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ABSTRACT 

 

 

 

 

Diols are important as raw materials and intermediates for different processes in a wide 

variety of chemical industries. The preparation of diols is commonly carried out in two 

steps involving the epoxidation of olefin and continued by hydrolysis of the epoxides; 

the reactions are carried out using different catalysts in two separate chambers. 

Therefore, development of a bifunctional catalyst for production of diol in a single step 

reaction is highly desirable. In this research, a new oxidative-acidic bifunctional 

catalyst of tungsten-phosphate supported on TiO2-SiO2 has been synthesized. TiO2-

SiO2 support was prepared via sol-gel method, followed by impregnation of WO3 and 

PO4
3-. The amounts of WO3 and PO4

3- in the materials were varied in order to 

investigate the role of tungsten oxide and phosphoric acid in generating oxidative and 

acidity active sites. X-ray diffraction analysis showed the TiO2-SiO2 support remained 

amorphous even after loading of WO3 and PO4
3-, indicating that WO3 and PO4

3- were 

highly dispersed on the surface of SiO2, while TiO2 was fused into the SiO2 framework. 

The relatively higher tungsten loading seemed to increase the amount of octahedrally 

coordinated Ti species which acted as oxidative active site. Although titania-silica 

impregnated with 5 wt% tungsten possessed high surface area (473 m2/g), the addition 

of both WO3 and PO4
3- resulted in a dramatic decrease in the surface area (15 m2/g). 

FTIR results of tungsten-phosphate supported titania-silica implied the attachment of 

the phosphate to the hydroxyl groups. Increment in acidity of TiO2-SiO2 after the 

modification with WO3 and PO4
3- was confirmed by TPD-NH3 analysis. Pyridine 

adsorption analysis monitored by FTIR spectroscopy showed the 10WO3/TiO2-SiO2 

had the highest amount of Lewis and Brønsted acid sites. However, the Brønsted acid 

sites formation within 0.2 M PO4
3-/10WO3/TiO2-SiO2 might be obstructed by the 

competition between WO3 and PO4
3− to react with TiO2-SiO2. The catalytic activities 

of TiO2-SiO2 and xW/TiO2-SiO2, (x = 1, 5, 10, 15 wt%) were evaluated through 1,2-

octanediol formation in the conversion of 1-octene to 1,2-epoxyoctane using aqueous 

H2O2 as oxidant. Only samples with more than 5 wt% tungsten loading were found to 

act as oxidative-acidic bifunctional catalysts to produce 1,2-epoxyoctane and 1,2-

octanediol. In the series of bifunctional catalysts, 10W/TiO2-SiO2 showed the best 

performance with the highest formation of 1,2-epoxyoctane (754 µmol) and 1,2-

octanediol (51 µmol). Further modification with H3PO4 demonstrated that 0.2 M PO4
3-

/10WO3/TiO2-SiO2 was the best bifunctional oxidative-acidic catalyst which produced 

679 μmol 1,2-epoxyoctane and 436 μmol 1,2-octanediol from 1-octene after 24 h. As 

a conclusion, more active sites were generated via the tungsten-phosphate 

modification, thus accelerating the production of epoxide for diol formation in the one 

step reaction. The resulting bifunctional oxidative-acidic catalysts are potentially 

useful for the chemical production industry. 
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ABSTRAK 

 

 

 

 

Diol adalah penting sebagai bahan mentah dan perantaraan untuk proses berlainan 

dalam pelbagai industri bahan kimia. Penyediaan diol biasanya dilakukan dalam dua 

langkah yang melibatkan pengepoksidaan olefin dan diteruskan dengan hidrolisis 

epoksida; tindak balas ini dilakukan menggunakan mangkin yang berbeza dalam dua 

bekas berasingan. Oleh itu, pembangunan mangkin dwifungsi untuk penghasilan diol 

dalam satu langkah tindak balas sangatlah diinginkan. Dalam penyelidikan ini, 

mangkin dwifungsi oksidatif-berasid baharu yang merupakan tungsten-fosfat 

disokong pada TiO2-SiO2 telah disintesis. Penyokong TiO2-SiO2 telah disediakan 

melalui kaedah sol-gel, diikuti dengan penambahan WO3 dan PO4
3-. Amaun WO3 dan 

PO4
3- dalam bahan telah diubah-ubah untuk mengkaji peranan oksida tungsten dan asid 

