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ABSTRACT 

A capsule neural network (CapsNet) is a new approach in artificial neural 

network (ANN) that produces a better model hierarchical relationship. A capsule is a 

set of neurons. Each capsule generates vector which presents the details of an entity. 

The performance of CapsNet on graphics processing unit (GPU) is considerably better 

than convolutional neural network (CNN) at recognizing highly overlapping digits in 

images.  Nevertheless, this new method has not been designed as accelerator on field-

programmable gate array (FPGA) to measure the speedup performance and compared 

it with the GPU. This is because of the lack of hardware design experience. This project 

aims to design the CapsNet model (accelerator) on FPGA using high-level synthesis 

(HLS). Then, the performance between FPGA and GPU will be compared, mainly in 

terms speedup and accuracy. Behavioural module is synthesized using HLS tools on 

FPGA then it is evaluated and validated using MNIST dataset. The module is designed 

to receive features vectors of handwritten digits image as an input and pass it through 

several layers to predict the output. The speed-up performance on FPGA is expected 

to be higher than GPU, but FPGA accuracy is expected to be slightly lower than GPU. 

The module can be useful in detecting the license plate of fast-moving vehicles and 

many other applications. 
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ABSTRAK 

Rangkaian neural kapsul (CapsNet) adalah pendekatan baharu dalam 

rangkaian saraf Buatan (ANN) yang menghasilkan hubungan hierarki model yang 

lebih baik. Kapsul adalah kumpulan neuron yang menghasilkan vektor dimana 

mewakili keperincian satu entit. Prestasi CapsNet pada unit pemprosesan grafik (GPU) 

telah menemui tahap pencapaian pada pangkalan data Institut Kebangsaan Standard 

dan Teknologi Modified (MNIST) dan jauh lebih baik daripada rangkaian saraf 

lingkaran untuk mengenali digit yang sangat bertindih dalam imej. Walau 

bagaimanapun, teori baru ini belum dilaksanakan sebagai pemecut pada cip yang boleh 

aturcara (FPGA) untuk mengukur prestasi kelajuan dan membandingkannya dengan 

GPU. Ini disebabkan oleh kekurangan kepakaran berkaitan reka bentuk perkakasan. 

Projek ini bertujuan untuk merekabentuk model CapsNet (pemecut) pada FPGA 

menggunakan alat sintesis peringkat tinggi (HLS). Prestasi di antara FPGA dan GPU 

akan dibandingkan terutamanya kelajuan and ketepatan. Modul kelakuan disintesis 

menggunakan alat HLS pada FPGA kemudian ia dinilai dan disahkan menggunakan 

dataset MNIST. Modul ini direka bentuk untuk menerima vektor ciri imej digit tulisan 

tangan sebagai input dan melalui beberapa lapisan untuk meramalkan outputnya. 

Prestasi kelajuan pada FPGA dijangka lebih tinggi daripada GPU, tetapi ketepatan 

FPGA dijangka sedikit lebih rendah daripada GPU. Modul ini berguna dalam 

mengesan plat lesen kenderaan yang bergerak pantas dan banyak aplikasi lain. 

 

 

 

 

 

 

 

 

 

 

 



 

 
ix 

TABLE OF CONTENTS 

 TITLE PAGE 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS ix 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xiv 

LIST OF SYMBOLS xiv 

CHAPTER 1 INTRODUCTION 1 

1.1 Overview 1 

1.2 Problem statement 1 

1.3 Research objectives 2 

1.4 Scope of the project 2 

1.5 Contributions 3 

1.6 Report organization 3 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Machine learning 5 

2.2.1 Deep learning and drawback 6 

2.2.2 Capsule networks 7 

2.3 Field programmable gate array FPGA 13 

Square root operation 15 

2.3.1 Machine learning algorithms on FPGA and GPU 16 

2.4 Comparative Overview of Related Works 17 

2.5 Summary 18 



 

