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ABSTRACT

Colour correction algorithm plays an essential part in processing the colour

information. Researches on various statistical methods in colour correction algorithms

keep growing in order to obtain higher accuracy and reproducibility for the intended

usage. Among those, Polynomial Colour Correction is one of the common

applications in practice. Nevertheless, the intensive computation and inconvenience

of implementing complex algorithm using Hardware Description Language have

significant impact on the timing performance especially for those urgent life-threatening

diagnosis application. Through this project, a hardware accelerator is proposed to

improve the timing performance of the repetitive nature in the Polynomial algorithm

while maintaining its accuracy with a minimal degradation. But before designing the

hardware accelerator, there is a need to investigate on the compute intensive part of the

baseline algorithm. High Level Synthesis tool is used to maximize the design space

exploration and effectively minimize the design time. The proposed work has included

several optimization techniques such as loop unrolling, pipelining and array partitioning

to further exploit the parallelism of the colour correction algorithm. Analysis on latency,

total execution time, resource utilization, maximum operating frequency and accuracy

with respect to software baseline is conducted to evaluate the outcome of the hardware

design. At the end of the project, it is identified that the combination of all the three

approaches is able to achieve the highest timing speedup of 22.05 times but at a cost of

hardware resources. On the other point of view, it provides several solutions for designs

with different usage and targets to achieve based on the performance and hardware cost

trade-off.
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ABSTRAK

Algoritma pembetulan warna memainkan peranan yang vital dalam

pemprosesan maklumat warna. Penyelidikan mengenai pelbagai kaedah statistik

dalam algoritma pembetulan warna terus bertambah untuk mendapatkan ketepatan

dan reproduksiti yang lebih tinggi untuk pelbagai penggunaan yang berlainan tujuan.

Antaranya, algoritma Pembetulan Warna Polynomial adalah salah satu aplikasi yang

biasa dalam amalan. Walau bagaimanapun, pengiraan intensif dan ketidakselarasan

melaksanakan algoritma kompleks menggunakan Bahasa Keterangan Perkakasan

mempunyai kesan yang ketara terhadap prestasi masa terutama bagi aplikasi diagnosis

yang mengancam nyawa. Melalui projek ini, pemecut perkakasan telah dicadangkan

untuk meningkatkan prestasi masa sifat berulang-ulang dalam algoritma Polynomial

sambil mengekalkan ketepatannya dengan kemerosotan yang minimum. Tetapi,

sebelum mereka bentuk pemecut perkakasan ini, keperluan untuk menyiasat bahagian

pengiraan intensif algoritma garis dasar sepatutnya dipraktik. Alat Sintesis Aras

Tinggi juga digunakan untuk memaksimumkan penerokaan ruang reka bentuk dan

mengurangkan masa reka bentuk secara berkesan. Kerja yang dicadangkan ini telah

merangkumi beberapa teknik pengoptimuman seperti gelung pembongkaran, pipelining

dan pembahagian susun atur untuk mengeksploitasi paralelisme algoritma pembetulan

warna dengan lebih lanjut. Analisis mengenai latensi, jumlah masa pelaksanaan,

penggunaan sumber, frekuensi operasi maksimum dan ketepatan berkenaan dengan

algoritma garis dasar dijalankan untuk menilai prestasi hasil reka bentuk perkakasan.

Di peringkat akhir projek, ia dikenalpasti bahawa gabungan ketiga-tiga pendekatan

tersebut dapat mencapai pemecutan masa yang paling tinggi sebanyak 22.05 kali tetapi

dengan pengorbanan kos sumber perkakasan. Pada pandangan yang lain, projek ini

telah menyediakan beberapa penyelesaian bagi reka bentuk yang berbeza penggunaan

dan sasaran berdasarkan prestasi dan kos perkakasan yang diingini.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In the recent decades, digital computers and image processing techniques have

been growing tremendously and becoming more and more stable. Digital images

are frequently used in electronic display, transmission and printing compared to the

analogue images [1]. As a result, various pronounced advantages of digital images

have been introduced, which are processing flexibility, transmission reliability, ease

of reproduction, storage and retrieval facility as well as the compatibility with digital

computers and networks [1]. Digital images have transformed from gray-scale to

colours made of red, green and blue (RGB) combination.

Images with desired colour are normally used in biomedical diagnosis, virtual

reality application, computer games, visual quality inspection and others [2]. Factors

like light source conditions, image acquisition device and angle of the image being taken

[3] might cause nonlinear contrast and brightness changes [4] and thus affect the quality

of the image. Unfavourable phenomenon like overexposed or underexposed, cooler or

hotter image colour, shadows and highlights are features to be eliminated during the

image processing stage as they will affect the visual of users and the accuracy of a

diagnosis especially in medical field. Not only this, the colour images produced by

digital cameras are usually device-dependent, where images are captured in a colour

space designated according to the properties of a particular imaging device. Hence,

when the captured images are to be rendered or displayed on other devices, the colour

of the images may differ from the originally captured images [5]. The differences here

is due to the technology limitation on the devices which creates different colour gamut

across the devices and thus limiting the colour to be reproduced by the devices.

