
HARDWARE ACCELERATOR IMPLEMENTATION OF COLOUR

CORRECTION ALGORITHM

LOH SHU TING

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JANUARY 2020



DEDICATION

This project report is dedicated to all the people such as my parents, my other family

members, my friends and whoever that taught me to never give up and always believe

in myself.

iv



ACKNOWLEDGEMENT

I would like to take this opportunity to thank everyone who has helped me

throughout the project execution. First and foremost, I would like to express my sincere

gratitude to my project supervisor, Dr Mohd Shahrizal bin Rusli and the expert, Dr Nur

Diyana Kamarudin for their guidance, useful advice and supporting ideas which they

shared during the execution of this project. I would like to thank my project supervisor

for allocating his valuable time coming all the way up from the South to the North to

discuss the project with me. Also, feeling grateful to my expert advisor for spending

her time to have phone call with me to help resolving my confusion. The invaluable

advice and motivations provided from both of them have greatly contributed to my

project completion.

Secondly, I would like to thank my panel of examiners, Dr Usman Ullah Sheikh

and Dr Ismahani for providing constructive feedback during the project presentation.

Their comments help to enhancemy project to covermore on those unnoticeable details.

Last but no least, I would like to express my wholehearted gratitude to my

parents, family members and friends for their useful advice, encouragement and moral

support throughout this project.

v



ABSTRACT

Colour correction algorithm plays an essential part in processing the colour

information. Researches on various statistical methods in colour correction algorithms

keep growing in order to obtain higher accuracy and reproducibility for the intended

usage. Among those, Polynomial Colour Correction is one of the common

applications in practice. Nevertheless, the intensive computation and inconvenience

of implementing complex algorithm using Hardware Description Language have

significant impact on the timing performance especially for those urgent life-threatening

diagnosis application. Through this project, a hardware accelerator is proposed to

improve the timing performance of the repetitive nature in the Polynomial algorithm

while maintaining its accuracy with a minimal degradation. But before designing the

hardware accelerator, there is a need to investigate on the compute intensive part of the

baseline algorithm. High Level Synthesis tool is used to maximize the design space

exploration and effectively minimize the design time. The proposed work has included

several optimization techniques such as loop unrolling, pipelining and array partitioning

to further exploit the parallelism of the colour correction algorithm. Analysis on latency,

total execution time, resource utilization, maximum operating frequency and accuracy

with respect to software baseline is conducted to evaluate the outcome of the hardware

design. At the end of the project, it is identified that the combination of all the three

approaches is able to achieve the highest timing speedup of 22.05 times but at a cost of

hardware resources. On the other point of view, it provides several solutions for designs

with different usage and targets to achieve based on the performance and hardware cost

trade-off.

vii



ABSTRAK

Algoritma pembetulan warna memainkan peranan yang vital dalam

pemprosesan maklumat warna. Penyelidikan mengenai pelbagai kaedah statistik

dalam algoritma pembetulan warna terus bertambah untuk mendapatkan ketepatan

dan reproduksiti yang lebih tinggi untuk pelbagai penggunaan yang berlainan tujuan.

Antaranya, algoritma Pembetulan Warna Polynomial adalah salah satu aplikasi yang

biasa dalam amalan. Walau bagaimanapun, pengiraan intensif dan ketidakselarasan

melaksanakan algoritma kompleks menggunakan Bahasa Keterangan Perkakasan

mempunyai kesan yang ketara terhadap prestasi masa terutama bagi aplikasi diagnosis

yang mengancam nyawa. Melalui projek ini, pemecut perkakasan telah dicadangkan

untuk meningkatkan prestasi masa sifat berulang-ulang dalam algoritma Polynomial

sambil mengekalkan ketepatannya dengan kemerosotan yang minimum. Tetapi,

sebelum mereka bentuk pemecut perkakasan ini, keperluan untuk menyiasat bahagian

pengiraan intensif algoritma garis dasar sepatutnya dipraktik. Alat Sintesis Aras

Tinggi juga digunakan untuk memaksimumkan penerokaan ruang reka bentuk dan

mengurangkan masa reka bentuk secara berkesan. Kerja yang dicadangkan ini telah

merangkumi beberapa teknik pengoptimuman seperti gelung pembongkaran, pipelining

dan pembahagian susun atur untuk mengeksploitasi paralelisme algoritma pembetulan

warna dengan lebih lanjut. Analisis mengenai latensi, jumlah masa pelaksanaan,

penggunaan sumber, frekuensi operasi maksimum dan ketepatan berkenaan dengan

algoritma garis dasar dijalankan untuk menilai prestasi hasil reka bentuk perkakasan.

