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ABSTRACT 

Corruption occurs everywhere, and even meter readers can be corrupted. One 

of the examples is the consumer that is unwilling to pay utility bill will collude with 

meter reader to manipulate the meter reading for the utilities. For preventing such a 

thing from happening the utilities company had introduced a method to the meter 

reader which tells them to attach the meter reading (number) along with the photo of 

the meter with the reading. The photo will be sent to the company to ensure the meter 

reading is correct and the number is not created or generated by the meter reader. There 

is nothing perfect in this world, with this prevention the meter reader is still able to 

find a loop hole that allows them to manipulate the meter reading. What they do is get 

the meter reading from another meter and use the number and photo for the other 

consumer. This causes a lot of issues to the customer. Where the victim will need to 

pay more than the usual caused by the image of the meter is swapped. In this project, 

a solution is introduced that is able to reduce fraud from the meter reader by using 

image matching in fraud detection. This can also reduce the dependency on human 

checking of the image from the meter reader for the meter reading fraud detection. In 

this project, image matching algorithm is introduced to match the new meter image 

with the image from the image database, the image matching algorithm will also 

inform if any fraud is found from the image through Google Inception V3 as a 

proposed model with the accuracy of 99.1285%. 
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ABSTRAK 

Rasuah berlaku di mana-mana sahaja, dimana pembaca meter boleh dirasuah. 

Salah satu contoh ialah pengguna yang tidak mahu membayar juga bil utiliti yang 

tinggi dan bersekongkol dengan pembaca meter untuk memanipulasi bacaan meter 

untuk utiliti tersebut. Untuk pencegahan, syarikat utiliti telah memperkenalkan kaedah 

kepada pembaca meter dengan meminta mereka melampirkan bacaan meter (nombor) 

bersama-sama dengan foto meter bersama bacaan. Foto akan dihantar ke syarikat 

untuk memastikan bacaan meter adalah betul dan nombornya bukan dicipta atau dijana 

oleh pembaca meter. Tiada perkara yang sempurna di dunia, dengan pencegahan ini 

pembaca meter masih dapat mencari kelemahan sistem dalam memanipulasi bacaan 

meter. Apa yang mereka lakukan ialah mendapatkan bacaan meter dari meter lain dan 

menggunakan nombor dan foto untuk pengguna tersebut. Ini menyebabkan banyak isu 

kepada pelanggan. Di mana mangsa perlu membayar lebih daripada biasa yang 

disebabkan oleh imej meter ditukar. Dalam projek ini, satu penyelesaian diperkenalkan 

yang dapat mengurangkan penipuan daripada pembaca meter dengan pemadanan imej 

dalam pengesanan penipuan. Ini juga dapat mengurangkan pergantungan pada 

pemeriksaan manusia dari imej dari pembaca meter untuk pengesanan penipuan 

pembaca meter. Dalam projek ini, algoritma pemadanan imej diperkenalkan untuk 

memadankan imej meter baru dengan imej dari database, algoritma pemadanan imej 

juga akan memberitahu jika ada penipuan yang ditemui dari imej. Oleh itu, pembaca 

meter tidak dapat menukar bacaan meter dengan bacaan meter dari rumah yang 

berlainan melalui Google Inception V3 sebagai model dengan ketepatan 99.1285 %. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Electricity is the collection of physical phenomena associated with the presence 

and movement of an electric charge property in a matter of possess(1). In many 

countries, most electricity is generated by the utility company. Where the generated 

electricity is then sold to consumer-based on customer usage. Usually, it is in terms of 

kWh. The price of the energy is based on the number of units that the customer use. 

Usually, there is a range set by the utility company. The unit range will be split into a 

few different categories with different prices per kWh. If the electric unit exists a 

certain category. The total price for the first category will be added to the remaining 

unit that needs to be paid. And the price for the next category will be more expensive 

than the previous category.  

For example, the first category cap at 500 kWh and cost $ 0.1001 per kWh, 

while the remaining unit will be charged for $0.1500 per kWh. Then Energy Charge 

for the first 500 kWh: $ 0.1001 x 500kWh = $ 50.05            (1-1) and Energy 

Charge for the remaining 1800 kWh: 1800 kWh x $0.1500 = $ 270.00           (1-2) 

below shows the electricity calculation for total electricity usage of 2300kWh. There 

were two different prices with two different categories (2).  

