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ABSTRACT

Over the years, there are improvements in food accessibility and production.

However, food security is a major concern in which various factors, such as plant

diseases, threaten it. Plant diseases cause significant damage to the crops and

substantially reduce food production. In the past, early detection of plant diseases

is done by experts equipped with academic knowledge background and practical

experience on plant symptoms. This process is complicated and time-consuming when

it comes to the classification task of plant disease with a limited resource of knowledge

and plant experts. Also, the current image analysis has a limitation of localizing and

classifying diseases with almost the same and similar symptoms, such as early blight

and late blight. This will impact the best treatment time for the plant before the disease

spreading out. Hence, the objective of this work is to develop a high accuracy deep

learning model that can classify early blight and late blight disease into low, mild,

and severe levels based on transfer learning with ResNet. The process involves in this

project is collecting leaf images of the diseased and healthy plant from the Plant Village

dataset and classifying them into low, mild, and severe folders. With the dataset ready,

the deep learning model is trained based on the transfer learning with ResNet. The

model’s parameters and training settings will be varied and optimized to enhance the

accuracy of the model. Performance comparison will be made before and after the

optimization. Based on the results, the best accuracy that has been archived by plant

disease severity level classification system is 80.01%. Also, the recall rate achived by

the system for low, mild and severe are 89.55%, 100%, and 76.32% respectively. This

project will ease the process of classifying the severity level of the plant disease, which

reduces the damage on the crops due to the early detection of the diseases.
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ABSTRAK

Setelah sekian tahun, terdapat peningkatan dalam pemprosesan dan pengeluaran

makanan. Namun begitu, keselamatan adalah suatu kebimbangan di mana pelbagai

faktor seperti penyakit tumbuhan menjadi ancamannya. Penyakit tumbuhan telah

merosakkan tumbuhan dan secara langsungnya mengurangkan pengeluaran makanan.

Terdahulu, proses pengesanan penyakit tumbuhan adalah dilakukan oleh pakar yang

mempunyai latar belakang pengetahuan akademik dan pengalaman praktikal terhadap

gejala tumbuhan. Proses ini amat rumit dan akan mengambil masa yang panjang

terutamanya dengan kekurangan sumber pengetahuan dan bilangan pakar tumbuhan.

Selain itu, analisa imej semasa amat terhad untuk proses penentuan kawasan dan

mengklasifikasikan penyakit yang mempunyai simptom yang hampir sama dan serupa

seperti "early blight" dan "late blight". Ini akan memberi impak yang besar kepada

tumbuhan jika rawatan segera tidak diberikan sebelum penyakit tersebar ke bahagian

tumbuhan yang lain. Oleh itu, objektif projek ini adalah untukmenghasilkan satumodel

pembelajaran mendalam berkejituan tinggi yang boleh mengklasifikasikan penyakit

"early blight" dan "late blight" kepada tahap penyakit rendah, sederhana, dan teruk

berpandukan konsep pemnidahan pembelajaran dengan model ResNet-50. Proses yang

terlibat dalam projek ini adalah mengumpulkan imej daun tanaman berpenyakit dan

sihat daripada set data "Plant Village" dan mengklasifikasikannya ke tahap penyakit

rendah, sederhana dan teruk. Dengan set data tersebut, sebuah model pembelajaran

mendalam akan dilatih berdasarkan pemindahan pembelajaran daripada ResNet-50.

Parameter model dan tetapan proses latihan akan diubah-ubah dan dioptimumkan untuk

meningkatkan kejituan model. Perbandingan prestasi akan dibuat sebelum dan selepas

pengoptimuman. Berdasarkan keputusan, kejituan terbaik yang dicapai oleh sistem

klasifikasi tahap keterukan penyakit tumbuhan ini adalah sebanyak 80.01%. Bukan itu

sahaja, kadar penarikan semula yang dicapai oleh sistem tersebut untuk tahap penyakit

rendah, sederhana, dan teruk adalah sebanyak 89.55%, 100%, and 76.32%. Projek

ini akan memudahkan proses mengklasifikasikan tahap keterukan penyakit tumbuhan

yang dapat mengurangkan kerosakan pada tanaman akibat pengesanan awal penyakit.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

