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ABSTRACT 

The human eye is important to the survival and evolution of humanity. Thus, 

we look to it for inspiration in designing and translating its design into a robotic 

system that can be actuated by soft actuators. The purpose of this study is to 

investigate and implement biomimicry of the human eye through a 3D printed 

robotic eye based on a ball joint system that is actuated by thin McKibben actuators 

with agonist and antagonist muscles. This study proposes the implementation of the 

agonist-antagonistic as well as neutralizer muscles pairs to actuate the robotic eye 

through the control of air pressure at 200 kPa and 420 kPa investigate the behaviour 

of the thin McKibben actuators during the implementation of the agonist-antagonist 

muscles as well as the assessment of its performance via the laser pointer experiment 

and Tracker application. The solution is based on the advantage gained through the 

implementation of the thin McKibben actuators as well as 3D printing during the 

robotic eye design, which grants an improved, simpler design to the robotic eye. The 

approach has several notable merits, namely a reduction in design complexity and 

reduction in size. A comprehensive verification via experimentation was carried out 

to determine the effectiveness of the concept and design. The result confirms that the 

method can produce a robotic eye design that works well through the use of agonist-

antagonist muscles pairs and neutralizer muscle pairs. From the experimentation 

works, it was found that the 3D printed robotic eye can be actuated via the Thin 

McKibben actuator with the angular movement of around 20 degrees and with two 

Degrees of Freedom via Agonist-Antagonist muscle pairing. The results also show 

the high repeatability of the robot while operating under hysteresis mode, with a 

standard deviation of 0.1 to 0.54 after repeated testing. Furthermore, the behaviour of 

the thin McKibben actuators during the implementation of agonist-antagonist muscle 

action was successfully identified and categorized as contraction, relaxation and re-

contraction behaviours. The method proposed in this paper can be implemented in 

other types of robots with thin McKibben muscles as actuators as well.  
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ABSTRAK 

Sistem visual manusia adalah amat penting kepada survival dan evolusi 

manusia. Oleh itu, kita merujuk kepadanya untuk inspirasi dalam mereka cipta sistem 

visual robotik yang boleh disesuaikan dalam sistem robot yang menggunakan 

penggerak lembut dengan otot agonis-antagonis. Kajian ini dijalankan dengan tujuan 

implementasi biomimikri kepada sistem pergerakan mata manusia dengan 

penggunaan robot mata berdasarkan sendi mata yang dihasilkan melalui percetakan 

3D dan manipulasi penggerak nipis McKibben. Kajian ini mencadangkan kaedah 

implementasi otot agonis dan antagonis serta otot peneutralan untuk menggerakan 

system robot mata melalui kawalan tekanan udara dalam 200 kPa dan 420 kPa, dan 

juga menyiasat tingkah laku penggerak McKibben nipis semasa implementasi otot 

agonis-antagonis serta menilai prestasi robot mata dengan menggunakan kaedah 

eksperimen penunjuk laser dan applikasi Tracker . Keupayaan robot ini dapat dicapai 

hasil daripada implementasi penggerak McKibben nipis dan percetakan 3D dalam 

process reka cipta robot yang mengizinkan reka cipta yang lebih baik dan mudah 

kepada mata robotik ini. Pendekatan ini mempunyai beberapa merit yang ketara, iaitu 

pengurangan kerumitan reka bentuk dan pengurangan saiz. Pengesahan menyeluruh 

melalui eksperimen dijalankan untuk menentukan keberkesanan konsep dan reka 

bentuk. Hasil eksperimen mengesahkan bahawa konsep pasangan otot agonis-

antagonis serta otot peneutralan berjaya dilaksakan.  Dari hasil eksperimen, didapati 

bahawa robot mata yang dicetak 3D dapat digerakkan melalui penggerak McKibben 

nipis dengan pergerakan sudut sekitar 20 darjah dan dengan dua Darjah Kebebasan 

menggunakan pasangan otot agonist dan antagonist. Tambahan lagi, tingkah laku 

penggerak nipis McKibben semasa operasi pasangan otot agonis-antagonis juga 

berjaya dikenal pasti dan dikategorikan sebagai pengecutan, kelonggaran dan 

pengecutan semula. Kaedah yang dicadangkan dalam kajian ini juga boleh 

dilaksanakan dalam jenis robot yang menggunakan penggerak nipis McKibben juga. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The human visual system is a very complex visual system, with the human 

eye acting as a light sensor to capture light of certain wavelength, around 400 to 700 

nanometres [1] from the environment and feeding it into the central nervous system 

for further processing via the optic nerves [2]. The human eye or eyeball movement 

is controlled by six extraocular muscles, with the four extraocular muscle consisting 

of the superior rectus, lateral rectus, inferior rectus and medial rectus controlling the 

movement in the four cardinal directions (up, down, left and right) [3]. The 

extraocular muscles enable movement in the eye via contraction and the muscles 

work together as agonist-antagonist pairs to facilitate eye movement in the desired 

direction.  