Energy Charge for the first 500 kWh: $ 0.1001 x 500kWh = $ 50.05            (1-1) 

Energy Charge for the remaining 1800 kWh: 1800 kWh x $0.1500 = $ 270.00           (1-2) 

 

Some of the utility companies might have up to 3 or 4 range categories to 

segregate the price for the electricity so that customers can pay or less based on the 
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usage. This segregation can give some opportunity to the poor so that they are able to 

experience the use of electricity as well. This segregation known as tariff rates. Figure 

1.1 below shows the example of Tariff Rates done by TNB Malaysia which they split 

up to 5 categories (3). While Figure 1.2 below shows the tariff rate from MEPCO 

Pakistan (4). Based on the comparison between the tariff rates below, the tariff rate for 

Pakistan has a huge jump of range between 1st and 2nd segregation. There is about 

238% increment for the 1st step and 126% increment for 2nd step. This is a kind of a 

square root graph type of increment. While for TNB the increment for the price is quite 

linear compared to the tariff rate provided by MEPCO Pakistan. There is some good 

and bad for this kind of situation. Where for MEPCO the customer who uses less 

electricity can save more. While for whom that overuse the electric range will need to 

pay much more than other customers.  

 
Figure 1.1 Tariff rates by TNB Malaysia in the year 2019 

 

 
Figure 1.2 Tariff Rate by MEPCO Pakistan in the year 2019. 
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Since the step for the tariff rate for MEPCO is huge, the customer will then try 

to find other methods to allow them to pay the lesser bill. One of the methods is the 

customer correlate with meter reader by corrupting them to manipulate the meter 

reading for the customer. This can allow them to pay a lower electricity bill price per 

month. This issue might not occur in Malaysia since the difference between the price 

in between categories is not that high as compared to Pakistan.  

Few prevention methods could be taken to resolve this issue. One of them is 

by implementing the smart meter. Smart meter is a type of meter that able to send the 

meter reading to the utility company automatically without the need of a meter reader 

to manually read the meter reading (5).Based on study, until the year 2019, there were 

only 14% of smart meter applications had been implemented in global. The remaining 

86% still using a conventional type of meter (6).  

For prevention, some utilities company had introduced a method to counter the 

meter value manipulation fraud, where the prevention method is by requesting the 

meter reader to attach the image of the meter along with the meter number so that the 

utilities company can able to make sure the meter value is not manipulated value thus 

no fraud occur. As shown in Figure 1.3 below are the utilities bill from TNB and in 

Figure 1.4 below show the utilities bill from MEPCO.  



 

4 

  
Figure 1.3 Utilities Bill From TNB Figure 1.4 Utilities Bill From MEPCO 

 

For example, in Malaysia (TNB) meter reader will go house by house to read 

the meter reading. Thus, it is all based on the trust between the meter reader and the 

utilities company. If the meter reader was corrupted, they could reduce the number of 

meter readings to reduce the price of the customer bill. 

 Therefore, some companies came out with the idea of attaching the image of 

the meter as well as the meter reading value inside the utilities bill to prevent the fraud 

occur. By this action, the meter reader could not able to manipulate the meter reading 

by just changing the number of meter values. Therefore, fraud able to be reduced. As 

an example, the utilities bill of MEPCO shown in Figure 1.4 above, the image of the 

utilities meter needs to attached along with the meter reading inside the utilities bill 

(7). For utilities bill from TNB no meter image attachment is needed. 
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Somehow, the meter reader and consumer still able to find a loophole to this 

prevention method. The loophole is meter reader able to take the meter value from 

another house. This can allow the meter reader just simply choose a house that has 

lower meter value and attached the image of the meter (with lower reading) along with 

the meter reading (with lower reading) inside the utilities bill to the utilities company 

for representing another house. They can also swap the meter image with another 

house and cause the owner of the corrupted house to pay less and the owner of a non-

corrupted house owner to pay more on the utilities bill. This cause a lot issues for the 

utilities company, where they need to take care about the losses in term of cost which 

directly proportional to the loss of the electricity generation, in the meanwhile they 

lost the trust of the customer as well. In Figure 1.5, Figure 1.6, Figure 1.7, and Figure 

1.8 below show the examples of the issues caused by the meter reader.  

  
Figure 1.5 Manipulation of Meters and 

meter reading (8) 

Figure 1.6 Beware of WAPDA meter 

readers (9) 

 

  
Figure 1.7 Corruption by the WAPDA 

(10) 

 

Figure 1.8 The meter reader mafia (11) 
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To solve the issue that is caused by the meter reader, a solution has been 

introduced in this project to reduce the fraud. This solution unlocks the potential for 

image matching regarding fraud detection techniques. In this solution, the image 

captured by the meter reader previously will be used as a database. A newly taken 

photo will be inserted into the system and it will be compared with previous database 

to ensure the image of the meter is matched with the same meter category in the 

database. Else, if the image does not match, further investigation will be done by the 

company. By this action, the manipulation of reading by meter reader could be 

reduced. In the meanwhile, the losses of the cost from power generation for the utilities 

company can be reduced as well.  