Over the years, the advancement in technologies improves food accessibility

and also food production in order to meet the food demand of more than 7 billion

people[6]. However, food security remains a significant concern in which the plant

diseases are among the threat. This is because plant diseases can cause considerable

damages to the crops, resulting in decreasing food production[7]. On top of that,

plant disease affects not only at the global scale, but also to the small-holder farmers

in which their livelihoods depend heavily on the healthy crops. Studies shown that

more than 80 percent of the agricultural production in the developing world actually

comes from smallholder farmers, and it is reported that more than half of the yield

loss is primarily due to pests and diseases. Early blight and late blight are common

plant diseases that attack tomato and potato plants[8]. These two diseases attack the

plants by slowly affecting the leaves, stems and finally the fruits. The attacked plants

are not able to produce good yield. Therefore, it is crucial to protect the plants from

diseases such as early and late blight to ensure the quality and quantity of the crops.

Identifying the disease correctly when it first appears is an important step in efficient

disease management.

1.2 Statement of the Problem

In the past, early plant disease detection is done by experts with strong academic

knowledge and experience of disease symptoms. Moreover, continually monitoring the

plants is needed to avoid spreading the disease to other plants[9]. The detection and

monitoring process is complicated and time-consuming due to the limited amount of

plant experts, and the justification would likely be error-prone and ineffective. Thus, it

is crucial to make the process of plant disease detection and classification automated.
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There are intensive studies on the plant disease detection and classification using image

processing and machine learning. In the studies, the researchers successfully built the

plant disease classifier using the images taken from the crops. However, the existing

classifiers are built based on the hand-crafted features where the relevant information

is extracted from the images. This information will be used to detect and classify the

plant diseases. The drawback of these hand-crafted features is these disease classifiers

are actually suffered from the lack of automation due to the heavy dependency on the

hand-crafted feature[9]. The images used to train the classifiers come from manual

labelling by the botanists. Factors such as high cost and time consuming for labelling

has forced the researchers to train and test the classifiers with limited and small labelled

datasets. This will lead to overfitting for the trained classifiers, resulting in inaccuracy

of the plant disease detection. In the last decade, Deep Learning (DL) started to be used

by the researchers to train the models, and they are applied in the plant disease detection

area. As a result, the deep learning model shows competitive results if compared to the

traditional hand-featured classifiers in terms of accuracy and training efforts. However,

the existing deep learning model is immature, and it requires improvement in some

practical cases. It is ineffective and found hard to localize multiple regions with the

same or almost similar features of the plant disease. For instance, early blight and late

blight disease are hard to be detected and differentiated as both symptoms are very

similar and looked alike.

1.3 Objectives

The objective of this project is to develop a high accuracy deep learning model

that can classify early blight and late blight plant disease into three severity levels based

on transfer learning with ResNet. By using the proposed deep learning approach, the

dependency on the hand-crafted features can be eliminated at the same time it is able

to localize and classify the early blight and late blight images having multiple regions

with the same or similar features.
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1.4 Scope of Work

The scope of this project is to focus on the classification of the images of early

blight and late blight plant disease into three different stages, which are low, mild and

severe. Matlab is used as the training tool to develop deep learning model using transfer

learning on ResNet. Fine tuning will be carried out during the model training from time

to time by varying the training parameters in order to increase the model classification

accuracy.

1.5 Thesis Outline

This project report is separated into five chapters. Chapter 1 is the project

background, objectives, and followed by the scope of the study. Chapter 2 covers the

literature review conducted for this project. The general background of deep learning

and related prior works were thoroughly discussed. Also, the architecture of ResNet

and transfer learning were presented. Chapter 3 is the research methodology of this

project. In this chapter, the project flow of this project is proposed. The tools used and

the proposed algorithm are presented. Chapter 4 presents the results obtained from the

proposed system. Details analysis and interpretation on the results obtained as well

as comparison with previous related works are presented. Lastly, the recommendation

and suggestions for future works are discussed.
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