In order to acquire the best fit image quality by using the image processing

techniques, various algorithms have been presented by the researchers. Every algorithm
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introduces diverse distinct features as well as the limitations when transforming the

device-dependent colour space to device-independent colour space like the standard

RGB (sRGB) colour space. In this study, the focus is on polynomial colour correction

(PCC), which is commonly used in practice. Linear colour correction (LCC) can

produce desirable colour value approximation to the sRGB format with the linear

changes in scene radiance or exposure. However, it may induce remarkable mapping

errors for some surfaces. In order to reduce this mapping error, PCC is introduced by

adding few simple extensions to the linear approximation [6].

In the recent years, where image size keeps on increasing with the name of

better resolution, there is a need to maintain or minimize the processing time with

those large data sets as well as having low power consumption. Normal Central

Processing Unit (CPU) has reached its bottleneck with the speedup technique of

limited clock scaling. Therefore, Field Programmable Gate Arrays (FPGA), which

is capable to execute tremendous amount of operations in parallel with lower energy

cost, is gaining significant interest among the designers [7]. In addition, FPGA

can be further exploited by implementing heterogeneous system which integrates

both processing unit and hardware accelerator on one board. Using this approach,

intensive computational operations can be executed by the hardware accelerator while

maintaining the complex algorithm in the CPU. But, designing sophisticated application

on FPGA using Hardware Description Language (HDL) requires complex coding.

Thus, High-Lvel Synthesis (HLS) tool can be utilized for a more efficient design-space

exploration and shorter design time as it can directly map the C/C++ algorithm into a

digital circuit and offer various optimization compiler directives [7].

1.2 Problem Statements

A variety of colour correction techniques have been developed by researchers,

either in software or hardware. Often, the new algorithms introduced have improved

accuracy, performance as well as intelligence. However, some gaps are still able to be

observed from the previous work.
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First of all, a compute intensive algorithm can lead to high execution time.

Normally, an algorithm can be considered as compute intensive when it involves

complex operations, large dataset from an image or both happens at the same time.

As mentioned in [8], it is very difficult to realize real-time image processing with the

huge image dataset or the complex operations on a serial processor. Also, from [3],

the high number of iterations set for the algorithm will multiply the execution time.

But, if the iteration number is too low, the result is not accurate. In some cases, the

computation is done pixel by pixel and with the intended number of iterations, hence the

execution time will be boosted significantly. Another unavoidable fact is that resolution

of current images is very high which already achieves around 4 Kilo (K) by 4K of

pixels. Therefore, compute intensive part of an algorithm must be identified before

designing solutions to the problem.

Besides that, it has also been identified that complex algorithm implementation

using HDL results in longer design time and less flexibility, especially when sudden

design change is required. Cacciotti et al. revealed that designing hardware accelerator

for sophisticated applications is not a minor work and complex in terms of HDL coding

[7]. It involves a certain level of hardware and software architecture knowledge in

order to properly integrate and interface the hardware and software algorithms such

as the planning of interface signals, data transmission sequence, control signals and

much more. The accuracy of the design depends heavily on the hardware-software

interaction. Furthermore, [9] has stated that it is easier if instantiating the floating-point

intellectual property (IP) instead of designing from scratch. All these examples have

indirectly shown that hardware implementation in HDL has become very challenging

and complex before designer can further optimize the design for parallelism in hardware.

Hence, by using HLS which is compatible with C / C++ language, designer can explore

the design space more easily, more efficiently and faster without the concern of difficult

conversion of C, C++, Python or other software programming languages to HDL.

1.3 Objectives

The aim of this research is to design hardware accelerator for PCC algorithm.

In order to achieve the target, objectives below are identified:

3



1. To identify compute intensive part in the software colour correction algorithm.

2. To explore the design space of PCC hardware accelerator using Vivado HLS

especially in performance optimization.

3. To analyze performance of hardware accelerator in terms of latency, total

execution time and resource utilization while targeting for minimal degradation

in accuracy.

1.4 Research Scope

In this project, scopes are drafted so that the project is realistic in execution

and completed within the given time frame. Firstly, the PCC software algorithm is

simulated in MATLAB and the output parameters are captured as the reference for

hardware accelerator. Next, the algorithm is implemented and run on Vivado HLS in

C language using different optimization techniques. The output results from hardware

accelerator is then be measured and analyzed in terms of latency, total execution time,

resource utilization and accuracy. Accuracy of the hardware accelerator is compared

with the output from its software code, which is the MATLAB design.

1.5 Chapter Organization

This report consists of five chapters discussing the work done in this project.

Chapter 2 contains the literature review of the previous work on multiple colour

correction algorithms and the hardware implementation or performance enhancement

made on the existing software algorithms. Limitations of the existing techniques as well

as the summary of the possible improvement are included in this chapter too. Chapter

3 subsequently discusses the flow of the project, software algorithm’s operations and

methodology of the proposed hardware implementation with different optimization

techniques. Following that is Chapter 4 which includes the detailed evaluation and

discussion on the results acquired in both software and hardware algorithms according

to the objectives listed. Lastly, a brief conclusion on the project as well as future work

recommendations are presented in Chapter 5.
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