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ABSTRACT

Commercially available antivirus software relies on a traditional malware

detection technique known as signature-based malware detection which fails to counter

unknown signatures of malicious software. Obfuscated malware such as polymorphic

or metamorphic are capable of generating a unique signature at each time of executing

the malware code to avoid being detected by antivirus software. However, some

imperative portions of the malicious code remain unaltered after the obfuscation

process. This research project proposes an alternative method of malware detection by

utilizingmachine learning techniques inwhich informative textual string attributes were

employed as features in with the aim to increase the classifier accuracy and to decrease

the computational overhead. In order to developmachine learning classifiermodels, two

phases of learning were applied which are training and testing phases. In this project,

benign and malware executable files were collected, then converted to assembly code

using disassembler such as IDA Pro disassembler, and then preprocessed to determine

the most significant features to aid the machine learning training stage. In addition,

part of the collected dataset was obfuscated to be used as testing files in order to test the

accuracy of the classifier. The obtained results generated byWEKA platform show that

the generative classifier model based on the SMO algorithm has the highest accuracy

level and the lowest time taken to build themodel. Exploiting themost important textual

strings as machine learning training features reduced the computational complexity in

terms of the time taken to generate the model and the computing resources such as

processing power and memory space. Malware classification using machine learning

algorithms proofed to be more effective than traditional signature-based antivirus

scanners.
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ABSTRAK

Perisian antivirus yang tersedia secara komersial bergantung pada teknik

pengesanan malware tradisional dikenali sebagai pengesanan malware berdasarkan

tandatangan yang gagalmengatasi tanda tangan yang tidak diketahui perisian berbahaya.

Malware yang disamarkan seperti polimorfik atau metamorfik mampu menghasilkan

tandatangan unik pada setiap masa melaksanakan kod perisian hasad untuk

mengelakkan daripada dikesan oleh perisian antivirus. Walau bagaimanapun, beberapa

bahagian penting dari kod jahat tetap tidak berubah selepas proses pengaburan.

Projek penyelidikan ini mencadangkan kaedah alternatif malware pengesanan dengan

menggunakan teknik pembelajaran mesin di mana atribut rentetan teks bermaklumat

digunakan sebagai ciri dengan tujuan untuk meningkatkan ketepatan pengelasan

dan mengurangkan overhed pengiraan. Untuk mengembangkan model pengkelasan

pembelajaran mesin, dua fasa pembelajaran diterapkan iaitu fasa latihan dan ujian.

Dalam projek ini, fail tidak berbahaya dan fail perisian hasad yang dapat dikumpulkan,

kemudian ditukarkan ke kod pemasangan dengan menggunakan pembongkar seperti

IDA Pro disassembler, dan kemudian memproses untuk menentukan ciri yang paling

penting untuk membantu tahap latihan pembelajaran mesin. Selain itu, sebahagian dari

kumpulan data yang dikumpulkan dikaburkan untuk digunakan sebagai menguji fail

untuk menguji ketepatan pengelasan. Hasil yang diperoleh dihasilkan oleh Platform

WEKA menunjukkan bahawa model pengkelasan generatif berdasarkan algoritma

SMO mempunyai tahap ketepatan tertinggi dan masa terendah yang diambil untuk

membinamodel. Mengeksploitasi rentetan teks sebagai ciri latihan pembelajaranmesin

mengurangkan kerumitan komputasi dari segi masa yang diambil untuk menghasilkan

model dan sumber pengkomputeran seperti daya pemprosesan dan ruang memori.

Klasifikasi perisian hasad yang menggunakan algoritma pembelajaran mesin terbukti

lebih berkesan daripada pengimbas antivirus berasaskan tandatangan tradisional.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The usage of the internet has turned out to be an integral component of

our life as the number of people using various services that are provided on the

internet is increasing. The internet as we know it today has progressed from a

simple communication structure to a group of interrelated data sources which permit,

alternative ways of social communications and various retailers to promote and sell

their products and services. Services and products advertising or electronic commerce

are illustrations of the internet commercial features. In the virtual domain, there are

individuals with malicious intentions, who attempt to gain wealth by attacking sincere

users and taking advantage of them on every occasion where money is concerned.

Network and computer security are major interests for the processes of organizations

such as corporations, banks, governments, as well as individuals, in which immense

quantity of crucial data are constantly extracted. Safeguarding these important data

contained in storage devices of computers or while data transactions between different

parties has become an essential duty [1].

Therefore, efficient and precise detection mechanisms have become a necessity

to identify malware attacks targeting both computer and network systems. Formerly,

worm named Slammer targeted several computers across the globe in a brief instance

of time in which it caused massive economic damage [2].

Attacks initiated by malware have become more damaging to the data of both

individuals and institutions which resulted in significant losses. For instance, in 2009

a malware known as Zeus attacked more than 3.5 million computer systems of banks

in the United States of America. The estimated financial losses of the 2009 incident

was approximately about 3 billion US dollars. New malwares are generated in high
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rate which causing a challenge for traditional malware detection methods. A statistical

analysis conducted byMcafee showed thatmore than 80millionmalwareswere captured

in 2013, and in 2014 the number has increased to 140 million malwares [3]. In 2017, a

statistical study performed by GDATA program revealed that in every 4 seconds, new

malware variants are generated. In 2018, AV-Test which is a well-known institution

that examine the performance of anti-malware software by various vendors, revealed

that about 20 million samples of new malware were captured in the first three months

of the year of 2018 [4]. Figure 1.1 depicts the AV-Test statistical analysis of the number

of malware samples for the past ten years. Actually, the chief problem of detecting

malwares is not only the huge number of malwares collected but also the sophisticated

structure of the malware where the malware creators use obfuscation techniques to

cover the main functionality of the malware for the purpose of evading to be detected

by anti-virus software [5].

