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ABSTRACT 

Artificial Neural Network (ANN) in Mixed-Integer Linear Programming 

(MILP) technique for load scheduling of appliances in a single smart home system. 

This proposed method is achieved through backpropagation method of ANN tools in 

MATLAB which is the central mechanism by which neural networks learn to predict 

the next day load consumption of a home and promptly inserting the output to the 

MILP which would optimize the process of load scheduling. The integration of ANN 

with MILP can contribute to the precision of load scheduling. Having said that, to 

obtain the day ahead energy consumption, the annual data of the home is extract and 

injected in ANN as input and target classes. Hence, with the process of 

backpropagation, energy consumption is predicted while taking into consideration the 

Mean Squared Error (MSE) of the model. This prediction is then incorporated in the 

programming of MILP for optimization of load scheduling. The performance of the 

model is then evaluated by comparing before and after the optimization process. A 

total load of the appliance has been reduced from 51.24 kW/day to 44.84 kW/day. 

Furthermore, the overall cost of the electricity bill has been reduced from $3.98/day to 

$2.45/day. Therefore, the deduction of 38.44% of electricity bills makes the proposed 

method notably applicable and best to use in real time situation 
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ABSTRAK 

Kajian ini mencadangkan penggunaan ramalan beban menggunakan 

Rangkaian Neural Buatan (ANN) dalam teknik Pemodelan Bersama-Integer Linear 

(MILP) untuk penjadualan beban peralatan dalam sistem rumah pintar tunggal. 

Kaedah yang dicadangkan ini dicapai melalui kaedah “backpropagation” alat ANN 

di MATLAB yang merupakan mekanisme utama yang mana rangkaian saraf belajar 

untuk meramalkan penggunaan beban keesokan hari sesebuah rumah dan 

memasukkan input ke MILP yang akan mengoptimumkan proses penjadualan beban. 

Kelebihan utama kaedah penyepaduan ini adalah ketepatan penjadualan profil beban 

dan tahap kesukaran untuk memahami yang jauh lebih mudah berbanding dengan 

algoritma lain. Untuk mendapatkan penggunaan tenaga pada keesokkan harinya, data 

tahunan rumah adalah ekstrak dan disuntik dalam ANN sebagai kelas input dan 

sasaran. Oleh itu, dengan proses “backpropagation”, penggunaan tenaga diramalkan 

semasa mengambil kira Regraman Mean Squared (MSE) model. Ramalan ini 

kemudiannya dimasukkan dalam pengaturcaraan MILP untuk mengoptimumkan 

penjadualan beban. Prestasi model kemudiannya dinilai dengan membandingkan 

sebelum dan selepas proses pengoptimuman. Telah dijumpai bahawa perbandingan 

perbandingan antara sebelum dan selepas penjadualan telah dibincangkan. Kesemua 

beban perkakas telah dikurangkan dari 51.24 kW/hari menjadi 44.84 kW/hari. Selain 

itu, kos keseluruhan bil elektrik telah dikurangkan dari $ 3.98/hari menjadi $ 2.45/hari. 

Oleh itu, potongan 38.44% bil elektrik menjadikan kaedah yang dicadangkan untuk 

dipakai dan sesuai untuk digunakan dalam keadaan sebenar 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

The electric utilities play an important role in increasing its generation and 

transmission capabilities, to successfully achieve this demand, a lot of other parties 

should hand in hand aid and contribute with new technologies and better dogmas or 

policies [4]. The smart home system is later envisioned to ominously help with this 

demand response as it includes more distributed renewable sources with the usage of 

smart appliances [12]. 

Smart homes, or home automation began to increase in popularity in the early 

2000s. Smart home in general is a home that contains a communication network that 

connects with appliances and also being controlled remotely by a smartphone or 

computer. Not only smart homes make life easier and convenient, but it would save 

energy and money too. 

The sole problem of today’s power generation and distribution system is the 

surge in energy demand during peak hours in residential area. The impact of higher 

peak load in a single home would increase higher generation of electricity on the 

supplier side. Hence, would increase the electricity bills. Companies around the world 

are forced to put in additional generating units to achieve this peak demand [12]. The 

rising of renewable energy into the system as surplus or additional energy also 

however would introduce mix generation hence making the system more complex and 

most importantly costly. 

Therefore, smart home system is a necessary component of the smart power 

grid, which permits and allow active participation from residential end users in 

reducing this peak demand or levelling the load accordingly to reduce usage of 
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appliance during peak hours. The changes from generation-follows-load to load-

follows-generation has somewhat shaped a new improved dimension in the 

relationship of the utility and customer in the energy industry. 

By scheduling the appliances of the smart home, the operation of these 

appliances can be shifted to off-peak hours and spread over a longer period of time 

that would in turn reduce the excessive energy consumed.  Not only that, electricity 

bills would be reduced which would benefit the customer in return. Also, the user’s 

preferences should also be considered when applying this appliances scheduling. Thus, 

optimizing this scheduling of appliances should greatly minimize the peak demand and 

electricity bills. 

This thesis presents the method of day-ahead prediction of energy consumption 

of a smart home through Artificial Neural Network (ANN). A demand forecast of a 24 

hours a day for various types of appliances would be generated through MATLAB by 

using yearly data from previous year of a smart home. This data would be injected in 

the system and undergo a training process through backpropagation method after going 

through data normalization. Normalizing the data would perfected the values with 

range between 0 and 1 that could increase the chances of correct predictions. The 

system then forecast the consumption of energy of a smart home for the next day and 

calculate the Mean Squared Error (MSE) of the system. 

