

iv

IMAGE RECOGNITION USING CAPSULE NETWORK ON FPGA

SALIM ALI ABDULRRAZIQ ADREES

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronics System)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JANUARY 2020

iv

DEDICATION

To my beloved family father, mother, brothers and sisters.

v

ACKNOWLEDGEMENT

I would first like to thank my supervisor Dr. Ismahani Binti Ismail. Her office

was always open whenever I ran into a trouble spot or had a question about my research

or writing. She consistently allowed this paper to be my own work but steered me in

the right the direction whenever he thought I needed it.

I would also like to acknowledge the contributions of Universiti Teknologi

Malaysia (UTM). Finally, I would like to thank all my family members, friends, and

those people who are giving me the mentality support, courage, and as well as their

assistance and supports in completing this project.

vi

ABSTRACT

A capsule neural network (CapsNet) is a new approach in artificial neural

network (ANN) that produces a better model hierarchical relationship. A capsule is a

set of neurons. Each capsule generates vector which presents the details of an entity.

The performance of CapsNet on graphics processing unit (GPU) is considerably better

than convolutional neural network (CNN) at recognizing highly overlapping digits in

images. Nevertheless, this new method has not been designed as accelerator on field-

programmable gate array (FPGA) to measure the speedup performance and compared

it with the GPU. This is because of the lack of hardware design experience. This project

aims to design the CapsNet model (accelerator) on FPGA using high-level synthesis

(HLS). Then, the performance between FPGA and GPU will be compared, mainly in

terms speedup and accuracy. Behavioural module is synthesized using HLS tools on

FPGA then it is evaluated and validated using MNIST dataset. The module is designed

to receive features vectors of handwritten digits image as an input and pass it through

several layers to predict the output. The speed-up performance on FPGA is expected

to be higher than GPU, but FPGA accuracy is expected to be slightly lower than GPU.

The module can be useful in detecting the license plate of fast-moving vehicles and

many other applications.

vii

ABSTRAK

Rangkaian neural kapsul (CapsNet) adalah pendekatan baharu dalam

rangkaian saraf Buatan (ANN) yang menghasilkan hubungan hierarki model yang

lebih baik. Kapsul adalah kumpulan neuron yang menghasilkan vektor dimana

mewakili keperincian satu entit. Prestasi CapsNet pada unit pemprosesan grafik (GPU)

telah menemui tahap pencapaian pada pangkalan data Institut Kebangsaan Standard

dan Teknologi Modified (MNIST) dan jauh lebih baik daripada rangkaian saraf

lingkaran untuk mengenali digit yang sangat bertindih dalam imej. Walau

bagaimanapun, teori baru ini belum dilaksanakan sebagai pemecut pada cip yang boleh

aturcara (FPGA) untuk mengukur prestasi kelajuan dan membandingkannya dengan

GPU. Ini disebabkan oleh kekurangan kepakaran berkaitan reka bentuk perkakasan.

Projek ini bertujuan untuk merekabentuk model CapsNet (pemecut) pada FPGA

menggunakan alat sintesis peringkat tinggi (HLS). Prestasi di antara FPGA dan GPU

akan dibandingkan terutamanya kelajuan and ketepatan. Modul kelakuan disintesis

menggunakan alat HLS pada FPGA kemudian ia dinilai dan disahkan menggunakan

dataset MNIST. Modul ini direka bentuk untuk menerima vektor ciri imej digit tulisan

tangan sebagai input dan melalui beberapa lapisan untuk meramalkan outputnya.

