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ABSTRACT

The Identification of gas-solid flow characterization in dense-phase pneumatic

conveying particles is very important to a vast area of industrial fields such as chemical

and pharmaceutical industries since a slight change in flow characteristics results in a

completely different product. The motion of the gas-solid two-phase flow in dense-

phase usually has a nonlinear and unsteady nature that needs to be examined and

analysed to identify the particle flow behaviour in the pneumatic conveying pipelines.

In this research a method to identify the type of flow pattern is proposed using a

computational method where a gravity flow rig is modelled on Solidworks and multiple

flow patterns are simulated with different mass flow rates ranging between 200 to 600

g/s. For changing the flow patterns inside the pipe, an Iris Mechanism is designed

according to the specifications of the flow required to achieve the flow pattern control.

A sectioning method is implemented to capture flow images at the plane of interest for

different flow patterns. Afterwards images are fed to a Convolutional Neural Network

which is trained and tested to identify the flow patterns according to several flow features

which resulted in 100% accuracy. A GUI using PyQt is designed to better visualize the

whole system and view the predicted flow pattern.
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ABSTRAK

Pengenalpastian ciri aliran pepejal gas dalam fasa zarah padat pneumatik sangat

penting bagi kawasan industri yang luas seperti industri kimia dan farmaseutikal

kerana sedikit perubahan ciri aliran menghasilkan produk yang sama sekali berbeza.

Pergerakan aliran dua fasa pepejal gas dalam fasa padat biasanya mempunyai sifat

tidak linear dan tidak stabil yang perlu diperiksa dan dianalisis untuk mengenal pasti

tingkah laku aliran zarah dalam saluran penyampaian pneumatik. Dalam penyelidikan

ini kaedah untuk mengenal pasti jenis corak aliran dicadangkan menggunakan kaedah

komputasi di mana rig aliran graviti dimodelkan pada Solidworks dan pelbagai corak

aliran disimulasikan dengan kadar aliran jisim yang berbeza antara 200 hingga 600

g / s. Untuk mengubah corak aliran di dalam paip, Mekanisme Iris dirancang

mengikut spesifikasi aliran yang diperlukan untuk mencapai kawalan pola aliran.

Kaedah pemotongan dilaksanakan untuk menangkap gambar aliran di bahagian yang

dikehendaki untuk corak aliran yang berbeza. Selepas itu gambar disalurkan ke

Rangkaian Neural Konvolusional yang dilatih dan diuji untuk mengenal pasti corak

aliran mengikut beberapa ciri aliran yang menghasilkan ketepatan 100%. GUI yang

menggunakan PyQt dirancang untuk menggambarkan keseluruhan sistem dengan lebih

baik dan melihat corak aliran yang diramalkan.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xv

LIST OF SYMBOLS xvi

LIST OF APPENDICES xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Definition 3

1.3 Project Objectives 4

1.4 Project Scope 4

1.5 Organization of the Report 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Types of Process Tomography 9

2.2.1 Optical Tomography 9

2.2.2 Ultrasonic Tomography 11

2.2.3 Electrical Capacitance Tomography 12

2.2.4 Electrodynamic Tomography 13

2.2.5 Summary of the types of process

tomography 15

2.3 Multi-phase Flow Identification Methods 16

viii



2.4 Computational Simulation 18

2.5 Research Gap 20

CHAPTER 3 RESEARCHMETHODOLOGY 21

3.1 Introduction 21

3.2 The Gravity Flow Rig 22

3.3 Flow motion Control 24

3.4 Computational Fluid Dynamics Process 26

3.4.1 Fluid Problem 27

3.4.2 Boundary and Initial Conditions 28

3.4.3 Generating Mesh 29

3.4.4 Governing Equations 30

3.4.5 Perform the Simulation 32

3.4.6 Post Processing and Cut Plots 32

3.5 Convolutional Neural Network 35

3.5.1 Input layer 36

3.5.2 Convolution Layer 36

3.5.3 Activation layer 38

3.5.4 Pooling Layer 38

3.5.5 Flattening 39

3.5.6 Fully Connected Layer 40

3.6 Chapter Summary 40

CHAPTER 4 RESULTS AND DISCUSSION 41

4.1 Introduction 41

4.2 Computational Fluid Dynamics Results 41

4.3 Concentration Profiles 46

4.3.1 Quarter Flow Concentration Profile 47

4.3.2 Half Flow Concentration Profile 49

4.3.3 Three Quarters Flow Concentration

Profile 51

4.3.4 Full Flow Concentration Profile 53

ix



4.3.5 25 mm Annular Flow Concentration

Profile 55

4.3.6 75 mm Annular Flow Concentration

Profile 57

4.4 Convolutional Neural Network Results 58

4.5 Graphical User Interface 60

CHAPTER 5 CONCLUSION 65

5.1 Conclusion 65

5.2 Future Recommendations

x

 
 

 

65

REFERENCES
 
 
APPENDICES

67
 
 
73



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Summary table for the types of Process Tomography 15