  

Hence, optimizing the usage of appliances would significantly impact the 

efficiency of a smart home [4]. It is presumed that by having a prediction of the energy 

demand of a smart home, consumers could understand energy saving better and 

contribute to a healthier and improved production and generation of energy. A large 

number of research have been made regarding optimal scheduling with various kind 

of methods hoping to advance and optimize scheduling of smart appliances. More 

studies are expected to be made in future in helping achieving the goal to reduce this 

high demand of electricity all around the world. Load scheduling for smart home could 

be one of the best ways to do so. 
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1.2 Problem Statements 

Previous research has shown that load scheduling is one of the form of load 

management to brutally save energy and reduce electricity bills by minimizing 

demand. However, problem arise when it is not scheduled at optimum. Issues are such 

as:- 

a) Prediction is based on estimation. Energy consumption of appliances in load 

profile are only estimated which has a possible high percentage of error making the 

load scheduling less accurate. 

b) Insufficient data. While load scheduling is based on the data taken from house 

appliance of a single home, conventional way collects appliances that runs or turned 

on in the single smart home. This disrupts the efficiency of load scheduling. 

c) Inconsistency of load consumption. Based on manual scheduling, load 

consumption data of these appliances is inconsistent. The time of the day of the year 

and the season of the month were not taken into consideration. Eventually reduces the 

precision of load scheduling. 

 

Artificial Neural Network is then proposed for day-ahead prediction of energy 

consumption of appliances prior to load scheduling for a better and optimum output. 

Data input in ANN considers the time of the day, season and the weather [15]. Hence, 

using forecasting method in ANN can guarantee the optimization of load scheduling.  

1.3 Research Objectives 

In regards to the problem statement mentioned earlier, four objectives are being 

brought forward to solve these problems. Stated below are this project’s objectives:- 

 

a) To analyse a yearly data of energy consumption of a smart home and study the 

load profile of each appliances. 

b) To predict the next day energy consumption from a 1 year 1 hour resolution 

data of a single smart home in 2014 using Artificial Neural Network (ANN). 
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c) To assess the effectiveness and the accuracy of the prediction used for load 

scheduling through number of hidden layer size and number of trials.  

d) To optimize load scheduling of the smart home using Mixed Integer Linear 

Programming (MILP) to reduce peak demand and electricity bill. 

1.4 Significance of the Research 

Such study is important to the society and people living in Malaysia to bring 

awareness in the benefits of scheduling appliances of their home. Scheduling home 

appliances at optimum predominantly reduce energy consume during peak hours and 

eventually reduced total load consumption and electricity bills. 

1.5 Research Scope 

 

• A yearly dataset of 5 appliances which are space 
heater, air conditioner, personal computer, dishwasher 
and water heater

• Dataset extracted from a single smart home in Little 
Rock, Arkansas, U.S

• The dataset consisting 8,760 data is normalized using 
standard function in Microsoft Excel

To analyse a yearly data of 
energy consumption of a 
smart home and study the 
load profile of each 
appliances

• Load forecast is done through Artificial Neural 
Network (ANN) technique in MATLAB

• Neural Fitting app is chosen for the train function of 
the model

• Prediction is in a form of 24-hour classes

• ANN building inputs consist of 14 attributes with an 
output of 5

To predict the next day 
energy consumption from a 
1 year 1 hour resolution 
data of a single smart home 
in 2014 using Artificial 
Neural Network (ANN)

• Performance of ANN model is studied by the Mean 
Squared Error (MSE)  

• The output of proposed work is compared with 
different hidden layer size and number of trials 

To assess the effectiveness 
and the accuracy of the 
prediction used for load 
scheduling.

• Load scheduling is done using Mixed Integer Linear 
Programming (MILP) in MATLAB 

• Tariff price used is based on the Daily Report of 
Midwest Independent System Operator (MISO) from 
the Federal Energy Regulatory Commission (FERC)

To optimize load 
scheduling of the smart 
home using Mixed Integer 
Linear Programming 
(MILP) to reduce peak 
demand and electricity bill 
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1.6 Thesis Outline 

There are 5 chapters in this report where the first chapter explains the 

introduction in great length containing background of the study, problem statements, 

research objectives, and significance of the research and research scope.  

 

Chapter 2 on the other hand encompasses the few literature reviews related to 

the topic for both ANN and MILP. More detailed clarification and explanation on other 

methods used by other researches on these two fields. This topic also touch on the 

overview of the optimization method, the type of appliances, research gap and also the 

summary.  

 

Following this chapter is where research methodology is enlightened further 

with proper flow. Chapter 3 provides understanding of the flow of methods used based 

on the objectives stated earlier which are the data acquisition of the appliances, the 

process of prediction of load consumption, objective function and constraints of load 

scheduling and the assessment and comparison of both before and after optimization.  

 

Chapter 4 then discussed the results obtained from the work thoroughly that 

contains the forecasted day-ahead load consumption of the 5 appliances through ANN, 

the performance of the ANN prediction model and the comparison of load scheduled 

appliances before and after optimization.  

 

Lastly, Chapter 5 clarifies the conclusion of the research done and the proposed 

recommendation of the work whereas Chapter 6 then covers the project management 

and project schedule of the entire thesis. 
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