Prestasi kelajuan pada FPGA dijangka lebih tinggi daripada GPU, tetapi ketepatan

FPGA dijangka sedikit lebih rendah daripada GPU. Modul ini berguna dalam

mengesan plat lesen kenderaan yang bergerak pantas dan banyak aplikasi lain.

ix

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS ix

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF SYMBOLS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem statement 1

1.3 Research objectives 2

1.4 Scope of the project 2

1.5 Contributions 3

1.6 Report organization 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Machine learning 5

2.2.1 Deep learning and drawback 6

2.2.2 Capsule networks 7

2.3 Field programmable gate array FPGA 13

Square root operation 15

2.3.1 Machine learning algorithms on FPGA and GPU 16

2.4 Comparative Overview of Related Works 17

2.5 Summary 18

x

CHAPTER 3 METHODOLOGY 19

3.1 Overview 19

3.2 Flow of the project 19

3.3 Algorithm on GPU 20

3.4 Design in FPGA 23

3.4.1 Fixed point 37

3.4.2 Code modelling style 39

3.5 Report management 40

CHAPTER 4 RESULTS 43

4.1 Introduction 43

4.2 Simulation results on GPU 43

Exponential function 46

4.3 Results in FPGA 48

4.4 Summary 53

CHAPTER 5 CONCLUSION 55

5.1 Introduction 55

5.2 Conclusion 55

5.3 Feature works 56

REFERENCES 59

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Comparative overview of related works 17

Table 3.1 Fixed-point examples 38

Table 3.2 Gantt Chart for project 1: 41

Table 3.3 Gantt Chart for project 2: 42

Table 4.1 Accuracy on GPU 44

Table 4.2 Summary of timing simulation and the accuracy in FPGA

and GPU 53

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Convolutional layers in CNN (LeCun, Bengio, & Hinton,

2015) 6

Figure 2.2 Max pooling function 7

Figure 2.3 General idea of capsule networks 8

Figure 2.4 Structure of the capsule networks 10

Figure 2.5 Reshaping the vector from array in primary capsule 10

Figure 2.6 Decoder structure (Sabour, Frosst, & Hinton, 2017) 12

Figure 2.7 The basic architecture of the FPGA 13

Figure 2.8 The LUT operates and the LB structure 14

Figure 2.9 Programmable switch block 15

Figure 2.10 Square root block diagram 15

Figure 3.1 Phase of project 1 19

Figure 3.2 Phase of project 2 20

Figure 3.3 Dataset specifications 20

Figure 3.4 Hierarchy of MATLAB module 21

Figure 3.5 The hierarchy of the module in making prediction 22

Figure 3.6 Position of ûj|i in CapsNet 24

Figure 3.7 ASM chart for procedure 2 25

Figure 3.8 Reshaping of matrix C 26

Figure 3.9 ASM chart for procedure 3 27

Figure 3.10 ASM chart of procedure 4 28

Figure 3.11 ASM chart of procedure 5 30

Figure 3.12 reshaping mechanism of û[160][32] 31

Figure 3.13 ASM chart of procedure 6 32

Figure 3.14 ASM chart of procedure 7 33

Figure 3.15 ASM chart of procedure 8 35

file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369740
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369740
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369741
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369742
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369743
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369744
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369745
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369746
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369747
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369748
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369749
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369750
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369751
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369752
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369753
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369754
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369755
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369756
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369757
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369758
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369759
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369760
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369761
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369762
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369763
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369764

xiii

Figure 3.16 Complete picture of the hardware design 36

Figure 3.17 Idea of fixed-point numbers 37

Figure 3.18 ASM chart of procedure 3 39

Figure 3.19 the concept of loop unrolling 40

Figure 4.1 The code executed on GPU 43

Figure 4.2 Error rate and loss after each epoch 44

Figure 4.3 Profiling summary of the code 45

Figure 4.4 the value of b in MATLAB simulation 46

Figure 4.5 results of 2b 47

Figure 4.6 results of exp(b) 47

Figure 4.7 The difference between exp(b) and 2b 48

Figure 4.8 Results of a given ûj|i 49

Figure 4.9 The resources utilized by the module 49

Figure 4.10 Results of FPGA for the same 50

Figure 4.11 FPGA implementation Timing 52

file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369765
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369766
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369767
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369768
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369769
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369770
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369771
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369772
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369773
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369774
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369775
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369776
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369777
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369778
file:///C:/Users/PAVILION%2015/OneDrive/Desktop/New%20folder%20(3)/PR1_Final%20_edite.docx%23_Toc29369779