Di peringkat akhir projek, ia dikenalpasti bahawa gabungan ketiga-tiga pendekatan

tersebut dapat mencapai pemecutan masa yang paling tinggi sebanyak 22.05 kali tetapi

dengan pengorbanan kos sumber perkakasan. Pada pandangan yang lain, projek ini

telah menyediakan beberapa penyelesaian bagi reka bentuk yang berbeza penggunaan

dan sasaran berdasarkan prestasi dan kos perkakasan yang diingini.

viii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF APPENDICES ix
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xv
LIST OF APPENDICES xvii

CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1

1.2 Problem Statements 2

1.3 Objectives 3

1.4 Research Scope 4

1.5 Chapter Organization 4

CHAPTER 2 LITERATURE REVIEW 5
2.1 Introduction 5

2.2 Trend of Colour Correction Algorithms 6

2.3 Polynomial Colour Correction Algorithm 9

2.4 Trend of Hardware Acceleration Techniques in

Colour Correction Algorithms 10

2.5 Register-Transfer Level (RTL) Design Optimiza-

tion Techniques 12

2.5.1 Loop Unrolling 12

2.5.2 Pipelining 15

2.5.3 Array Partitioning 15

ix



2.6 Chapter Summary 17

CHAPTER 3 RESEARCHMETHODOLOGY 19
3.1 Project Flow 19

3.2 Development Tool 21

3.3 Software Algorithm: Flow and Operations 22

3.4 Hardware Accelerator: Proposed Work 25

3.4.1 Loop Unrolling Approach 28

3.4.2 Pipelining Approach 28

3.4.3 Array Partitioning Approach 30

3.5 Testbench Development of Hardware Accelerator 31

3.6 Chapter Summary 32

CHAPTER 4 RESULTS AND DISCUSSION 33
4.1 Evaluation Setup 33

4.2 Software Algorithm Results and Evaluation 34

4.3 Hardware Implementation Results and Evalua-

tion 37

4.3.1 Loop Unrolling Results 37

4.3.2 Pipelining Results 41

4.3.3 Array Partitioning Results 45

4.3.4 Summary of Hardware Optimization

Results 47

4.4 Results for C / RTL Co-simulation 49

4.5 Comparison between Software and Hardware

Results 50

4.6 Chapter Summary 52

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS FOR
FUTUREWORK 53
5.1 Conclusion 53

5.2 Recommendations for Future Work 54

REFERENCES 55

x



AppendicesA -B 59 - 61

xi



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Example of loop execution (rolled). 13

Table 2.2 Example of loop execution (unrolled with factor of 2). 14

Table 2.3 Example of loop execution (fully unrolled). 14

Table 2.4 Example of loop execution (Non-pipelined). 15

Table 2.5 Example of loop execution (Pipelined). 15

Table 2.6 Summary of hardware acceleration techniques. 17

Table 3.1 Unrolling configurations for different loops with different

factors. 28

Table 3.2 Pipelining configurations with different unrolling methods. 29

Table 4.1 Time taken by each operation state in software algorithm. 36

Table 4.2 Performance estimation for different configurations of loop

unrolling compared with serial processing. 39

Table 4.3 Performance estimation for different configurations of

pipeline with loop unrolling compared with serial

processing. 42

Table 4.4 Performance estimation for different configurations of array

partitioningwith pipeline and loop unrolling comparedwith

serial processing. 45

Table 4.5 Timing performance comparison of software code with

serial hardware design. 51

xii



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Example of coding with loop. 13