fosforik dalam penjanaan tapak aktif oksidatif dan keasidan. Analisis pembelauan 

sinar-X menunjukkan penyokong TiO2-SiO2 kekal amorfus bahkan selepas WO3 dan 

PO4
3-dimuatkan, menunjukkan bahawa WO3 dan PO4

3- tersebar secara meluas di 

permukaan SiO2, manakala TiO2 terlakur dalam bingkaian SiO2. Muatan tungsten 

yang relatif lebih tinggi dalam sampel kelihatan meningkatkan amaun spesies Ti 

oktahedral yang bertindak sebagai tapak aktif oksidatif. Walaupun titania-silika 

terisitepu dengan 5 wt% tungsten memiliki luas permukaan yang tinggi (473 m2/g), 

penambahan kedua-dua WO3 dan PO4
3- mengakibatkan luas permukaan berkurangan 

secara mendadak (15 m2/g). Hasil FTIR untuk tungsten-fosfat berpenyokong titania-

silika mencadangkan pengikatan kumpulan fosfat pada kumpulan hidroksil. 

Peningkatan keasidan TiO2-SiO2 selepas pengubahsuaian dengan WO3 dan PO4
3- 

disahkan oleh analisis TPD-NH3. Analisis penjerapan piridina yang dipantau 

menggunakan spektroskopi FTIR menunjukkan sampel 10WO3/TiO2-SiO2 

mempunyai amaun tertinggi untuk tapak asid Lewis dan Brønsted. Namun demikian, 

pembentukan tapak asid Brønsted dalam 0.2 M PO4
3-/10WO3/ TiO2-SiO2 mungkin 

terhalang disebabkan persaingan antara WO3 dan PO4
3- untuk bertindak balas dengan 

TiO2-SiO2. Aktiviti pemangkinan TiO2-SiO2 dan xW/TiO2-SiO2, (x = 1, 5, 10, 15 wt%) 

telah dinilai melalui penghasilan 1,2-oktanadiol dalam penukaran 1-oktena kepada 

1,2-epoksioktana menggunakan H2O2 akueus sebagai oksidan. Hanya sampel yang 

dimuati tungsten melebihi 5 wt% didapati bertindak sebagai mangkin dwifungsi 

oksidatif-berasid untuk menghasilkan 1,2-epoksioktana dan1,2-oktanadiol. Dalam siri 

mangkin dwifungsi, 10W/TiO2-SiO2 menunjukkan prestasi terbaik dengan 

pembentukan tertinggi 1,2-epoksioktana (754 μmol) dan 1,2-oktanadiol (51 μmol). 

Pengubahsuaian lanjut menggunakan H3PO4 mempamerkan bahawa 0.2 M PO4
3-

/10WO3/TiO2-SiO2 adalah mangkin dwifungsi oksidatif-berasid yang terbaik yang 

menghasilkan 679 μmol 1,2-epoksioktana dan 436 μmol 1,2-oktanadiol daripada 1-

oktena selepas 24 jam. Kesimpulannya, lebih banyak tapak aktif terjana melalui 

pengubahsuaian tungsten-fosfat, dengan ini mempercepatkan penghasilan epoksida 

untuk pembentukan diol dalam tindak balas satu langkah. Mangkin dwifungsi oksidatif 

berasid yang terhasil berpotensi digunakan untuk industri pengeluaran bahan kimia.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study  

 

 

Acid catalysis is one of fundamental industrial importance, where it plays an 

important role in organic synthesis for example, alkylation, saturated hydrocarbon 

isomerization, esterification, cracking, condensation and so on (Jiang et al., 2008; 

Zhao et al., 2008).  Solid acid heterogenous catalysts contain both Brønsted and Lewis 

acid sites which normally enhance their functionalities superior to those of the 

conventional inorganic acids. On the other hand, solid acid catalysts with nanosized 

metal oxides have some known difficulties such as acidity adjustment and small 

surface area that limits their catalytic performance (Jiang et al., 2008). Therefore, a 

major focus is to support the nanosized catalytic active materials through embedding 

them on a high surface area material in order to retain their catalytic activities and in 

order to increase their acidity, whilst the functional group were attached on the surface 

of metal oxide (Shao et al., 2013). 