xiv

LIST OF ABBREVIATIONS

ANN - Artificial Neural Network

CapsNet - Capsule Neural Network

GPU - Graphics Processing Unit

MNIST - Modified National Institute of Standards and Technology

CNN - Convolutional Neural Network

FPGA - Field-programmable gate array

HLS - High-level Synthesis

UTM - Universiti Teknologi Malaysia

LB - Logic Blocks

LUT - Lookup Table

ROM - Read only memory

RAM - Random access memory

KNN - K-nearest neighbour

GPP - General-purpose processor

ADAS - Auto drive assistant system

FSM - Finite state machine

SoC - System-on-Chip

NaN - Not a Number

HDL - Hardware Description Language

BSOM - Binary Self-Organizing Map

ASM - Algorithmic State Machine

LIST OF SYMBOLS

xv

W - Weights of the model

u - Primary capsule vector

b - initial logics

c - coupling coefficient

S - the sum of all inputs in each digit capsule

v - Instantiation vector

Lk - Margin loss

𝝀 - Constant value (0.5)

m+ - Constant value (0.9)

m- - Constant value (0.1)

r - Number of epochs in routing by agreement algorithm

l - Number of layers in routing by agreement algorithm

û - The main input for routing by agreement algorithm

MAG - Represent the probability of each digit

1

CHAPTER 1

INTRODUCTION

1.1 Overview

A Capsule Neural Network (CapsNet) is the latest type of artificial neural

network (ANN) which propose better hierarchical relationships in the model. A

capsule is neurons grouped together which the features vector represents the

instantiation parameters of a certain entity [1]. Similar to normal neural network, a

CapsNet is designed in multiple layers. The capsules in the first layer are the primary

capsules which the small primary features are detected. Capsules in second layers are

the routing capsules which detect large and complex objects [2]. Nevertheless, this

new machine learning system has not been implemented on any embedded system, for

example Field Programmable Gate Array (FPGA). Therefore, in this project, the aim

is to identify which part in CapsNet consumes the highest amount of time from overall

execution time and design an accelerator on FPGA to implement this part and measure

the amount of enhancement in overall execution time without effecting the accuracy

of the module.

1.2 Problem statement

The complex computation of the CapsNet algorithm takes a long time and as

data sizes increase, its running time can stretch to several hours. The CapsNet has not

been implemented on hardware system to compare the speed up performance and

accuracy with graphics processing unit (GPU).

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

2

1.3 Research objectives

There are three objectives for this research:

1. To implement the CapsNet algorithm in MATLAB using GPU and

find the statistics of the module which are the delay to find the results

and accuracy of the module in predicting new images.

2. To identify the computation intensive part which consumes the

maximum amount of time from over all execution time in MATLAB

and design FPGA accelerator for this part and measure the delay of the

correct output.

3. To compare the speedup performance and accuracy between FPGA

and GPU.

1.4 Scope of the project

The followings are the considered as the project’s scope:

1. Capsule network is the latest technology in the field of machine

learning, and it achieved a better performance than the convolutional

neural networks (CNN). Simulate for this algorithm is done in GPU

using high level languages (HLL).

2. FPGA is a strong embedded hardware that offers low power, high

parallelism and high reconfigurability to meet the demand of high

computational speed of different machine learning algorithms.

3

1.5 Contributions

This hardware design can be used in several fields such as security reasons.

For example, the module can be useful in detecting the license plate of fast-moving

vehicles and many other applications.

1.6 Report organization

The are 5 following chapters. Chapter 2 is about literature review which

describes the existing works related to this project. Chapter 3 describes the

methodology used in the project. Chapter 4 presents the result of the project. Chapter

5 summarizes the conclusion. Chapter 6 will discuss future work.

59

REFERENCES

[1] S. Sabour, N. Frosst, and G. E. Hinton, "Dynamic routing between capsules," in
Advances in neural information processing systems, 2017, pp. 3856-3866.