Figure 2.2 Example of block, cyclic and complete array partitioning. 16

Figure 3.1 Work flow of the project. 19

Figure 3.2 Design flow by using HLS tool. 21

Figure 3.3 Flow chart of the software algorithm. 23

Figure 3.4 Matrix multiplication of input matrix S_I with polynomial

coefficient matrix M to produce output matrix I_out. 24

Figure 3.5 Block diagram of hardware accelerator designed. 25

Figure 3.6 Mathematical operation of matrix multiplication of input

matrix S_I with polynomial coefficient matrixM to produce

output matrix I_out. 26

Figure 3.7 SFG for the mathematical operation of I1_out_intr ,c . 27

Figure 3.8 Possible pipeline stages. 29

Figure 3.9 Original memory orientation of 1 input array. 30

Figure 3.10 Memory orientation of the input array after partitioned by

4. 31

Figure 3.11 Top level block diagram of hardware accelerator designed. 32

Figure 4.1 Original Munsell X-Rite Colour Checker (top), colour-

distorted Munsell X-Rite Colour Checker (middle) and

colour-corrected Munsell X-Rite Colour Checker (bottom). 35

Figure 4.2 Vivado schedule table for serial processing (Part 1). 38

Figure 4.3 Vivado schedule table for serial processing (Part 2). 39

Figure 4.4 Vivado schedule table for unrolling COL by 4 (Part 1). 40

Figure 4.5 Vivado schedule table for unrolling COL by 4 (Part 2). 40

Figure 4.6 Vivado schedule table for pipeline with unrolling COL by

4 (Part 1). 42

Figure 4.7 Vivado schedule table for pipeline with unrolling COL by

4 (Part 2). 43

Figure 4.8 Vivado schedule table for pipeline with unrolling COL by

4 (Part 3). 43

xiii



Figure 4.9 Vivado schedule table for pipeline with unrolling COL by

4 and ROW by 3. 44

Figure 4.10 Vivado schedule table for array partitioning I1, I2 and I3 by

4 with pipeline and unrolling COL by 4. 46

Figure 4.11 Vivado schedule table for array partitioning I1, I2 and I3 by

4 with pipeline and unrolling COL by 4. 47

Figure 4.12 Vivado schedule table for array partitioning I1, I2 and I3

by 4 and I1_out_int, I2_out_int and I3_out_int by 4 with

pipeline and unrolling COL by 4 (Part 1). 47

Figure 4.13 Vivado schedule table for array partitioning I1, I2 and I3

by 4 and I1_out_int, I2_out_int and I3_out_int by 4 with

pipeline and unrolling COL by 4 (Part 2). 48

Figure 4.14 Block diagram of the approach of unroll ROW by 3 and

COL by 4 together with pipelining, partitioning input by 4

and output by 4. 49

Figure 4.15 First few output values from plane 1, 2 and 3 of the software

code indicated by R1, R2 and R3. 50

Figure 4.16 Output waveform of I1_out_int, I2_out_int and

I3_out_int indicated by agg_result_I1_out_int_d0[15:0],

agg_result_I2_out_int_d0[15:0] and

agg_result_I3_out_int_d0[15:0]. 50

Figure 4.17 Output image of PCC second order hardware accelerator. 51

xiv



LIST OF ABBREVIATIONS

3D - 3-Dimensional

CPU - Central Processing Unit

CUDA - Compute Unified Device Architecture

DMA - Direct Memory Access

DUT - Device Under Test

FF - Flip-flops

FPGA - Field Programmable Gate Arrays

fps - frames per second

G - Giga

GPU - General Processing Unit

GW - Gray World

HDL - Hardware Description Language

HDR - High Dynamic Range

HLS - High-Level Synthesis

Hz - Hertz

IP - Intellectual Property

K - Kilo

LCC - Linear Colour Correction

LUT - Look-up Table

M - Mega

m - milli

MAE - Mean Absolute Error

MSGW - Multi-Scale Gray World

MSR - Multi Scale Retinex

MSRCR - Multi Scale Retinex with Colour Restoration

MSRCR+AL - MSRCR with Autolevels

n - nano

xv



NCD - Normalized Colour Difference

PCC - Polynomial Colour Correction

pgLUT - Polynomial Regression with Modified Gamma LUT

PSNR - Peak Signal to Noise Ratio

RAM - Random Access Memory

RGB - Red, Green, Blue

RTL - register-Transfer Level

s - seconds

SFG - Signal Flow Graph

sRGB - standard Red, Green, Blue

SSIM - Structural Similarity Index

SSR - Single Scale Retinex

xvi



LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Code for converting image to text file in MATLAB 59

