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ABSTRACT 

The hand has been a great tool for humans with the advantage of dexterous 

function and power to do daily activities such as turning a doorknob, wearing clothes, 

using a screwdriver and picking up objects. These dexterous hand motions are 

achieved due to the biomechanics of hands and redundant mechanism of hand muscles. 

These muscles receive brain signals and react accordingly to perform different hand 

motion gestures when dealing with different objects. Sub-conscious mind in our brain 

instructs actuation of different extrinsic and intrinsic muscles in order to move our 

fingers to different positions for desired functions. The index finger plays an important 

role in performing hand gestures for human daily activities. This work presents 

position control of index finger of human-like robotic hand (HR Hand) using machine 

learning. The HR Hand is a replication of the human hands in terms of bones, 

ligaments, muscles, extensor mechanism, tendon and its pulley system. The muscles 

of the hand were fabricated using thin multifilament McKibben muscles following 

design of index finger by A.A.M. Faudzi. Motion of the HR Hand is captured using 

ViconTM motion capture to build a K-nearest neighbour (KNN) and Artificial Neural 

Network (ANN) model. This model is used to predict the combination of muscles used 

for fingertip position control. Hyperparameter optimization is done using grid search 

method to obtain better accuracy. The ANN model showed to have better accuracy of 

71.36 % in predicting actuation of muscle class compared to the 65.38 % by KNN. 

The ANN model is applied in building a feed-forward controller and verified on the 

system with 2.7 cm steady state error. Using this model, future control of HR Hand is 

expected.  
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ABSTRAK 

 

Tangan merupakan alat yang penting untuk manusia dalam melakukan fungsi 

dengan tangkas dan melakukan aktiviti harian seperti memutar tombol pintu, memakai 

pakaian, menggunakan pemutar skrew dan mengambil objek. Gerakan tangan yang 

tangkas ini dicapai melalui biomekanik dan mekanisme berlebihan otot tangan. Otot-

otot ini menerima isyarat daripada otak dan seterusnya bertindak balas untuk 

melakukan gerakan tangan yang berbeza ketika berurusan dengan objek yang berbeza. 

Fikiran separa sedar dalam otak kita mengaktifkan otot-otot ekstrinsik dan intrinsik 

untuk menggerakkan jari ke pelbagai kedudukan dan posisi yang diingini. Jari telunjuk 

memainkan peranan penting dalam membuat gerak isyarat untuk aktiviti-aktiviti 

harian manusia. Kerja ini memaparkan pengawalan kedudukan jari telunjuk tangan 

manusia seperti robot (tangan HR) melalui pembelajaran mesin. Tangan HR ini adalah 

pereplikaan tangan manusia dari segi tulang, ligamen, otot, mekanisme ekstensor, 

tendon dan sistem takalnya. Otot-otot tangan direka menggunakan otot nipis 

McKibben filamen pelbagai dan reka bentuk jari telunjuk oleh A.A.M. Faudzi. 

Pergerakan tangan HR direkod menggunakan rakaman gerakan ViconTM untuk 

membina model algoritma Tetangga K-Terdekat (KNN) dan Model Rangkaian Neural 

Buatan (ANN). Model ini digunakan untuk meramal kombinasi otot yang digunakan 

untuk kawalan kedudukan hujung jari. Pengoptimuman hiperparameter dilakukan 

melalui kaedah carian grid untuk mendapat ketepatan yang lebih tinggi. Model ANN 

mepaparkan ketepatan yang lebih tinggi iaitu 71.36 %, dalam meramalkan gerakan 

kelas otot berbanding dengan model KNN iaitu 65.38 %. Model ANN digunakan 

dalam membina kawalan suap depan dan disahkan dengan 2.7 cm sistem ralat keadaan 

mantap. Dengan mengunakan model ini, kawalan penuh tangan HR dijangkakan pada 

masa hadapan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The human hand plays a vital part in our everyday lives. Daily task such as 

carrying objects, turning door knobs, cooking and typing can be done by the human 

hand.  Complicated tasks which need great dexterity such as precisely using a screw 

driver can also be accomplished by the human hand.  The key to achieving high 

dexterity of the human hand is the biomechanics of the hand and the muscles involved  

(Bicchi, 2000). Having great dexterity and such ability to execute daily task in human’s 

everyday life leads to vigorous study to imitate the human hand. Roboticist studying 

the function and application of robotic hand divided them into two main areas, 

Anthropomorphic Prosthetic Hands (APH) and Dexterous Robotic Hand (DRH) 

(Bicchi, 2000).  

Currently, research on humanoid robots that imitate human drive mechanisms 

is enthusiastically carried out globally. The conventional approach of design in the 

robotic hand field usually replaces complicated human parts by mechanical 

components such as linkages, hinges, gimbals and use motor as an actuation method. 

Although this method may be accommodating for man-kind where it improves our 

understanding and approximation of the human hand kinematics in general, however 

this actually introduces objectionable differences with the actual human hand.  Recent 

robotic hands that can demonstrate human levels of dexterity are very few, while most 

of them are task-based operations include KITECH-Hand (Lee, Park, Park, Baeg, & 

Bae, 2017). 