[2] G. E. Hinton, S. Sabour, and N. Frosst, "Matrix capsules with EM routing," 2018.

[3] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, p.
436, 2015.

[4] A. Muthuramalingam, S. Himavathi, and E. Srinivasan, "Neural network
implementation using FPGA: issues and application," International journal of
information technology, vol. 4, no. 2, pp. 86-92, 2008.

[5] Y. Taright and M. Hubin, "FPGA implementation of a multilayer perceptron neural
network using VHDL," in ICSP'98. 1998 Fourth International Conference on Signal
Processing (Cat. No. 98TH8344), 1998, vol. 2, pp. 1311-1314: IEEE.

[6] Z.-H. Li, J.-F. Jin, X.-G. Zhou, and Z.-H. Feng, "K-nearest neighbor algorithm
implementation on FPGA using high level synthesis," in 2016 13th IEEE International
Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2016, pp. 600-
602: IEEE.

[7] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno, "Interactive
presentation: An FPGA implementation of decision tree classification," presented at
the Proceedings of the conference on Design, automation and test in Europe, Nice,
France, 2007.

[8] F. Ortega-Zamorano, J. M. Jerez, D. U. Muñoz, R. M. Luque-Baena, and L. Franco,
"Efficient implementation of the backpropagation algorithm in FPGAs and
microcontrollers," IEEE transactions on neural networks and learning systems, vol.
27, no. 9, pp. 1840-1850, 2016.

[9] A. Ahmad, B. Kakillioglu, and S. Velipasalar, "3D Capsule Networks for Object
Classification from 3D Model Data," in 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, 2018, pp. 2225-2229: IEEE.

[10] H. Phan, L. Hertel, M. Maass, and A. Mertins, "Robust audio event recognition with
1-max pooling convolutional neural networks," arXiv preprint arXiv:1604.06338,
2016.

[11] B. Gagana, H. U. Athri, and S. Natarajan, "Activation Function Optimizations for
Capsule Networks," in 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2018, pp. 1172-1178: IEEE.

[12] A. Shahroudnejad, P. Afshar, K. N. Plataniotis, and A. Mohammadi, "Improved
explainability of capsule networks: Relevance path by agreement," in 2018 IEEE

60

Global Conference on Signal and Information Processing (GlobalSIP), 2018, pp. 549-
553: IEEE.

[13] V. Betz and J. Rose, "FPGA routing architecture: Segmentation and buffering to
optimize speed and density," in Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, 1999, pp. 59-68:
ACM.

[14] E. Monmasson and M. N. Cirstea, "FPGA design methodology for industrial control
systems—A review," IEEE transactions on industrial electronics, vol. 54, no. 4, pp.
1824-1842, 2007.

[15] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, "Computing performance
benchmarks among cpu, gpu, and fpga."

[16] D. M. Khalil-hani, Design of Digital Systems. UTM Book Series 2018.

[17] J. Su, "Design and Development of an FPGA-based Distributed Computing
Processing Platform," 2011.

[18] V. Betz. ([Accessed March 2019]). "University of Toronto," [Online]. Available:
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html.

[19] Y. Li and W. Chu, "A new non-restoring square root algorithm and its VLSI
implementations," in Proceedings International Conference on Computer Design.
VLSI in Computers and Processors, 1996, pp. 538-544: IEEE.

[20] E. Nurvitadhi et al., "Can FPGAs beat GPUs in accelerating next-generation deep
neural networks?," in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 5-14: ACM.

[21] H. M. Vo, "Implementing the on-chip backpropagation learning algorithm on FPGA
architecture," in 2017 International Conference on System Science and Engineering
(ICSSE), 2017, pp. 538-541: IEEE.

[22] H. Meng, K. Appiah, A. Hunter, and P. Dickinson, "Fpga implementation of naive
bayes classifier for visual object recognition," in CVPR 2011 WORKSHOPS, 2011, pp.
123-128: IEEE.

http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html