Appendix B Code for converting text file to image in MATLAB 61

xvii



CHAPTER 1

INTRODUCTION

1.1 Research Background

In the recent decades, digital computers and image processing techniques have

been growing tremendously and becoming more and more stable. Digital images

are frequently used in electronic display, transmission and printing compared to the

analogue images [1]. As a result, various pronounced advantages of digital images

have been introduced, which are processing flexibility, transmission reliability, ease

of reproduction, storage and retrieval facility as well as the compatibility with digital

computers and networks [1]. Digital images have transformed from gray-scale to

colours made of red, green and blue (RGB) combination.

Images with desired colour are normally used in biomedical diagnosis, virtual

reality application, computer games, visual quality inspection and others [2]. Factors

like light source conditions, image acquisition device and angle of the image being taken

[3] might cause nonlinear contrast and brightness changes [4] and thus affect the quality

of the image. Unfavourable phenomenon like overexposed or underexposed, cooler or

hotter image colour, shadows and highlights are features to be eliminated during the

image processing stage as they will affect the visual of users and the accuracy of a

diagnosis especially in medical field. Not only this, the colour images produced by

digital cameras are usually device-dependent, where images are captured in a colour

space designated according to the properties of a particular imaging device. Hence,

when the captured images are to be rendered or displayed on other devices, the colour

of the images may differ from the originally captured images [5]. The differences here

is due to the technology limitation on the devices which creates different colour gamut

across the devices and thus limiting the colour to be reproduced by the devices.

In order to acquire the best fit image quality by using the image processing

techniques, various algorithms have been presented by the researchers. Every algorithm

1



introduces diverse distinct features as well as the limitations when transforming the

device-dependent colour space to device-independent colour space like the standard

RGB (sRGB) colour space. In this study, the focus is on polynomial colour correction

(PCC), which is commonly used in practice. Linear colour correction (LCC) can

produce desirable colour value approximation to the sRGB format with the linear

changes in scene radiance or exposure. However, it may induce remarkable mapping

errors for some surfaces. In order to reduce this mapping error, PCC is introduced by

adding few simple extensions to the linear approximation [6].

In the recent years, where image size keeps on increasing with the name of

better resolution, there is a need to maintain or minimize the processing time with

those large data sets as well as having low power consumption. Normal Central

Processing Unit (CPU) has reached its bottleneck with the speedup technique of

limited clock scaling. Therefore, Field Programmable Gate Arrays (FPGA), which

is capable to execute tremendous amount of operations in parallel with lower energy

cost, is gaining significant interest among the designers [7]. In addition, FPGA

can be further exploited by implementing heterogeneous system which integrates

both processing unit and hardware accelerator on one board. Using this approach,

intensive computational operations can be executed by the hardware accelerator while

maintaining the complex algorithm in the CPU. But, designing sophisticated application

on FPGA using Hardware Description Language (HDL) requires complex coding.

Thus, High-Lvel Synthesis (HLS) tool can be utilized for a more efficient design-space

exploration and shorter design time as it can directly map the C/C++ algorithm into a

digital circuit and offer various optimization compiler directives [7].

1.2 Problem Statements

A variety of colour correction techniques have been developed by researchers,

either in software or hardware. Often, the new algorithms introduced have improved

accuracy, performance as well as intelligence. However, some gaps are still able to be

observed from the previous work.

2



First of all, a compute intensive algorithm can lead to high execution time.

Normally, an algorithm can be considered as compute intensive when it involves

complex operations, large dataset from an image or both happens at the same time.

As mentioned in [8], it is very difficult to realize real-time image processing with the

huge image dataset or the complex operations on a serial processor. Also, from [3],

the high number of iterations set for the algorithm will multiply the execution time.