Figure 1.1: Malware statistics for the past ten yeas which carried out by AV-Test
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Hackers make advantage of weaknesses in operating system architectures, web

browsers, and online services, or exploit social engineering methods to motivate

individuals to execute malicious software for the purpose of spreading them. Hackers

utilize obfuscation methods such as reassigning registers, insertion of inexecutable

code, reordering of the subroutine, transposition of code, integration of code, and

substitution of instructions to avoid to be detected by conventional lines of defense such

as gateways, firewalls, anti-virus software which relies on signature-based methods [6].

This method demands the anti-virus vendors to supply a record of signatures of already

analyzedmalware samples to be then compared to possible attacks. Thus, commercially

available anti-virus programs are uncapable to detect formerly unobserved malevolent

executables.

Since obfuscated malware executables alter continuously their signatures, and

hence traditional techniques are not capable to detect their presence. Machine learning

techniques rely on learning from previous experiences in order to predict and classify

future events. These methods might not substitute the conventional techniques of

detections, but they can aid them [10]. In general, machine learning methods demand

more computational resources compared to the traditional methods of detections.

Additionally, one of the limitations ofmachine learning is the occurrence of false alarms.

Also, ineffective selection of features and redundant features used to build classifier

models are additional downsides of machine learning techniques [11]. Therefore,

the aim of this work is to use only significant features for generating machine learning

classifier models to reduce the feature space and the computational overhead to improve

the classification accuracy.

1.2 Problem statement

Current anti-malware software provided by various vendors utilizes signature-

based detection scheme. Nonetheless, malicious code is constantly evolving and

hackers are exploiting advanced obfuscation techniques such as polymorphism and

metamorphism to evade detection by signature based anti-malware software [12].

Self-mutating malwares such as metamorphic malware is automatically changing its

signature whenever the malware is executed. This kind of obfuscated malware makes
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it difficult for traditional techniques which rely on signature matching to detect it

[13]. After the obfuscation operation is initiated, a successor metamorphic malware

is produced which carries inherited sections of code from its predecessor. Hackers

have a practice to recycle previously known sections of code, as a result of that

practice some characteristics from the predecessor metamorphic malware will remain

unaltered in new self-mutated malware. It is believed that a complete metamorphic

malware transmutation is not possible because complete transmutation will change

the function of successor metamorphic malware which is not the goal of the hackers

[14]. Therefore, different malware variants originated from a single malware will have

similar composition of unaltered sections of code.

As self-mutated malware has the ability to avoid to be detected be conventional

methods of detection, hence, machine learning algorithms are used which are capable

to deduce patterns given by the training dataset in order to create a generative model for

classification. The generative model will be able to classify unseen data sample based

on its content to its respective class. In the field of malware detection, machine learning

techniques have been recognized to be effective to detect unseen variants of malwares

[11]. One of the limiting factors of machine learning algorithms is the false rate which

depends on multitude of factors such as irrelevant features, ineffective selection of

features, or incompetent classifier algorithms [11]. In addition, irrelevant features of

the training dataset will increase the number of features in the feature space which

will lead to increase the time needed to create a generative model for classification.

Also, the increasing number of features will require more computing resource. Hence,

informative textual string attributes are employed as the features in this project with the

aim to increase the classifier accuracy and to decrease the computational overhead.

1.3 Objectives

The purpose of this study is to accomplish the following objectives:

1. To develop machine learning classifiers which are constructed by using

minimum number of textual features extracted from both malicious and benign

files in order to differentiate between self-mutated and non-mutated files.
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2. To identify the most suitable machine learning classifier model based on its

accuracy level and false positive rate.

3. To compare the outcomes of generated machine learning classifiers with

conventional anti-malware software based on signature matching technique.

1.4 Scope of the research

The concentration of this research will be on the detection of new obfuscated

malicious files of the metamorphic type. The primary goal is to enhance the accuracy

level of machine learning classifier models compared to the conventional malware

detection. Owing to the exploratory identity of this research, the collected sets of both

training and testing stages of machine learning classifier models are from offline traffic.

The scopes of this study are stated as follows:

1. Training dataset comprised of benign and malware is gathered from different

online samples providers. The collected dataset is utilized to develop generative

classifier model.

2. Data collection, preprocessing, machine learning training and classification

were conducted in virtual environment for the sake of protecting workstation

from getting infected by collected malwares.

3. Textual strings were chosen as a feature for generatingmachine learningmodels.

The textual strings were extracted from dataset executables using disassembler

software.

4. Multiple machine learning classifier models were examined in order to

determine the best classifier in terms of accuracy of detection and false rates.

1.5 Thesis organization

The report consists of a total number of five chapters which are as follows.

Chapter 2 describes the literature review of related works. Chapter 3 presents

the methodology followed to conduct the research project. Chapter 4 presents the

experimental findings and their analysis in the which the obtained results are compared
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against the traditional signature-based technique. Chapter 5 presents the concluding

remarks and the recommendations for future work.
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