 

 

An epoxide is an organic compound and important raw material for a broad 

range of products, from pharmaceuticals and plastics to paint and adhesives 

(Mohammed et al. 2015). However, production of epoxides can be expensive, 

especially on a large scale, as well as damaging to the environment. The conventional 

epoxidation methods in the fine chemicals industries employ either stoichiometric 

peracids as a catalyst which produces acid waste, or chlorohydrin. This results in 

chlorinated by-products and calcium chloride waste. Therefore, an oxidative-acidic 
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bifunctional catalyst was believed to improve the production of epoxide and diols 

consequently gave advantages to the chemical industry. Besides, it could also be 

further modified to enhance stability and catalytic performance so it could be used in 

the synthesis of other valuable diols (Mohammed et al., 2015).   

 

 

Diols are chemical compounds which contains two hydroxyl groups. They are 

important raw materials for a wide variety of chemicals industry such as polyester, 

surfactant, pharmaceutical and etc (Beller et al., 2004). Diols have a good reaction 

with many organic compounds such as linear and aliphatic carbon chain due to their 

high water solubility and reactivity. Linear diol consists of two primary hydroxyl 

groups for example in 1,2-octanediol, which are beneficial as an emollient, 

preservative, humectant and wetting agent in cosmetics and skin care products (Brown 

et al., 2003; Mildbradt et al., 2005). The preparation of diols is mostly carried out by 

two steps series which are epoxidation of olefin continued by the hydrolysis of the 

epoxides. It has been notified that the formation of diols from epoxides is catalyzed by 

Brønsted acid sites (Lee et al., 2010; Prasetyoko et al., 2005a). In other words, in order 

to manufacture diols successively in the manufacturing industry, two reactors have to 

be build which give rise to the time and cost for production process (Ekhsan et al., 

2014). Therefore, it is highly desired to develop the beneficial bifunctional catalyst for 

consecutive reaction of diol. 

 

 

Over the past decades, the development of bifunctional catalysts has drawn 

researchers’ attention for their potential application in consecutive reactions. A 

bifunctional catalyst consists of two active sites (Lee et al., 2008) which are oxidative 

and acidic sites in a single material (Lee et al., 2010). It is also known as dual function 

catalyst where a catalytic substance possesses two active sites and it capables of 

catalyzing two different types of reaction. The whole process is more practical and 

economical than the two-step process using two different catalysts. As the process is 

time-consuming and requires a high cost (Ekhsan et al., 2014), an oxidative-acidic 

bifunctional catalyst is highly demanded to especially ensure rapid production of diols. 

The proposed of consecutive reaction of diol formation by using an oxidative-acidic 

bifunctional catalyst is shown in Figure 1.1. 

 

http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Hydroxyl_group
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Figure 1.1 Oxidative-acidic bifunctional catalyst for diol production in a 

consecutive reaction 

 

 

In the past few years, various oxidative-acidic bifunctional catalysts have been 

reported. These include zirconium sulphate loaded TS-1 (Prasetyoko et al., 2005b), 

titanium ion (Ti4+) together in the framework of zeolites (Lee et al., 2008) sulphate-

vanadium treated titania-silica aerogel (Lee et al., 2010), niobium-phosphate 

impregnated titania-silica (Ekhsan et al., 2014) and HZSM-5 supported Mo and 

combination of trivalent metal ions (Al3+, B3+, Fe3+, Ga3+) (Trong On et al., 2003). It 

was declared that the presence of metal oxides such as V, Mo, Zr and Nb acted as 

redox centers had influenced formation of both Lewis and Brønsted acidity sites. 

Besides, it was also claimed that V and Nb acted as oxidative active sites for 

epoxidation (Ekhsan et al., 2014; Lee et al., 2010). Owing to the similar chemical 

properties of tungsten to Mo and Nb, it is worthy to explore the possibility usage of 

tungsten in a bifunctional catalyst’s design.  

 

 

It was reported that tungsten oxide species dispersed on zirconia supports 

(WOx–ZrO2) by impregnation with a solution of tungstate anions show strong acidity 

(Barton et al., 1998). Acid properties of tungsten/zirconia were characterized using 

adsorption microcalorimetry showing that the acid site strength of the 

tungsten/zirconia materials was similar to or slightly higher than that found in zeolites 

or sulphated zirconia and was comparable to sulphuric acid (Vartulli et al., 1999). 

