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ABSTRACT

Corruption occurs everywhere, and even meter readers can be corrupted. One
of the examples is the consumer that is unwilling to pay utility bill will collude with
meter reader to manipulate the meter reading for the utilities. For preventing such a
thing from happening the utilities company had introduced a method to the meter
reader which tells them to attach the meter reading (number) along with the photo of
the meter with the reading. The photo will be sent to the company to ensure the meter
reading is correct and the number is not created or generated by the meter reader. There
is nothing perfect in this world, with this prevention the meter reader is still able to
find a loop hole that allows them to manipulate the meter reading. What they do is get
the meter reading from another meter and use the number and photo for the other
consumer. This causes a lot of issues to the customer. Where the victim will need to
pay more than the usual caused by the image of the meter is swapped. In this project,
a solution is introduced that is able to reduce fraud from the meter reader by using
image matching in fraud detection. This can also reduce the dependency on human
checking of the image from the meter reader for the meter reading fraud detection. In
this project, image matching algorithm is introduced to match the new meter image
with the image from the image database, the image matching algorithm will also
inform if any fraud is found from the image through Google Inception V3 as a

proposed model with the accuracy of 99.1285%.
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ABSTRAK

Rasuah berlaku di mana-mana sahaja, dimana pembaca meter boleh dirasuah.
Salah satu contoh ialah pengguna yang tidak mahu membayar juga bil utiliti yang
tinggi dan bersekongkol dengan pembaca meter untuk memanipulasi bacaan meter
untuk utiliti tersebut. Untuk pencegahan, syarikat utiliti telah memperkenalkan kaedah
kepada pembaca meter dengan meminta mereka melampirkan bacaan meter (nombor)
bersama-sama dengan foto meter bersama bacaan. Foto akan dihantar ke syarikat
untuk memastikan bacaan meter adalah betul dan nombornya bukan dicipta atau dijana
oleh pembaca meter. Tiada perkara yang sempurna di dunia, dengan pencegahan ini
pembaca meter masih dapat mencari kelemahan sistem dalam memanipulasi bacaan
meter. Apa yang mereka lakukan ialah mendapatkan bacaan meter dari meter lain dan
menggunakan nombor dan foto untuk pengguna tersebut. Ini menyebabkan banyak isu
kepada pelanggan. Di mana mangsa perlu membayar lebih daripada biasa yang
disebabkan oleh imej meter ditukar. Dalam projek ini, satu penyelesaian diperkenalkan
yang dapat mengurangkan penipuan daripada pembaca meter dengan pemadanan ime;j
dalam pengesanan penipuan. Ini juga dapat mengurangkan pergantungan pada
pemeriksaan manusia dari imej dari pembaca meter untuk pengesanan penipuan
pembaca meter. Dalam projek ini, algoritma pemadanan imej diperkenalkan untuk
memadankan imej meter baru dengan imej dari database, algoritma pemadanan ime;j
juga akan memberitahu jika ada penipuan yang ditemui dari imej. Oleh itu, pembaca
meter tidak dapat menukar bacaan meter dengan bacaan meter dari rumah yang

berlainan melalui Google Inception V3 sebagai model dengan ketepatan 99.1285 %.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Electricity is the collection of physical phenomena associated with the presence
and movement of an electric charge property in a matter of possess(1). In many
countries, most electricity is generated by the utility company. Where the generated
electricity is then sold to consumer-based on customer usage. Usually, it is in terms of
kWh. The price of the energy is based on the number of units that the customer use.
Usually, there is a range set by the utility company. The unit range will be split into a
few different categories with different prices per kWh. If the electric unit exists a
certain category. The total price for the first category will be added to the remaining
unit that needs to be paid. And the price for the next category will be more expensive

than the previous category.

For example, the first category cap at 500 kWh and cost $ 0.1001 per kWh,
while the remaining unit will be charged for $0.1500 per kWh. Then Energy Charge
for the first 500 kWh: $ 0.1001 x 500kWh = $ 50.05 (1-1) and Energy
Charge for the remaining 1800 kWh: 1800 kWh x $0.1500 = $ 270.00 (1-2)
below shows the electricity calculation for total electricity usage of 2300kWh. There

were two different prices with two different categories (2).

Energy Charge for the first 500 kWh: $ 0.1001 x 500kWh = § 50.05 (1-1)

Energy Charge for the remaining 1800 kWh: 1800 kWh x $0.1500 = § 270.00 (1-2)

Some of the utility companies might have up to 3 or 4 range categories to

segregate the price for the electricity so that customers can pay or less based on the



usage. This segregation can give some opportunity to the poor so that they are able to
experience the use of electricity as well. This segregation known as tariff rates. Figure
1.1 below shows the example of Tariff Rates done by TNB Malaysia which they split
up to 5 categories (3). While Figure 1.2 below shows the tariff rate from MEPCO
Pakistan (4). Based on the comparison between the tariff rates below, the tariff rate for
Pakistan has a huge jump of range between 1% and 2" segregation. There is about
238% increment for the 1% step and 126% increment for 2" step. This is a kind of a
square root graph type of increment. While for TNB the increment for the price is quite
linear compared to the tariff rate provided by MEPCO Pakistan. There is some good
and bad for this kind of situation. Where for MEPCO the customer who uses less
electricity can save more. While for whom that overuse the electric range will need to

pay much more than other customers.

