline is 4809 km which consist of 2031 km for Peninsular Malaysia and 2778 km for East Malaysia respectively (refer Figure 1.1).

Figure 1.1: Malaysia coastlines and its length (DID, 2015)

Malaysia experienced two monsoons season, southwest monsoon which occurs between March and September, as the sun directly strikes above the equator, the land mass of Asia heat more than the Indian Ocean. The northeast monsoon wind which lasts from October to January occurs when the tilt of sun ray to the south of Equator. The temperature difference between the land mass and the Indian Ocean creates wind that draws moist air from the ocean over the highland of the basin (Malaysian Wetland Working Group, 1988).

1.2 Background of Study

Johor is one of the coastal states in Malaysia with the longest coastline facing the South China Sea in the east, the Strait of Malacca in the west and the Strait of Johor in the south. Coastal resources are the main source of income towards industrialization and economic development in Johor especially along the coastal area.

Meanwhile, Desaru is situated on the southeast coast of the district. It is located approximately 88 km east of Johor Bahru, on the South China Sea. Desaru is very close to the developing country, Singapore. Desaru is highly seasonal, with monsoon winds and rains lashing over for a period from November to February every year resulting in high waves. It is strongly influenced by the northeast monsoon as it fully exposed to South China Sea

The seasonal variation experienced by Peninsular Malaysia has caused erosion and accretion to the beach morphology in Malaysia and Desaru beach is one of 29 beaches in Johor that largely eroded (DID, 2015).

1.3 Problem Statement

As Desaru is very popular for its sandy glittering beach, erosion becomes a significance issue. According to The Coastal Resources Management Plan for South Johore, a stretch of Desaru area has been identified as critically eroding but recently only monitoring being done as there is only little construction on land. Control planning must be taken into account if the construction alongshore of Desaru is getting intense.

If waves and winds due to monsoon season contribute more for Desaru beach erosion, no construction should be allowed. It is because construction alongshore the beach gives higher potential impact on beach erosion. Thus, there will some effects on tourism activities.

1.4 Objectives of the Study

The aim of this project is to determine changes in beach morphology. To achieve the aim, there are three main objectives:

- i. To determine the sediment grain-size distribution
- ii. To analyse the erosion and accretion of beach profile in short-term period.
- iii. To analyse the beach profile changes in long-term period.

1.5 Scope of Study

The scopes of the project are:

- i. Area of study Desaru Public Beach, Pengerang, Johor.
- ii. Sediment analysis using sieve analysis to determine sediment size distribution at the area.
- iii. Beach profile topography measurement at Desaru Beach using Real Time Kinematic Global Positioning System (RTK-GPS).
- iv. Short-term study was conducted from August to October 2016 at spring tide only (monthly).
- v. Long-term study using recent and previous data set since 2013 (annually).

REFERENCES

- Alan P. Trujillo and Harold V. Thurman. (2004). *Essentials of Oceanography*. (8th ed.). Pennsylvania, U.S.A.: Prentice Hall.
- American Society for Testing Materials. (2011). *ASTM D2487-11*. West Conshohocken, PA: ASTM International, from: www.astm.org
- Andrade, F. and Ferreira, M. A. (2006). A Simple Method of Measuring Beach Profiles. *Journal of Coastal Research*: Volume 22, (Issue 4): pp. 995 999.
- Azman , A., Che Noraini, C.H., Hafizan, J. et al. (2015). Coastal Erosion Measurement Along Tanjung Lumpur to Cherok Paloh, Pahang During the Northeast Monsoon Season. Jurnal Teknologi (Science and Engineering). 74:1, 27-34. Penerbit UTM Press.
- Bird, E. (2011). *Coastal Geomorphology: An Introduction*.(2nd ed.). West Sussex, England: John Wiley & Sons.
- Butt, T., Russell, P., and Turner, I. (2001). The Influence of Swash Infiltration -Exfiltration on Shoreline Sediment Transport: Onshore or Offshore? *Coastal Engineering* 42, 35-52

Cazelais, G. (2008). The Trapezoidal Rule. LATEX.