Table 4.1 Convolutional Neural Network Epochs Accuracy Table 59

xi



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Radon Transform Theory 2

Figure 1.2 Sir Godfrey N. Hounsfield with his X-ray Machine 2

Figure 1.3 Dense Phase Flow 3

Figure 1.4 Six types of Flows 5

Figure 2.1 Process Tomography Operation 8

Figure 2.2 16-Channel sensors system illustration 8

Figure 2.3 Optical Tomography 10

Figure 2.4 Ultrasonic Tomography 11

Figure 2.5 Electrical Capacitance Tomography Process 12

Figure 2.6 Electrodynamic Sensor 14

Figure 2.7 Pneumatic Conveying System 16

Figure 2.8 Computational Fluid Dynamics flow stream output 18

Figure 3.1 Research Methodology Flowchart 21

Figure 3.2 Modelled Gravity Rig 22

Figure 3.3 Real Gravity Rig 23

Figure 3.4 First Group of Flow regimes 24

Figure 3.5 Second Group of Flow regimes 25

Figure 3.6 Annular Flow controlled by Iris Mechanism 25

Figure 3.7 Iris Mechanism 3D Model 26

Figure 3.8 CFD Process Flowchart 27

Figure 3.9 Boundary Conditions 29

Figure 3.10 Gravity Rig Mesh Structure 29

Figure 3.11 Partial structured Mesh 33

Figure 3.12 Velocity in the x-axis 33

Figure 3.13 Velocity in x and y axis 34

Figure 3.14 Combined parameters 34

Figure 3.15 Convolutional Neural Network 35

Figure 3.16 RGB Analysis 36

Figure 3.17 Convolution Layer 37

xii



Figure 3.18 Rectified Linear Unit activation function 38

Figure 3.19 Pooling Layer 39

Figure 3.20 Flattening Layer 39

Figure 3.21 Fully Connected Layer 40

Figure 4.1 Quarter Flow Array Plot 42

Figure 4.2 Half Flow Array Plot 42

Figure 4.3 Three Quarter Flow Array Plot 43

Figure 4.4 Full Flow Array Plot 44

Figure 4.5 25mm Annular Flow Array Plot 44

Figure 4.6 75 mm Annular Flow Array Plot 45

Figure 4.7 Concentration Profile Colour Range 46

Figure 4.8 Quarter Flow Concentration Profile at 200 g/s 47

Figure 4.9 Quarter Flow Concentration Profile at 400 g/s 47

Figure 4.10 Quarter Flow Concentration Profile at 600 g/s 48

Figure 4.11 Half Flow Concentration Profile at 200 g/s 49

Figure 4.12 Half Flow Concentration Profile at 400 g/s 49

Figure 4.13 Half Flow Concentration Profile at 600 g/s 50

Figure 4.14 Three Quarters Flow Concentration Profile at 200 g/s 51

Figure 4.15 Three Quarters Flow Concentration Profile at 400 g/s 51

Figure 4.16 Three Quarters Flow Concentration Profile at 600 g/s 52

Figure 4.17 Full Flow Concentration Profile at 200 g/s 53

Figure 4.18 Full Flow Concentration Profile at 400 g/s 53

Figure 4.19 Full Flow Concentration Profile at 600 g/s 54

Figure 4.20 25 mm Annular Flow Concentration Profile at 200 g/s 55

Figure 4.21 25 mm Annular Flow Concentration Profile at 400 g/s 55

Figure 4.22 25 mm Annular Flow Concentration Profile at 600 g/s 56

Figure 4.23 75 mm Annular Flow Concentration Profile at 200 g/s 57

Figure 4.24 75 mm Annular Flow Concentration Profile at 400 g/s 57

Figure 4.25 75 mm Annular Flow Concentration Profile at 600 g/s 58

Figure 4.26 Convolutional Neural Network Epochs Accuracy Plot 59

Figure 4.27 Graphical User Interface 60

Figure 4.28 Prediction of Quarter Flow 61

Figure 4.29 Prediction of Half Flow 62

Figure 4.30 Prediction of Three Quarters Flow 62

xiii



Figure 4.31 Prediction of Full Flow 63

Figure 4.32 Prediction of 25 mm Annular Flow 63

Figure 4.33 Prediction of 75 mm Annular Flow 64

xiv



LIST OF ABBREVIATIONS

UTM - Universiti Teknologi Malaysia

CFD - Computational Fluid Dynamics

NN - Neural Network

ANN - Artificial Neural Network

RNN - Recurrent Neural Network

CNN - Convolutional Neural Network

FFNN - Feed Forward Neural Network

RGB - Red, Blue, and Green

ESA - Electrostatic Sensor Array

2D - Two Dimensional

3D - Three Dimensional

LED - Light Emitting Diode

OFPT - Optical Fiber Process Tomography

ECT - Electrical Capacitance Tomography

ReLU - Rectified Linear Unit

GUI - Graphical User Interface

xv



LIST OF SYMBOLS

\ - Theta

f - Sigma

d - Rho

X - Delta

q - Phi

∇ - Nabla

U - Alpha

g - Tau

` - Mu

_ - Lambda

l - Omega

[ - Eta

Z - Zeta

xvi



APPENDIX TITLE PAGE

Appendix A Convolutional Neural Network Python Code 73

Appendix B GUI PyQt Code 75

xvii

LIST OF APPENDICES



CHAPTER 1

INTRODUCTION

1.1 Background Study

In 1826, a Norwegian mathematician called Niels Henrik Abel introduced a

mathematical formula named after him, which is used in the analysis of spherically or

axially symmetric functions [1]. His theory was implemented in image analysis where

the forward Abel transform equation was used to project an optically thin, axially

symmetrical emission function onto a surface, and the reverse Abel transform equation

was used to measure the emission function centered on a representation of the emission

function, which represents a scan of an image. Abel transform equations are restricted

to systems of axially symmetrical geometries.