But, if the iteration number is too low, the result is not accurate. In some cases, the

computation is done pixel by pixel and with the intended number of iterations, hence the

execution time will be boosted significantly. Another unavoidable fact is that resolution

of current images is very high which already achieves around 4 Kilo (K) by 4K of

pixels. Therefore, compute intensive part of an algorithm must be identified before

designing solutions to the problem.

Besides that, it has also been identified that complex algorithm implementation

using HDL results in longer design time and less flexibility, especially when sudden

design change is required. Cacciotti et al. revealed that designing hardware accelerator

for sophisticated applications is not a minor work and complex in terms of HDL coding

[7]. It involves a certain level of hardware and software architecture knowledge in

order to properly integrate and interface the hardware and software algorithms such

as the planning of interface signals, data transmission sequence, control signals and

much more. The accuracy of the design depends heavily on the hardware-software

interaction. Furthermore, [9] has stated that it is easier if instantiating the floating-point

intellectual property (IP) instead of designing from scratch. All these examples have

indirectly shown that hardware implementation in HDL has become very challenging

and complex before designer can further optimize the design for parallelism in hardware.

Hence, by using HLS which is compatible with C / C++ language, designer can explore

the design space more easily, more efficiently and faster without the concern of difficult

conversion of C, C++, Python or other software programming languages to HDL.

1.3 Objectives

The aim of this research is to design hardware accelerator for PCC algorithm.

In order to achieve the target, objectives below are identified:

3



1. To identify compute intensive part in the software colour correction algorithm.

2. To explore the design space of PCC hardware accelerator using Vivado HLS

especially in performance optimization.

3. To analyze performance of hardware accelerator in terms of latency, total

execution time and resource utilization while targeting for minimal degradation

in accuracy.

1.4 Research Scope

In this project, scopes are drafted so that the project is realistic in execution

and completed within the given time frame. Firstly, the PCC software algorithm is

simulated in MATLAB and the output parameters are captured as the reference for

hardware accelerator. Next, the algorithm is implemented and run on Vivado HLS in

C language using different optimization techniques. The output results from hardware

accelerator is then be measured and analyzed in terms of latency, total execution time,

resource utilization and accuracy. Accuracy of the hardware accelerator is compared

with the output from its software code, which is the MATLAB design.

1.5 Chapter Organization

This report consists of five chapters discussing the work done in this project.

Chapter 2 contains the literature review of the previous work on multiple colour

correction algorithms and the hardware implementation or performance enhancement

made on the existing software algorithms. Limitations of the existing techniques as well

as the summary of the possible improvement are included in this chapter too. Chapter

3 subsequently discusses the flow of the project, software algorithm’s operations and

methodology of the proposed hardware implementation with different optimization

techniques. Following that is Chapter 4 which includes the detailed evaluation and

discussion on the results acquired in both software and hardware algorithms according

to the objectives listed. Lastly, a brief conclusion on the project as well as future work

recommendations are presented in Chapter 5.

4



REFERENCES

1. Hong, G., Luo, M. R. and Rhodes, P. A. A study of digital camera colorimetric

characterization based on polynomial modeling. Color Research Application,

2000. 26(1): 76–84. doi:10.1002/1520-6378(200102)26:1<76::aid-col8>3.0.

co;2-3.

2. Zemcik, P. Hardware Acceleration of Graphics and Imaging Algorithms Using

FPGAs. Proceedings of the 18th spring conference on Computer graphics -

SCCG 02, 2002. doi:10.1145/584458.584463.

3. Chen, R., Xie, J.-W. and Li, C.-H. Research on color correction algorithm

for mobile-end tongue images. 2017 International Symposium on Intelligent

Signal Processing and Communication Systems (ISPACS), 2017. doi:10.1109/

ispacs.2017.8266584.

4. Obukhova, N., Motyko, A. and Pozdeev, A. Modern methods and algorithms

in digital processing of endoscopic images. 2017 21st Conference of Open

Innovations Association (FRUCT), 2017. doi:10.23919/fruct.2017.8250191.