CheTeh, C.T. (2013). Numerical Methods. Skudai; Penerbit UTM Press.118-119.

COMET (2006). *Shallow Water Waves*. University Corporation of Atmospheric Research, retrieved: 29th November 2016, from: http://stream1.cmatc.cn/pub/comet/CoastalWeather/sww/comet/marine/SWW/print.h tm

- Das Adhikari, M., Maiti,S., Patra, S. *et al.* (2016). GIS Base Sand Budget Analysis Through Seasonal Beach Profiling using Cartographic Techniques. *Model Earth System Environment*. Vol. 2:74
- Davidson-Arnott, R. (2010). *Introduction to Coastal Processes and Geomorphology*. Cambridge: Cambridge University Press.

- Dean, G.R. and Dalrymple, A.R. (2004). *Coastal Process with Engineering Applications*. Cambridge University Press.
- Department of Metereology of Malaysia (METMalaysia). Climate General Climate of Malaysia, retrieved: 4 April 2016, from: http://www.met.gov.my/web/metmalaysia/climate/generalinformation/malaysia
- Department of Irrigation and Drainage (DID). (2015). *Coastal Management Activities*. Department of Irrigation and Drainage, retrieved: 25 March 2016, from: http://www.water.gov.my/our-services-mainmenu-252/coastalmanagement-mainmenu-279/activities-mainmenu-184?lang=en
- Fadila Jasmin Fakaruddin, Fatimah Zaharah Saleh, Diong Jeong Yik, Mat Kamaruzaman Mat Adam, Yip Weng Sang, Nursalleh K. Chang, Fariza Yunus and Muhammad Helmi Abdullah. (2015). Weather Analysis from July to October 2015. METMalaysia.
- Faridah Jaffar Sidek (2015). *Coastal Engineering: Introduction, Wave Propagation Processes and Transformation*: UTM.
- Florida Center for Instructional Technology (2005). *Beach Profiling with Emery Board*. College of Education, University of South Florida.
- Galvin, C. J. (1968). Breaker type Classification of Three Laboratory Beaches. *Journal of Geophysical Research*, Vol 73, No. 12.
- Hashim, N.B., Shamsudin, S., Camerlengo, A.L., and Malek, A.R.A. (2008). Evaluation of the Behaviour of the Sea Level of the Malaysian Waters during El Nino and La Nina Events. Research Management Centre, Universiti Teknologi Malaysia, 70.
- Holtz, R. and Kovacs, W. (1981), *An Introduction to Geotechnical Engineering*. (1st ed.). Michigan, USA: Prentice-Hall, Inc.
- Hughes, M. (2016). *Coastal Waves, Water Levels, Beach Dynamics and Climate Change*.National Climate Change Adaptation Research Facility, Gold Coast: Coast Adapt.
- Huey, T.T. and Ibrahim, A.L. (2012). Statistical Analysis of Annual Rainfall Patterns in Peninsular Malaysia Using TRMM Algorithm. *In Proc. The 33rd Asian Conference on Remote Sensing (ACRS)*, Pattaya, Thailand
- Karunaratha, H., Horrillo-Caraballo, J. M., Ranasinghe, R., Short, A. D. and Reeve,D. E. (2012). An Analysis of the Cross Shore Beach Morphodynamics of a Sandy and Gravel Beach. *Journal of Marine Geology*, pp. 299-302.