In 1914, the world came to know a new imaging method called Tomography,

which was first introduced by the polish radiologist Karol Mayer [2]. His research was

intended to fill in a gap for a new non-invasive medical imaging method. Not long

after this date in 1917, Johann Radon, an Austrian mathematician used both Abel’s

and Mayer’s theories to develop a new formula that works for both symmetrical and

asymmetrical geometries [3]. Radon transform is an integral shift that takes a function

F defined on the plane into a function R(f) defined on the 2D space of the plane lines,

which on the line is equivalent to the integral line of a function on that line as shown in

Figure 1.1 where \ is the angle of the line.
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Figure 1.1 Radon Transform Theory

Following these theories, Sir Godfrey Newbold Hounsfield and Allan M.

Cormack were awarded the Nobel prize in Medicine in 1979 for the invention of a

computer assisted Tomography machine using X-rays [4], as shown in Figure 1.2.

Their machine was used extensively in hospitals and medical imaging centers to help

doctors in their diagnostics and was later developed into multiple other machines such

as Computed tomography and Magnetic Resonance Imaging. The word tomography

was driven from theGreek term "tomos", whichmeans a section or a slice and "graph>",

which refers to a picture. It was later identified as capturing multiple planes section

images showing slices through an object. Every single slice is called a tomogram that

is taken using a device called tomograph [5].

Figure 1.2 Sir Godfrey N. Hounsfield with his X-ray Machine
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Years later, The tomographic methods were extended to industrial processes

to provide more efficient process control and higher production rate. It can be found

in many industries such as pharmaceutical, chemical and food processing industries.

Electrical tomography is one of the most investigated fields in process tomography. It

is non-invasive, cost-effective, safe and easy to implement the technique. Electrical

charge tomography is a system used in particulate imaging flow in pipelines using

electrodynamic sensors (charge-to-voltage transducers). It is a passive transducer

where the flowing solid particles generate the field.

The idea behind process tomography lies beyond a simple concept. An even

number of sensors are fixed around a pipe separated with equal angles to capture

tomograms for the plane of interest. Particles concentration signal data is passed from

the sensor to a computer for analysis and reconstruction of images.

The use of process tomography is not limited to only obtaining a cross-sectional

image of processes. It can also be used to obtain velocity profiles and mass-flows rate

or volume flow rates depending on the sensing mechanism used process tomography

can be used in processes involving solids, liquids, gases and any of their mixtures [6].

1.2 Problem Definition

The motion of the gas-solid two phase flow in dense-phase usually has a

nonlinear and unsteady nature, as shown in Figure 1.3, that needs to be examined and

analysed to identify the particle flow behaviour in the pneumatic conveying pipelines.

Figure 1.3 Dense Phase Flow
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Various researches were done in this field using tomographic sensors such

as Electrostatic Sensor Arrays and other similar techniques. This study focuses on

applying the Computational Fluid Dynamics techniques in a simulation environment

to accurately identify the type of flow using various other parameters.

1.3 Project Objectives

Five objectives were considered in this project which are:

• Design and Simulate the Flow identification experimental setup in the

simulation software.

• Design an Iris Mechanism to control the type of flow pattern.

• Simulate different types of flows with the same environmental parameters.

• Collect the flow pattern images using the Flow simulation tool for different flow

regimes.

• Apply a Convolutional Neural Network (CNN) for flow pattern identification.

1.4 Project Scope

The scope of the project is as follows:

• 6 types of flow shown in Figure 1.4 will be considered in this study which are

fully, three quarters, half, and quarter filled pipelines, as well as 2 Annular flows

with pipe diameters 25 and 75 mm.

• A range of Mass flow rates will be considered starting from 200 to 600 g/s.

• Create a Convolutional Neural Network (CNN) for flow pattern identification.

• Create a Graphical User Interface using PyQt to visualize the results.

4



Figure 1.4 Six types of Flows

1.5 Organization of the Report

This thesis is divided into five sections. The introduction presents the principle

aspects of the project, how they are implemented and their applications, in addition

to defining the problem, objectives and the scope of the project. Literature Review

introduces the most recent developments in the field of interest of the project where

the latest research methods in the identification of multiple phase flow patterns are

introduced. Methodology chapter includes the descriptive explanation of the methods

used in this project in order to achieve the objectives. Results and Discussion section

highlights the results obtained with a comprehensive discussion about the findings. The

last section is the conclusion where the last comments about the project as well as the

future work are presented.
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