5. Wang, X. and Zhang, D. An Optimized Tongue Image Color Correction

Scheme. IEEE Transactions on Information Technology in Biomedicine, 2010.

14(6): 1355–1364. doi:10.1109/titb.2010.2076378.

6. Graham D. Finlayson, M. M. and Hurlbert, A. Colour Correction using Root-

Polynomial Regression. IEEE Transactions on Image Processing, 2015. 24(5):

1460–1470. doi:10.1109/tip.2015.2405336.

7. Cacciotti, M., Camus, V., Schlachter, J., Pezzotta, A. and Enz, C. Hardware

Acceleration of HDR-Image Tone Mapping on an FPGA-CPU Platform

Through High-Level Synthesis. 2018 31st IEEE International System-on-Chip

Conference (SOCC), 2018. doi:10.1109/socc.2018.8618490.

8. Tsiktsiris, D., Ziouzios, D. and Dasygenis, M. A High-Level Synthesis

Implementation and Evaluation of an Image Processing Accelerator.

Technologies, 2018. 7(1): 4. doi:10.3390/technologies7010004.

55



9. Li, S.-A., Chen, C.-Y. and Chen, C.-H. Design of a shift-and-add based

hardware accelerator for color space conversion. Journal of Real-Time Image

Processing, 2013. 10(2): 193–206. doi:10.1007/s11554-013-0324-7.

10. Badano, A., Revie, C., Casertano, A., Cheng, W.-C., Green, P., Kimpe, T.,

Krupinski, E., Sisson, C., SkrÃžvseth, S., Treanor, D. and et al. Consistency

and Standardization of Color inMedical Imaging: a Consensus Report. Journal

of Digital Imaging, 2014. 28(1): 41–52. doi:10.1007/s10278-014-9721-0.

11. Lin, J., Liao, Y. and Tai, S. Color Correctionwith Zone System for Color Image.

International Journal ofDigital Content Technology and its Applications, 2012.

6(10): 257â265. doi:10.4156/jdcta.vol6.issue10.30.

12. Buchsbaum, G. A spatial processormodel for object colour perception. Journal

of the Franklin Institute, 1980. 310(1): 1â26. doi:10.1016/0016-0032(80)

90058-7.

13. Kwok, N., Wang, D., Jia, X., Che, n. S., Fang, G. and Ha, Q. Gray world based

color correction and intensity preservation for image enhancement. 2011 4th

International Congress on Image and Signal Processing, 2011. doi:10.1109/

cisp.2011.6100336.

14. Kyung, W.-J., Kim, D.-C., Ha, H.-G. and Ha, Y.-H. Color enhancement for

faded images based on multi-scale gray world algorithm. 2012 IEEE 16th

International Symposium on Consumer Electronics, 2012. doi:10.1109/isce.

2012.6241722.

15. H., L. E. Recent advances in retinex theory and some implications for cortical

computations: color vision and the natural image. Proceedings of the National

Academy of Sciences, 1983. 80(16): 5163â5169. doi:10.1073/pnas.80.16.5163.

16. Jobson, D., Rahman, Z. and Woodell, G. Properties and performance of a

center/surround retinex. IEEE Transactions on Image Processing, 1997. 6(3):

451â462. doi:10.1109/83.557356.

17. Jobson, D., Rahman, Z. and Woodell, G. A multiscale retinex for bridging

the gap between color images and the human observation of scenes. IEEE

Transactions on Image Processing, 1997. 6(7): 965â976. doi:10.1109/83.

597272.

56



18. Yu, X., Luo, X., Lyu, G. and Luo, S. A novel Retinex based enhancement

algorithm considering noise. 2017 IEEE/ACIS 16th International Conference

on Computer and Information Science (ICIS), 2017. doi:10.1109/icis.2017.

7960073.

19. Bo, J., Woodell, G. A. and Jobson, D. J. Novel multi-scale retinex with

color restoration on graphics processing unit. Journal of Real-Time Image

Processing, 2014. 10(2): 239â253. doi:10.1007/s11554-014-0399-9.