Tariff Rates

“Domestic Consumer” means a consumer occupying a private dwelling, which is not used as a hotel, boarding house or used for the purpose of carrying out
any form of business, trade, professional activities or services.

TARIFF CATEGORY UNIT CURRENT RATE (1 JAN 2018)
Tariff A - Domestic Tariff
For the first 200 kWh [1 - 200 kWh] per month sen/kWh 21.80
For the next 100 kWh [201 - 300 kWh] per month sen/kWh 33.40
1. For the next 300 kWh [301 - 600 kWh] per month sen/kWh 51.60
For the next 300 kWh [601 - 900 kWh] per month sen/kWh 54.60
For the next kWh (901 kWh onwards] per month sen/kWh 57.10

The minimum monthly charge is RM3.00

Figure 1.1 Tariff rates by TNB Malaysia in the year 2019

SCHEDULE OF ELECTRICITY TARIFFS
FOR MULTAN ELECTRIC POWER COMPANY (MEPCO)

A-1 GENERAL SUPPLY TARIFF - RESIDENTIAL

[ rxEp | 1 GOP Tarlff Rationalization
VARIABLE Bubsidy | Surcharge
Se. No.| TARIFF CATEGORY / PARTICULARS CHARGES FIXED | VARIABLE | VARIABLE
CHARGES CHARGES CHARGES CHARGES
R/ kW /M Ras/ WWh e/ kW /M R/ kWh Ra. [ WWh
a) For SBanctioned load less than 5 kW
1|Up to SO Units g 4.00 2.00
For Consumption exceeding 50 Units
i 001 + 100 Units - 9.52 373
iii a. 101 - 200 Units 12.00 .89
b. 201 - 300 Unigs 12.00 1.80
v 301 - TOO Units 15.00 1.00
v Above 700 Units 16.00 2.00
b) For Sanctioned load 5 kW & above | 1 4
Peak | Off-Peak Peak Off-Peak Peak |[Off-Peak
! 4 - e
Time Of Use - 16.00 | 10.50 200, 32.00
TocTale T conaumers will bu gives (he benellia of only one previous slah , -

sm monthly charges ot the fallowts oven if




Since the step for the tariff rate for MEPCO is huge, the customer will then try
to find other methods to allow them to pay the lesser bill. One of the methods is the
customer correlate with meter reader by corrupting them to manipulate the meter
reading for the customer. This can allow them to pay a lower electricity bill price per
month. This issue might not occur in Malaysia since the difference between the price

in between categories is not that high as compared to Pakistan.

Few prevention methods could be taken to resolve this issue. One of them is
by implementing the smart meter. Smart meter is a type of meter that able to send the
meter reading to the utility company automatically without the need of a meter reader
to manually read the meter reading (5).Based on study, until the year 2019, there were
only 14% of smart meter applications had been implemented in global. The remaining

86% still using a conventional type of meter (6).

For prevention, some utilities company had introduced a method to counter the
meter value manipulation fraud, where the prevention method is by requesting the
meter reader to attach the image of the meter along with the meter number so that the
utilities company can able to make sure the meter value is not manipulated value thus
no fraud occur. As shown in Figure 1.3 below are the utilities bill from TNB and in

Figure 1.4 below show the utilities bill from MEPCO.
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Figure 1.3 Utilities Bill From TNB Figure 1.4 Utilities Bill From MEPCO

For example, in Malaysia (TNB) meter reader will go house by house to read
the meter reading. Thus, it is all based on the trust between the meter reader and the
utilities company. If the meter reader was corrupted, they could reduce the number of

meter readings to reduce the price of the customer bill.

Therefore, some companies came out with the idea of attaching the image of
the meter as well as the meter reading value inside the utilities bill to prevent the fraud
occur. By this action, the meter reader could not able to manipulate the meter reading
by just changing the number of meter values. Therefore, fraud able to be reduced. As
an example, the utilities bill of MEPCO shown in Figure 1.4 above, the image of the
utilities meter needs to attached along with the meter reading inside the utilities bill

(7). For utilities bill from TNB no meter image attachment is needed.



Somehow, the meter reader and consumer still able to find a loophole to this
prevention method. The loophole is meter reader able to take the meter value from
another house. This can allow the meter reader just simply choose a house that has
lower meter value and attached the image of the meter (with lower reading) along with
the meter reading (with lower reading) inside the utilities bill to the utilities company
for representing another house. They can also swap the meter image with another
house and cause the owner of the corrupted house to pay less and the owner of a non-
corrupted house owner to pay more on the utilities bill. This cause a lot issues for the
utilities company, where they need to take care about the losses in term of cost which
directly proportional to the loss of the electricity generation, in the meanwhile they
lost the trust of the customer as well. In Figure 1.5, Figure 1.6, Figure 1.7, and Figure

1.8 below show the examples of the issues caused by the meter reader.
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To solve the issue that is caused by the meter reader, a solution has been
introduced in this project to reduce the fraud. This solution unlocks the potential for
image matching regarding fraud detection techniques. In this solution, the image
captured by the meter reader previously will be used as a database. A newly taken
photo will be inserted into the system and it will be compared with previous database
to ensure the image of the meter is matched with the same meter category in the
database. Else, if the image does not match, further investigation will be done by the
company. By this action, the manipulation of reading by meter reader could be
reduced. In the meanwhile, the losses of the cost from power generation for the utilities

company can be reduced as well.