McKibben-style actuators characterized by its high-level functional analogy 

with human skeletal muscle are of interest. The actuator also has passive and natural 

compliance, which follows the nature of skeletal muscle. The Human like Robotic 
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Hand (HR Hand) closely follows the human hand by replacing the use of motors with 

McKibben style actuator.  The HR hand is a replication of the human hands in terms 

of bones, ligaments, muscles, extensor mechanism, tendon and its pulley system. The 

bones are replicated by using readily available upper limb model from actual specimen 

of 160cm human male adult while the ligaments are fabricated from 1mm silicon of 

McKibben muscles to attain similar stiffness to human ligaments. The muscles of the 

hand are fabricated using thin multifilament McKibben muscles (A. A. M. Faudzi, 

Ooga, Goto, Takeichi, & Suzumori, 2018). 

In 2019, (Abdulrab, 2019) used the concept of the HR hand to improve the HR 

hand with pinching motion by adding a thumb to the existing index finger. The HR 

Hand has been improved where the number of available gestures has increased for 

pinching motion. Electro-pneumatic regulators were also added to the HR Hand where 

manual tuning of potentiometers are done to control the muscle contraction. The 

selection of muscles to be actuated are also carefully chosen by the operator. However, 

this differs to the nature of muscle selection in humans. This will be further discussed 

in the problem background. 

1.2 Background of Problem 

The HR Hand closely follows the anatomy of the human hand by ligaments, 

bone structure and the use of McKibben actuators. However, the current HR hand uses 

manual control to select actuation of muscles. This creates complexity as there exist 

too many muscles in the human hand. In humans, the central nervous system (CNS) 

acts as a controller where a desired set point position is determined in the brain and 

the CNS sends neural signals to the correct muscles to be actuated either by means of 

contraction or relaxation. This element of control is attached to the individuals 

experience, training or knowledge (Balderas & Rojas, 2016). Machine learning has 

high similarity to the muscle control where the prediction made is based on training of 

past data. This work presents control of HR Hand index finger using machine learning. 

The next section will further discuss the problems in implementing machine learning 

for HR Hand position control. 
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1.3 Problem Statement 

The HR Hand Index finger by (A. A. M. Faudzi, J. Ooga, et al., 2018) was 

developed on a single index finger to study the similarities of the design compared to 

the human index finger. Three extrinsic muscles was used to validate the properties of 

the index finger and to study the sweep motion to resemble the real human finger.  

In order to achieve better similarity with humans, the control mechanism 

should be upgraded form the previous manual triggering to a more human-like control 

method. Machine learning can be applied to control the motion of the HR Hand index 

finger to achieve better similarity with humans. However, in order to obtain this 

comparison, extrinsic muscle origins should be considered in the design of the HR 

Hand. As the previous work was not intended for big data collection, the HR hand 

design needs to be enhanced to suit data collection in order to apply machine learning 

control. 

Similar to the human index finger, the HR Hand index finger is actuated by 

muscles that are attached to bones by tendons. The actuation of each muscle with 

different contraction determines the movement position of the finger and joints. 

(Shalev-Shwartz & Ben-David, 2014) stated that machine learning is suitable for tasks 

that are too complex to program such as tasks performed by humans and animals. As 

there are too many muscles and muscle combination to control individually, machine 

learning may simplify the control of the HR Hand.  

The accuracy of the model for muscle actuation is not enough to verify if the 

machine learning model is suitable for position control of the HR Hand. The model 

should be applied to build a controller for the HR Hand and the actual position should 

be compared to the set point position. These problems led to the development of the 

research objectives. 
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1.4 Research Objectives 

The objectives of the research are: 

(a) To fabricate the HR Hand index finger flexion and extension using McKibben 

muscle. 

(b) To develop machine learning model using KNN and ANN for index finger 

position control based on ViconTM motion capture data. 

(c) To control the index finger position using feed-forward controller and validate 

the position experimentally. 

 

1.5 Scope of the Study 

The project scope are as below: 

(a) Only extrinsic muscle of right index finger is considered in the fabrication of 

the HR Hand using 4.0 mm McKibben muscle. 

(b) Control of HR Hand position is focused on the right index finger tip in static 

and fixed environment. 

(c) McKibben muscles are controlled using on/off valves with constant pressure 

of 0.3 MPa.  

(d) MATLAB function nprtool and fitcknn is used to build the machine learning 

models of ANN and KNN. 

 

1.6 Operational Definition 

Some operational definitions are as below: 

(a)  Artificial Intelligence (AI): A wide ranging branch of computer science 

concerned with building smart machines capable of performing tasks the 

typically require human intelligence. 

(b) Machine learning: Application of AI that provides systems the ability to 

automatically learn and improve experience without being explicitly 

programmed. 
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(c) Artificial neural network (ANN): Mathematical models which match the 

learning process in biological neurons. The ANN model are trained to learn 

knowledge for pattern recognition, values prediction, data validation and 

classification. 

(d) Humanoid robot: Robot developed to resemble humans closely. 

 

1.7 Significance of Study 

The significance of this work are as below: 

(a) This study is related to health and wellness where musculoskeletal system 

could give robotics alternative solution for medical student other than using 

real cadaver model. 

(b) The study enhances the HR Hand for automated positioning control using 

machine learning approach. 

 

1.8 Chapter Summary 

This chapter had discussed the background problem of the study that led to the 

problem statement. Three research objectives were put forward to assist the direction 

and tighten the scope of the research. The operational definition define the terms used 

in the study and helps to explain the significance of the study. This will be explained 

clearly in the literature review. 
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