1.2 Motivation 

To detect the fraud done by the meter reader, human effort is needed. Since 

there is no such system is able to process all the data inside the database of the company 

for this type of fraud detection issue. Only by manual comparison between a new 

image with a previous image inside the database is able to detect the fraud as of now.  

By using manual fraud detection effort, it is time-consuming to do the image 

comparison. Lastly, there a thousand of photos that needs to compared day to day since 

there will be 6 million number of total customers for 13 different districts (12). 

 

1.3 Problem Statement 

The following are the problems of this research: 

(a) The meter in this industry looks almost similar from one to another. Thus, it is 

hard to differentiate between meter and meter.  

(b) The image is taken with a different angle, rotational, zoom range (scale), crop, 

lighting, and position. This will cause an issue for image matching.  
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1.4 Research Objectives 

The objectives of this research are: 

(a) To propose a method to enhance the fraud detection of meter reading based on 

meter images.  

(b) To design a meter classification system that reduces the complexity of image 

comparison. 

(c) To propose a method on better image detection technique with large data set 

for consumers. 

 

1.5 Research Scope 

Regarding to the scope for this project, the data set of the meter image used in 

this project is provided by Multan Power Company (MEPCO). From the image 

provided by Multan Power Company (MEPCO) there are 230,599 images. These 

230,599 images represent 39,186 different customers in 13 districts. From these 

230,599 images, 4,500 images will be selected for the training in this project and there 

would be about 48 different categories of data set after the image categorization is 

done. Next, Transfer learning will be used in this project to reduce the training time as 

well as increase the accuracy of the model. The training is done offline by using an 

online tool named “Google Colab”. Offline here represent offline model training.  

 

 



 

8 

1.6 Proposed Method 

As of now, the power utility company (MEPCO) does not have such a system 

to detect the fraud made by the meter reader, where the power utility company only 

makes sure that the meter reading from the image is the same as what the meter reader 

reported. There is no such method to detect if the meter reader changes the meter value 

by replacing the image of the meter along with the meter value as discussed in Chapter 

1.1 above. Thus, in this section, a method is proposed that is able to help the power 

utility company (MEPCO) to detect the fraud made by the meter reader.  

The picture captured by the meter reader will be fed into the algorithm. The 

system would have the ability to differentiate between different categories of meter 

types. If the correct picture falls into the same correct category for that customer, then 

the fraud would be low. Figure 1.9 below shows a simple example of the algorithm 

that is able to ease the explanation. In Figure 1.9 below, show some of different meter 

category that able to be differentiated easily. Where the left side of the image is the 

image that is being fed into the algorithm and right side is the image that has been 

allocated in the data based. Some comparison is done for the algorithm to select the 

correct category of meter. With the meter fall into the same category, then the fraud 

would be low.  
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Figure 1.9 Simple example of fraud detection 

 

 Figure 1.10 shows the real case example of the fraud that could be done by the 

meter reader. Based on the diagram shown in Figure 1.10 the top part of the diagram 

shows the normal condition without fraud occur and the bottom part shows the 

example of fraud condition. based on the image from left to right is the picture taken 

by the meter reader from Feb to June. The image inside the red box represents the 

picture that is newly captured by the meter reader in July as an example. Where in the 

Normal Condition the expected meter reading would be 937.1 units. If the meter reader 

had been corrupted, they could replace the images of the meter with lower meter 

reading from other houses as shown in the red box of fraud condition with the meter 

reading value of 786.0 units. With the change of meter reading value able to help the 

customer to save about 187.1 units of electricity. Thus, the customer only needs to pay 

the utilities bill at a lesser price. Since the image looks alike, thus it is hard for a human 

to detect the fraud. Figure 1.11 below shows the larger view of the images from the 

red box in Figure 1.10. In Figure 1.11, there was some annotation to show the 

differences between the images. If there is no annotation shown, then the difficulty of 

differentiation the meter would be hard with using human eye. Imagine if there were 

millions of images to compare then will be a troublesome task. 



 

10 

 
Figure 1.10 Actual Condition of fraud detection 

 

 
Figure 1.11 The differences between the image from the red box in Figure 1.10 

 

With this proposed method the fraud able to be reduced but not eliminated. 

This proposed method is not perfect, but this method could able to detect the overall 

fraud caused by the meter reader. This proposed method is useful because MEPCO 

will have about 13 districts and approximately 34 million image comparisons that 

needs to be done by MEPCO’s worker manually every month to detect the fraud. As 

information, until now Malaysia has only 32 million of population (13). Assume, if 

there is 22 days per month excluding Saturdays and Sundays there would be averagely 

1.5 million of images that needs to be compared by the MEPCO’s worker per-day to 

detect fraud for 34 million images.  
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