1.2 Motivation

To detect the fraud done by the meter reader, human effort is needed. Since
there is no such system is able to process all the data inside the database of the company
for this type of fraud detection issue. Only by manual comparison between a new
image with a previous image inside the database is able to detect the fraud as of now.
By using manual fraud detection effort, it is time-consuming to do the image
comparison. Lastly, there a thousand of photos that needs to compared day to day since

there will be 6 million number of total customers for 13 different districts (12).

1.3 Problem Statement

The following are the problems of this research:

(a) The meter in this industry looks almost similar from one to another. Thus, it is

hard to differentiate between meter and meter.

(b) The image is taken with a different angle, rotational, zoom range (scale), crop,

lighting, and position. This will cause an issue for image matching.



1.4  Research Objectives

The objectives of this research are:

(a) To propose a method to enhance the fraud detection of meter reading based on

meter images.

(b) To design a meter classification system that reduces the complexity of image

comparison.

(©) To propose a method on better image detection technique with large data set

for consumers.

1.5  Research Scope

Regarding to the scope for this project, the data set of the meter image used in
this project is provided by Multan Power Company (MEPCO). From the image
provided by Multan Power Company (MEPCO) there are 230,599 images. These
230,599 images represent 39,186 different customers in 13 districts. From these
230,599 images, 4,500 images will be selected for the training in this project and there
would be about 48 different categories of data set after the image categorization is
done. Next, Transfer learning will be used in this project to reduce the training time as
well as increase the accuracy of the model. The training is done offline by using an

online tool named “Google Colab”. Offline here represent offline model training.



1.6  Proposed Method

As of now, the power utility company (MEPCO) does not have such a system
to detect the fraud made by the meter reader, where the power utility company only
makes sure that the meter reading from the image is the same as what the meter reader
reported. There is no such method to detect if the meter reader changes the meter value
by replacing the image of the meter along with the meter value as discussed in Chapter
1.1 above. Thus, in this section, a method is proposed that is able to help the power

utility company (MEPCO) to detect the fraud made by the meter reader.

The picture captured by the meter reader will be fed into the algorithm. The
system would have the ability to differentiate between different categories of meter
types. If the correct picture falls into the same correct category for that customer, then
the fraud would be low. Figure 1.9 below shows a simple example of the algorithm
that is able to ease the explanation. In Figure 1.9 below, show some of different meter
category that able to be differentiated easily. Where the left side of the image is the
image that is being fed into the algorithm and right side is the image that has been
allocated in the data based. Some comparison is done for the algorithm to select the
correct category of meter. With the meter fall into the same category, then the fraud

would be low.



/ Abdul Rehman 11-06-2019 0937 0151250001929 \

ey gy

Figure 1.9 Simple example of fraud detection

Figure 1.10 shows the real case example of the fraud that could be done by the
meter reader. Based on the diagram shown in Figure 1.10 the top part of the diagram
shows the normal condition without fraud occur and the bottom part shows the
example of fraud condition. based on the image from left to right is the picture taken
by the meter reader from Feb to June. The image inside the red box represents the
picture that is newly captured by the meter reader in July as an example. Where in the
Normal Condition the expected meter reading would be 937.1 units. If the meter reader
had been corrupted, they could replace the images of the meter with lower meter
reading from other houses as shown in the red box of fraud condition with the meter
reading value of 786.0 units. With the change of meter reading value able to help the
customer to save about 187.1 units of electricity. Thus, the customer only needs to pay
the utilities bill at a lesser price. Since the image looks alike, thus it is hard for a human
to detect the fraud. Figure 1.11 below shows the larger view of the images from the
red box in Figure 1.10. In Figure 1.11, there was some annotation to show the
differences between the images. If there is no annotation shown, then the difficulty of
differentiation the meter would be hard with using human eye. Imagine if there were

millions of images to compare then will be a troublesome task.
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Figure 1.11 The differences between the image from the red box in Figure 1.10

With this proposed method the fraud able to be reduced but not eliminated.
This proposed method is not perfect, but this method could able to detect the overall
fraud caused by the meter reader. This proposed method is useful because MEPCO
will have about 13 districts and approximately 34 million image comparisons that
needs to be done by MEPCQO’s worker manually every month to detect the fraud. As
information, until now Malaysia has only 32 million of population (13). Assume, if
there is 22 days per month excluding Saturdays and Sundays there would be averagely
1.5 million of images that needs to be compared by the MEPCO’s worker per-day to

detect fraud for 34 million images.
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