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ABSTRACT 

This project proposes a software that incorporates computer vision algorithms 

to detect screw types, screw locations, and to locate screw holes on an object to ensure 

a smooth flow of automated assembly processes. The existing systems are found to be 

less adaptable for performing automated assembly and do not satisfy real-time 

constraints. These systems are affected by several factors that exist in the industrial 

environment such as lighting conditions and calibration issues which affect the 

effectiveness of the automation.  This encouraged to develop an adaptable system, 

which is adaptable to variation in object locations, lighting conditions and works in 

real-time constraints. This achieved by developing two subsystems, where firstly, a 

camera is mounted above a screw tray to detect screws by using You Only Look Once 

version 3 (YOLO v3) detection algorithm with Darknet. YOLO v3 is trained on a 

collected dataset and validated using two approaches: train/test split and 3-fold cross 

validation. Secondly, another camera is mounted above an object to localize screw 

holes on the object by using a blob detector technique. A graphical user interface is 

designed to show the results and to make the system more user-friendly and easy to 

monitor. Experimental results show that the screw detection subsystem is able to detect 

the screws under different lighting conditions with mAP of 93.8% and localization 

accuracy with a maximum error of 1.26% in the x-axis and 2.84% in the y-axis. Also, 

the blob detector subsystem is able to localize the screw holes with a maximum error 

of 0.26% in the x-axis and 0.58% in the y-axis. Besides that, both subsystems are able 

to work in real-time constraints with a speed of 7-10 FPS. It is envisaged that the 

computer vision software will make the assembly process more effective and increase 

productivity, also enhance the flow of the process. 
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ABSTRAK 

Projek ini mencadangkan perisian yang menggabungkan algoritma penglihatan 

komputer untuk mengesan jenis skru, lokasi skru, dan mencari lubang skru pada objek 

untuk memastikan aliran lancar proses pemasangan automatik. Sistem yang sedia ada 

didapati kurang fleksibel, kurang sesuai untuk melaksanakan pemasangan, dan tidak 

memenuhi kekangan masa yang diperlukan. Sistem ini terdedah kepada kesan 

pencahayaan dan isu penentukuran yang wujud dalam persekitaran industri yang 

mempengaruhi keberkesanan automasi. Ini memberi motivasi kepada perkembangan 

penyelesaian yang fleksibel, yang tidak memerlukan lekapan dan ia dapat disesuaikan 

dengan pelbagai lokasi objek, keadaan pencahayaan dan kerja dalam kekangan masa 

nyata. Ini dicapai dengan membangunkan dua subsistem, pertama, kamera dipasang di 

atas dulang skru untuk mengesan skru dengan menggunakan algoritma pengesanan 

You Only Look Once version 3 (YOLO v3) dengan Darknet. YOLO v3 dilatih pada 

dataset yang dikumpul dan disahkan menggunakan dua pendekatan: pengesahan 

perpecahan sah dan tiga kali ganda pengesahan silang. Kedua, kamera lain dipasang 

di atas objek untuk setempatkan lubang skru pada objek dengan menggunakan teknik 

pengesan gumpalan. Antara muka pengguna grafik direka untuk menunjukkan 

keputusan dan menjadikan sistem lebih mesra pengguna dan mudah dipantau. 

Keputusan eksperimen menunjukkan bahawa subsistem pengesanan skru dapat 

mengesan skru di bawah keadaan pencahayaan yang berlainan dengan mAP 93.8% 

dan ketepatan penyetempatan dengan ralat maksimum 1.26% dalam paksi-x dan 

2.84% dalam paksi-y. Juga, subsistem pengesan blob dapat melokalkan lubang skru 

dengan ralat maksimum 0.26% dalam paksi-x dan 0.58% dalam paksi-y. Selain itu, 

kedua-dua subsistem dapat bekerja dalam kekangan masa sebenar dengan kelajuan 7-

10 FPS. Adalah dijangkakan bahawa perisian penglihatan komputer akan menjadikan 

proses perhimpunan lebih berkesan dan meningkatkan produktiviti, juga 

meningkatkan aliran proses. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

A screw is a mechanical part that uses to join two components together. This 

process of joining two components by inserting the screw into a pre-threaded hole is 

called ‘screwing’. Screws are used in assembling products as they make the 

disassembly and maintenance of these products easier [1].  

Nowadays, most of the screw assembly processes are implemented manually 

[2] or by repetitive automation with complicated fixtures [3]. The manual screwing 

process achieves adaptability in which the screws and the objects to be assembled do 

not need to be in a structured environment. Furthermore, it consumes much time and 

needs a large workforce to achieve it that may slow down the process. 

Alternatively, some industries use repetitive automated assembly systems. 

These systems are faster and more reliable which makes them more productive with 

less workforce. However, these systems require the screws and the objects to be 

localized precisely before implementing the screwing process, so feeders to feed the 

screws to screwing tools are used for this purpose. These feeders occupy a large space 

in the working environment and they need to be changed if the object is changed which 

makes the automated systems time-consuming to redesign the assembly line and more 

expensive. 

This encourages a need for a more adaptable and flexible automated assembly 

system. Such a system requires high accuracy in identifying and localizing the screws 

and the screw holes on the object. Also, the system should be designed by considering 

its performance in terms of speed, cost, and adaptivity to variation in lighting 

conditions. 
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1.2 Problem Statement 

Currently, most of the screwing assembly operations are performed either 

manually or by repetitive automated systems. The manual screwing process consumes 

a lot of time and not reliable. Whereas, the repetitive automated system is not flexible, 

not adaptable to change in the working environment and it has a lack of intelligence as 

it requires additional components such as feeders.  

The screwing assembly process has limitations that make it difficult to be 

automated. The difficulties are due to the requirements of adaptability, flexibility, and 

intelligence to implement the screwing operation ( a human worker has the intelligence 

to do the screwing assembly process). This encourages the necessity for an automated 

system that has enough intelligence and adaptability to achieve the screwing assembly 

process. 

Depending on this information, the need for improving a more intelligent 

screwing automation system is a necessity to enhance system performance.  The 

system must satisfy real-time constraints and can locate the screws and holes precisely 

in a random workspace. Also, the system should be able to compensate for the lighting 

condition effect in detection objects or holes. 

1.3 Objectives 

The objectives of the research are: 

(a) To design a software environment for a computer vision application using the 

YOLO detection algorithm for detection screws in different lighting conditions 

and in real-time constraints. 

(b) To design a software environment for detection holes, and their locations in the 

object using blob detector in real-time constraints and various lighting 

conditions. 
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(c) To design a graphical user interface (GUI) to make the system more user-

friendly. 

1.4 Scope of the Project 

(a) The fasteners (screws) type are: Frearson head screw (+), Slotted head screw 

(-), and Internal hexagonal (Allen) head screw. 

(b) Each type of screw will be in a tray, and each tray will have 4 screws. 

(c) The precision in determining the hole position is 1mm [4]. 

(d) The PC will be used to run the system. 

(e) A webcam camera C922 Logitech is used for screw detection, and C310 

Logitech is used for hole detection. 

(f) The Python language will be used as a software program language. 

1.5 Organization of this Report 

The rest of this thesis is organized as follows, Chapter 2 reviews related 

previous assembly processes in general and screwing assembly process particularly. 

In addition to that, object detection systems and computer vision detection algorithms 

are reviewed. Chapter 3 discuss the design of the screwing automation system and 

methodology used to detect the screws and holes. While chapter 4 highlights the results 

found for the screw detection with the YOLO v3 algorithm and hole detection with a 

blob detector. Chapter 5 discuss the results found and presents a conclusion for our 

results obtained. 
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