- Koiting, R.F., Ejria, S., Madin, J. *et al.* (2015). Morphologies Changes During Preand Post- Southwest Season in Mantanani Besar Island, Kota Belud, Sabah. *Borneo Science 36*. Vol.1, 21-32.
- Kumar, G. AL.Ramanathan, & Rajkumar, K. (2010). Textural characteristics of the surface sediments of a Tropical mangrove ecosystem Gulf of Kachchh, Gujarat, India. *Journal of Marine Science*. Vol.39, 415 – 422.
- Lokman, H., Rosnan, Y., and Shahbudin, S. (1995). Beach Erosion Variability during Notheast Monsoon: The Kuala Setiu Coastline, Terengganu, Malaysia. *Pertanika Journal of Science and Technology*. Vol. 3(2), pp.337-348. Penerbit UPM
- MAINE (2005). *Maine Geological Survey*, retrieved: 4th December 2016, from: https://www1.maine.gov/dacf/mgs/explore/marine/faq/shape.htm
- Malaysian Wetland Working Group (MWWG). (1987). *The Malaysian Wetland Directory*, Vol.1. Asian Wetland Bureau for the Malaysian Wetland Working Group.

Mariahti Ibrahim. (2013). Longshore Sediment Transport in The Swash Zone at Desaru Beach. Master Project. Universiti Teknologi Malaysia, Skudai.

- Masselink, G. and Hughes, M.G. (1998). Field Investigation of Sediment Transport in the Swash Zone. *Continental Shelf Research* 18, 1179-1199
- NOAA. (2016). Retrieved 1st December 2016 from http://oceanservice.noaa.gov/education/tutorial_currents/03coastal2.html
- Nur Izyan Binti Ahmad Kamal (2013). Cross Shore Profile Change of Desaru Beach. Master Project. Universiti Teknologi Malaysia, Skudai.
- Okeyede, I.C. and Jibiri, N. N. (2013). Grain size analysis of the sediments from Ogun River, South Western Nigeria. *Journal of Earth Science Research*. Vol 2, 43–51.
- Pilkey, O. H., Neal, W. J., Cooper, J. A. G. and Kelley, J. T. (2011). *The World's Beaches: A Global Guide to the Science of the Shoreline*. University of California Press.
- Pinet. (2006). *Laboratory Exercises to Accompany Invitation to Oceanography*. Jones & Bartlett Learning.

- Rosnan, Y., Farizal, M. I., Zaini, M. M. & Noraisyah, S. 2009. Beach Morphology Profile, Sediment Characteristics and Littoral Environmental Observations Along Kelantan Coastal Area. *Proceedings of 8th International Annual Symposium on Sustainability Science and Management, UMTAS.* 3–4 May 2009. Universiti Malaysia Terengganu (UMT), pp.457–464.
- Solomon, D. C. (2014). Surveying with GPS, Total Station and Terrestrial Laser Scanner: A Comparative Study. Master Thesis, School of Architecture and the Built Environment Royal Institute of Technology (KTH) Stockholm, Sweden.
- Sorensen, R.M. (2006). *Basic Coastal Engineering*. Springer US (3rd Edition), Springer Science+Business Media, Inc., 247-286
- Stanica, A. and Ungureanu,V.G. (2010). Understanding coastal morphology and sedimentology. NEAR Curriculum in Natural Environmental Science. *Terre et Environnement*, Vol. 88, 105–111.
- Stephen A. Nelson (2013). *Coastal Zones*. Tulane University, retrieved: 3rd August 2016, http://www.tulane.edu/~sanelson/Natural_Disasters/coastalzones.htm
- U.S. Army Corps of Engineers (1984). *Shore Protection Manual*. Coastal Engineering Research Center, Volume I (4th Edition), U.S. Government Printing Office Washington, D.C.
- USGS (United State Geological Survey). (2013). Retrieved 10 December 2013 from http://water.usgs.gov/osw/gps/
- USGS (United State Geological Survey). (2016). *Global Positioning Application and Practice*, retrieved: 19th November, from: https://water.usgs.gov/osw/gps/
- Wong, P.P. (1979). Contemporary beach changes: East coast Peninsular Malaysia. In: Workshop on Coastal Geomorphology. University of Singapore.
- Wong, P.P. (1981). Beach changes on a monsoon coast Peninsular Malaysia. *Geol. Soc. Malaysia Bull.* Vol.14, 59-74.