Increasing tungsten loadings in tungstated titania, with and without platinum, rose 

acidity of catalyst and favored isomerization of n-pentane and of n-butane (Eibl et al., 

2000). The dispersion of the supported tungsten oxide phase and their surface acidity 

was varied depending on metal precursor and atmosphere of pretreatments (Perez-

Alkene Epoxide Diols

Oxidative sites Brønsted Acidity 
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Cadenas et al., 2003). For many of these catalytic applications, the solid acidity of the 

supported tungsten oxide phase played a crucial role in their overall catalytic 

performance (Wachs et al., 2006).  

 

 

It is known that the formation of diols from epoxides catalyzed only by 

Brønsted acid sites (Lee et al., 2008). However, titania-silica aerogel consists of only 

Lewis acidity (Hu et al., 2003). In some research, the Brønsted acid sites can be created 

by adding the metal oxide on the surface of titania-silica (Ekhsan et al., 2014; Lee et 

al., 2010). It was also reported that Brønsted acid sites and Lewis acid sites are present 

at tungsten oxide surface coverage (Wachs et al., 2006).   

 

 

Modification via acid treatment is one of the approaches used to enhance the 

Brønsted acidity in a catalyst. Generation of Brønsted acidity in phosphorus-

containing MCM-41, sulphated Al-MCM-41, and sulphuric acid and phosphoric acid 

modified titania-silica aerogel have been reported (Kawi et al., 2002; Ng et al., 2006; 

Lee et al., 2011). Increasing amount of phosphoric acid amount has increased the 

Brønsted acid sites for the isomerization of n-butene (Tada et al., 1995). In addition, 

loading both sulphate and vanadium onto the material has improved the Brønsted 

acidity in titania-silica aerogel (Lee et al., 2010). Thus, it is an opportunity to enhance 

the catalytic activity of diol formation by the addition of acid into the tungsten oxide 

supported titania-silica.  

 

 

In this research, a new bifunctional catalyst of tungsten-phosphate supported 

on titania-silica was synthesized via sol-gel and impregnation methods. A study was 

carried out to study the function of tungsten oxide in creating both oxidative and 

acidity active sites. Besides, the interaction among tungsten oxide, silica support and 

phosphoric acid was investigated to achieve the high catalytic activity.  
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1.2 Problem statement 

 

 

In industry, diols production is carried out by two steps order which is 

epoxidation of olefin, continued by the hydrolysis of the epoxides. However, the 

process is time-consuming and costly. Currently, the organic synthesis of diols 

production uses the conventional liquid acids such as H2SO4, HF, HCl and H3PO4. Due 

to their toxicity and corrosive nature of these acids, their usage has generated great 

risks in handling, containment and disposal. Moreover, waste disposal has increased 

the environmental cost and increased the chemical waste poisonous towards public 

(Jiang et al., 2008). Thus, it is important to develop a new functional material to replace 

the liquid acids.  

 

 

In the previous study, titania-silica have been found as a good catalyst for 

epoxidation affected by the highly dispersion of Ti4+ species in the catalyst (Muller et 

al., 2000). Nevertheless, this material only consisted of Lewis acidity but did not 

consist of Brønsted acidity which important for transformation of diols from epoxides. 

Therefore, titania-silica itself was unable to transform epoxide to diols due to lack 

Brønsted acid site in the materials (Lee et al., 2008). Another bifunctional catalyst has 

been synthesized through impregnation technique by the incorporation of titanium ion 

and sulphated zirconia together in silica. It was stated that the existence of octahedral 

titanium and sulphated zirconia, activate this catalyst in both oxidation reactions and 

acid catalyzed reactions. However, the insufficient Brønsted acidity in the catalyst has 

been identified resulted in low production of diols (Prasetyoko et al., 2005b).  

 

 

Recently, Ekhsan et al. (2014) has proved that both phosphate-vanadium 

impregnated titania-silica aerogel and sulphate-vanadium impregnated titania-silica 

aerogel were excellent bifunctional oxidative and acidic catalysts (Lee et al., 2009; 

Lee et al., 2010). The addition of acid groups to vanadium was crucial for formation 

of Brønsted acid sites. Most lately, it has been demonstrated that co-existence of 

niobium and phosphate were crucial for Brønsted acidity formation in niobium-

phosphate impregnated titania-silica (Ekhsan et al., 2014). However, the competition 

between titanium and niobium seemed to hinder generation of more acidity. 
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Tungsten oxide materials possessing high Brønsted acidity have been 

investigated for their excellent catalytic activity in dehydration of ispropanol (Perez-

Cadenas et al., 2003). Due to similar properties of transition metals in Group 5 and 6, 

tungsten oxide is selected as modifier for TiO2 to enhance the formation of both 

oxidative and acidic sites on catalysts. Besides, it was found that the Brønsted acid site 

density increased with increasing of tungsten loading in various materials, reflecting 

tungsten could act as an important part in the generation of Brønsted acidity sites 

(Pedrosa et al., 2008). However, the performance is less satisfactory in terms of 

amount of Lewis and Brønsted acidity created, selectivity as well as catalytic yield. 