 
x 

CHAPTER 3 METHODOLOGY 19 

3.1 Overview 19 

3.2 Flow of the project 19 

3.3 Algorithm on GPU 20 

3.4 Design in FPGA 23 

3.4.1 Fixed point 37 

3.4.2 Code modelling style 39 

3.5 Report management 40 

CHAPTER 4 RESULTS 43 

4.1 Introduction 43 

4.2 Simulation results on GPU 43 

Exponential function 46 

4.3 Results in FPGA 48 

4.4 Summary 53 

CHAPTER 5 CONCLUSION 55 

5.1 Introduction 55 

5.2 Conclusion 55 

5.3 Feature works 56 

REFERENCES 59 

 

  



 

 
xi 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Comparative overview of related works 17 

Table 3.1           Fixed-point examples 38 

Table 3.2  Gantt Chart for project 1: 41 

Table 3.3  Gantt Chart for project 2: 42 

Table 4.1 Accuracy on GPU 44 

Table 4.2  Summary of timing simulation and the accuracy in FPGA 

and GPU 53 

 

  



 

 
xii 

LIST OF FIGURES 

FIGURE NO. TITLE  PAGE 

Figure 2.1 Convolutional layers in CNN (LeCun, Bengio, & Hinton, 

2015) 6 

Figure 2.2 Max pooling function 7 

Figure 2.3 General idea of capsule networks 8 

Figure 2.4 Structure of the capsule networks 10 

Figure 2.5 Reshaping the vector from array in primary capsule 10 

Figure 2.6 Decoder structure (Sabour, Frosst, & Hinton, 2017) 12 

Figure 2.7 The basic architecture of the FPGA 13 

Figure 2.8 The LUT operates and the LB structure 14 

Figure 2.9 Programmable switch block 15 

Figure 2.10 Square root block diagram 15 

Figure 3.1  Phase of project 1 19 

Figure 3.2  Phase of project 2 20 

Figure 3.3 Dataset specifications 20 

Figure 3.4 Hierarchy of MATLAB module 21 

Figure 3.5 The hierarchy of the module in making prediction 22 

Figure 3.6 Position of ûj|i in CapsNet 24 

Figure 3.7 ASM chart for procedure 2 25 

Figure 3.8 Reshaping of matrix C 26 

Figure 3.9  ASM chart for procedure 3 27 

Figure 3.10 ASM chart of procedure 4 28 

Figure 3.11 ASM chart of procedure 5 30 

Figure 3.12 reshaping mechanism of û[160][32] 31 

Figure 3.13 ASM chart of procedure 6 32 

Figure 3.14  ASM chart of procedure 7 33 

Figure 3.15  ASM chart of procedure 8 35 

file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369740
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369740
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369741
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369742
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369743
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369744
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369745
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369746
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369747
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369748
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369749
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369750
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369751
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369752
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369753
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369754
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369755
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369756
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369757
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369758
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369759
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369760
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369761
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369762
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369763
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369764


 

 
xiii 

Figure 3.16 Complete picture of the hardware design 36 

Figure 3.17 Idea of fixed-point numbers 37 

Figure 3.18 ASM chart of procedure 3 39 

Figure 3.19 the concept of loop unrolling 40 

Figure 4.1  The code executed on GPU 43 

Figure 4.2 Error rate and loss after each epoch 44 

Figure 4.3  Profiling summary of the code 45 

Figure 4.4  the value of b in MATLAB simulation 46 

Figure 4.5  results of 2b 47 

Figure 4.6  results of exp(b) 47 

Figure 4.7  The difference between exp(b) and 2b 48 

Figure 4.8  Results of a given ûj|i 49 

Figure 4.9 The resources utilized by the module 49 

Figure 4.10 Results of FPGA for the same 50 

Figure 4.11 FPGA implementation Timing 52 

 

  

file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369765
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369766
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369767
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369768
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369769
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369770
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369771
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369772
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369773
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369774
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369775
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369776
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369777
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369778
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369779