20. Yamakabe, R., Monno, Y., Tanaka, M. and Okutomi, M. Tunable Color

Correction Between Linear And Polynomial Models For Noisy Images. 2017

IEEE International Conference on Image Processing (ICIP), 2017. doi:10.

1109/icip.2017.8296858.

21. Kamarudin, N. D., Rusli, M. S., Ooi, C. Y., Mansoor, S. B. R. S., Azahari,

A. M., Zainol, Z., Ghani, K. A. and Makhtar, S. N. Performance Comparison

of Colour Correction and Colour Grading Algorithm for Medical Imaging

Applications. International Journal of Engineering Technology, 2018. 7:

353â356. doi:doi={10.14419/ijet.v7i4.33.26065}.

22. Ponomaryov, V., Montenegro, H., Rosales, A. and Duchen, G. Fuzzy 3D

filter for color video sequences contaminated by impulsive noise. Journal

of Real-Time Image Processing, 2012. 10(2): 313â328. doi:10.1007/

s11554-012-0262-9.

23. Aster, R. C., Borchers, B. and Thurber, C. H. Parameter Estimation and Inverse

Problems 2nd ed. Elsevier Inc. 2013.

24. Fang, F., Gong, H., Mackiewicz, M. and Finlayson, G. Colour Correction

Toolbox. Proceedings of 13th AIC Congress, 2017: 13â–18.

25. Bayramoglu, G. and D’Souza, H. M. Hardware-based Accelerated Color

Correction Filtering System, 2006.

26. Janosek, L. and Nemec, M. Fast Polynomial Approximation Acceleration on

the GPU. The Sixth International Conference on Digital Society (ICDS), 2012:

69–72.

27. Hani, M. K. Design of Digital Systems II: RTL System Verilog and High-Level

Synthesis. 2019.

57



28. Ryan, M. V. FPGA Hardware Accelerators - Case Study on Design

Methodologies and Trade-Offs. Thesis. Rochester Institute of Technology.

2013.

29. Increasing Local Memory Bandwidth. Available: https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_

doc/topics/calling-coding-guidelines/concept_increasing_

local_memory_bandwidth.html. [Accessed: 12-12-2019].

30. Chen, Z. Hardware Accelerator of Matrix Multiplication on FPGAs. Theses.

UPPSALA UNIVERSITET. 2018.

31. Using Colorcheck. Available: http://www.imatest.com/docs/

colorcheck/. [Accessed: 10-04-2019].

58

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
http://www.imatest.com/docs/colorcheck/
http://www.imatest.com/docs/colorcheck/

	COVER PAGE
	PSZ FORM
	SUPERVISOR(S) DECLARATION
	TITLE PAGE
	 DECLARATION
	 DEDICATION
	 ACKNOWLEDGEMENT
	 ABSTRACT
	 ABSTRAK
	 TABLE OF CONTENTS
	 LIST OF APPENDICES
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ABBREVIATIONS
	 LIST OF APPENDICES
	Introduction
	Research Background
	Problem Statements
	Objectives
	Research Scope
	Chapter Organization

	Literature Review
	Introduction
	Trend of Colour Correction Algorithms
	Polynomial Colour Correction Algorithm
	Trend of Hardware Acceleration Techniques in Colour Correction Algorithms
	Register-Transfer Level (RTL) Design Optimization Techniques
	Loop Unrolling
	Pipelining
	Array Partitioning

	Chapter Summary

	Research Methodology
	Project Flow
	Development Tool
	Software Algorithm: Flow and Operations
	Hardware Accelerator: Proposed Work
	Loop Unrolling Approach
	Pipelining Approach
	Array Partitioning Approach

	Testbench Development of Hardware Accelerator
	Chapter Summary

	Results and Discussion
	Evaluation Setup
	Software Algorithm Results and Evaluation
	Hardware Implementation Results and Evaluation
	Loop Unrolling Results
	Pipelining Results
	Array Partitioning Results
	Summary of Hardware Optimization Results

	Results for C / RTL Co-simulation
	Comparison between Software and Hardware Results
	Chapter Summary

	Conclusion and Recommendations for future work
	Conclusion
	Recommendations for Future Work

	REFERENCES