Another effective way to improve the catalytic activity and increase Brønsted acidity 

is treatment with acid. In consideration of generating oxidative and Brønsted acidity 

within the sample, the tungsten-catalyst was proposed to be treated with phosphoric 

acid, H3PO4 particularly to enhance the acidity of the resulting catalyst. Thus, the role 

of tungsten and phosphate in generation of both oxidative and Brønsted acidity in a 

single materials were worthy for exploration. 

 

 

 

 

1.3 Objectives 

 

 

The objectives of the study were: 

1. To synthesize and characterize tungsten-phosphate supported on titania-silica 

as bifunctional catalysts; 

2. To investigate the role of tungsten oxide (WO3) and phosphate (PO4
3-) in 

acidity formation by examining type and amount of acidity formed; 

3. To evaluate the catalytic performance of titania-silica supported tungsten-

phosphate as oxidative-acidic bifunctional catalyst in single step diol 

formation. 
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1.4 Significance  of Research 

 

 

This research is important to enhance the production of diols by synthesizing 

the tungsten oxide and phosphoric acid impregnated titania-silica as oxidative and 

acidic bifunctional catalyst. It is also to understand the role of tungsten oxide in 

creating acidity in the catalyst. Besides, the bifunctional oxidative-acidic catalyst for 

diol production was design. This research aims to investigate the role of tungsten oxide 

in generation of both oxidative and acidity active sites and Brønsted acid sites in a 

newly designed bifunctional catalyst. 

 

 

 

 

1.5  Scope and Limitation of Study 

 

 

The bifunctional catalytic activity of the tungsten-phosphate supported on 

titania-silica promoted generation of Brønsted acidity, leading to sufficient production 

of diols. The physicochemical properties of the synthesize catalyst were explored. It is 

also important to study the interaction among WO3, PO4
3-, TiO2 and SiO2 support to 

their catalytic performance.  

 

A bifunctional catalyst tungsten-phosphate supported on titania-silica was 

synthesized using sol-gel and impregnation methods. Tetraethylorthosilicate (TEOS) 

was hydrolyzed to form Si(OH)4 and continued by condensation to form Si-O-Ti 

bonds, which Titanium(IV) isopropoxide (TTIP) was used as a precursor of Ti. The 

titania-silica was impregnated with tungsten oxide and had been treated with 

phosphoric acid.  

 

 

Physical and chemical properties of catalyst were characterized using X-ray 

diffraction (XRD), field emission scanning electron microscopy (FESEM), 

transmission electron microspcopy (TEM), diffuse reflectance ultraviolet-visible (DR 

UV-Visible) spectroscopy, temperature programmed desorption/reduction/oxidation 

(TPD/R/O), and fourier transform infrared (FTIR) spectroscopy. Besides, samples’ 
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surface area was measured by means of N2 adsorption surface area analysis. Type and 

amount of acidity were examined via FTIR using pyridine as a probe molecule. 

 

 

Catalytic performance of tungsten-phosphate supported titania-silica as 

oxidative-acidic bifunctional catalyst was examined in consecutive transformation of 

1-octene to 1,2-octanediol through generation of 1,2-epoxyoctane at 343 K in the 

presence of aqueous H2O2 as oxidant. The yields of the reaction were evaluated on a 

HP Agilent 6890N gas chromatograph. Figure 1.2 shows the flowchart of the research. 

 

 

 

 

Figure 1.2 Flow chart of research 

 

Synthesis of tungsten-phosphate supported on titania-silica.

Characterizations of tungsten-phosphate supported on titania-silica.

(XRD, FESEM, TEM, TPD/R/O, N2 adsortion-desorption, FTIR, DR UV-
Visible and Pyridine-adsorption analyses)

Catalytic performance of tungsten-phosphate supported on titania-silica in 
consecutive transformation of 1-octane to 1,2-octanediol through generation of 

1,2-epoxyoctane by the presence of aqueous H2O2 under visible light 
irradiation.
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