 

 
xiv 

LIST OF ABBREVIATIONS 

ANN - Artificial Neural Network 

CapsNet - Capsule Neural Network 

GPU - Graphics Processing Unit 

MNIST - Modified National Institute of Standards and Technology  

CNN - Convolutional Neural Network 

FPGA - Field-programmable gate array 

HLS - High-level Synthesis 

UTM - Universiti Teknologi Malaysia 

LB - Logic Blocks 

LUT - Lookup Table 

ROM - Read only memory 

RAM - Random access memory 

KNN - K-nearest neighbour  

GPP - General-purpose processor 

ADAS - Auto drive assistant system 

FSM - Finite state machine 

SoC - System-on-Chip 

NaN - Not a Number 

HDL - Hardware Description Language 

BSOM - Binary Self-Organizing Map 

ASM - Algorithmic State Machine 

   
   
   
   
   
   
   

 
 
 
 
 
  

LIST OF SYMBOLS 



 

 
xv 

W - Weights of the model  

u - Primary capsule vector  

b - initial logics  

c - coupling coefficient 

S - the sum of all inputs in each digit capsule 

v - Instantiation vector 

Lk - Margin loss 

𝝀 - Constant value (0.5) 

m+ - Constant value (0.9) 

m- - Constant value (0.1) 

r - Number of epochs in routing by agreement algorithm 

l - Number of layers in routing by agreement algorithm 

û - The main input for routing by agreement algorithm 

MAG - Represent the probability of each digit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

A Capsule Neural Network (CapsNet) is the latest type of artificial neural 

network (ANN) which propose better hierarchical relationships in the model. A 

capsule is neurons grouped together which the features vector represents the 

instantiation parameters of a certain entity [1]. Similar to normal neural network, a 

CapsNet is designed in multiple layers. The capsules in the first layer are the primary 

capsules which the small primary features are detected. Capsules in second layers are 

the routing capsules which detect large and complex objects [2]. Nevertheless, this 

new machine learning system has not been implemented on any embedded system, for 

example Field Programmable Gate Array (FPGA). Therefore, in this project, the aim 

is to identify which part in CapsNet consumes the highest amount of time from overall 

execution time and design an accelerator on FPGA to implement this part and measure 

the amount of enhancement in overall execution time without effecting the accuracy 

of the module. 

 

 

 

 

1.2  Problem statement  

The complex computation of the CapsNet algorithm takes a long time and as 

data sizes increase, its running time can stretch to several hours. The CapsNet has not 

been implemented on hardware system to compare the speed up performance and 

accuracy with graphics processing unit (GPU). 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
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1.3  Research objectives  

There are three objectives for this research:  

1. To implement the CapsNet algorithm in MATLAB using GPU and 

find the statistics of the module which are the delay to find the results 

and accuracy of the module in predicting new images. 

2. To identify the computation intensive part which consumes the 

maximum amount of time from over all execution time in MATLAB 

and design FPGA accelerator for this part and measure the delay of the 

correct output. 

3. To compare the speedup performance and accuracy between FPGA 

and GPU. 

 

 

 

 

1.4  Scope of the project  

The followings are the considered as the project’s scope: 

1. Capsule network is the latest technology in the field of machine 

learning, and it achieved a better performance than the convolutional 

neural networks (CNN). Simulate for this algorithm is done in GPU 

using high level languages (HLL). 

2. FPGA is a strong embedded hardware that offers low power, high 

parallelism and high reconfigurability to meet the demand of high 

computational speed of different machine learning algorithms. 
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1.5 Contributions  

This hardware design can be used in several fields such as  security reasons. 

For example, the module can be useful in detecting the license plate of fast-moving 

vehicles and many other applications. 

 

1.6 Report organization  

The are 5 following chapters. Chapter 2 is about literature review which 

describes the existing works related to this project. Chapter 3 describes the 

methodology used in the project. Chapter 4 presents the result of the project. Chapter 

5 summarizes the conclusion. Chapter 6 will discuss future work. 
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