The biomimicry is the study of understanding of the design principles that 

govern the biological systems and extract the components of the biological design 

into an engineering or research design [4], [5]. As the human eyes play great 

importance in human daily lives, it is to no surprise that the human eye has inspired 

much research into robotic eye [6–10] designs. 

The thin McKibben actuator was first introduced in the paper by Takaoka et. 

al, 2013 [11] is a pneumatic artificial muscle that was designed to be lightweight, 

thin and flexible. It has been used in numerous biomimicry designs such as human 

hand [12], octopus arm [13], long-legged hexapod Giacometti robot [14], and so on. 

While there are many works that are based on the human body, there is not much 

focus in research in regard to the application of thin McKibben actuators in the 

biomimetic field are for the human eye. Furthermore, while there are many research 

in regards to biomimetic human eyes, the potential of thin McKibben actuators being 
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applied into a similar design has not been fully explored. This presents an interesting 

area to research in regards to the potential of the thin McKibben actuators compared 

to other pneumatic artificial muscles or soft actuators.  

The biomimicry of human eyes using soft actuators is a field that has 

potential for further exploration especially with the advent of 3D printing that 

enables the easy fabrication of custom plastic parts via a 3D printer, which when 

applied together with thin McKibben actuator has the potential to bring about a light-

weight, customizable design with low manufacturing and design downtime. 

Furthermore, the application of thin McKibben actuators in a agonist-antagonistic 

muscle pairing in a ball joint is an area that has potential for further research and 

study, thus creating an interesting prospect of research in biomimetic robotic eye 

actuated by thin McKibben actuator.  

Lastly, while the current soft robotic technology has not entered consumer 

stage application it has great potential for growth, development and application. It is 

hoped that the research in a biomimetic robotic eye that is actuated by thin 

McKibben actuators could be a small tiny step towards the application of soft 

robotics in the field of aerospace, deep-sea exploration, human bionic implants and 

more.  

1.2 Problem Statement 

The thin McKibben actuator has been applied in many bio-inspired and 

biomimetic systems, but there has been less focus on the study of its application in a 

biomimetic or bio-inspired robotic eye. Furthermore while there are many instances 

of robotic eye that is actuated by pneumatic artificial muscles and soft actuators [7–

10], they were designed with larger pneumatic artificial muscles in mind, this there is 

an opportunity to apply the thin McKibben actuators in a bio-inspired robotic eye 

system that uses a ball joint structure as the main pivoting element for rotational 

motion.  
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Secondly, the robotic eye would be a good chance to showcase the 

implementation of the agonist-antagonist muscle relationship using thin McKibben 

actuators in a system using a ball joint structure as the main pivoting element. The 

implementation of agonist-antagonist muscle pairing using pneumatic artificial 

muscles and McKibben actuators is not new and has been done by many different 

researchers, however, there is still room for further study regarding the usage of thin 

McKibben actuators being used as agonist-antagonist muscle pairs in a ball joint 

based system. Furthermore, controlling a ball joint based system solely with agonist-

antagonist pairing might be hard, and as such, there is opportunity to apply and study 

thin McKibben as neutralizer muscles to help reduce unnecessary movement in the 

robotic eye during actuation. Moreover, the behaviour of the thin McKibben 

actuators during the implementation of such muscles pairing is not deeply explored 

and warrants further investigation and testing.  

Lastly, the performance of the 3D printed biomimetic robotic eye based on a 

ball joint system needs to be assessed. The proper methods to test the performance of 

the actuation of the robotic eye has to be developed and compared with other 

verification methods that are being used in the field.  

1.3 Research Objectives 

The objectives of the research are: 

(a) To develop a 3D printed robotic eye with 2 Degree of Freedom that can be 

actuated by thin McKibben Pneumatic Artificial Muscle.  

(b) To implement and investigate Agonist and Antagonistic muscle pairs as well 

as Neutralizer muscles relationships in a 3D robotic eye.  

(c) To evaluate the performance of the 3D printed robotic eye that is actuated by 

thin McKibben actuators. 
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1.4 Research Scope 

The scope of the research are: 

(a) The human eye is very complex, design characteristics of the eye robot model 

will be limited to 2 Degrees of Freedom (up, down, left, right movement.) 

(b) The total length of the McKibben actuators in this study will be within 14 cm 

to 15.8 cm. This is due to the difficulty in fabrication of the McKibben 

actuators.  

(c) The robot will take inspiration from the human eye and will be fabricated via 

3D printing using PLA material. 

(d) The implementation of Agonist and Antagonist, as well as Neutralizer 

muscle, will be done via manipulation of the McKibben actuators at two 

pressure points, 200 kPa as well as 420 kPa.  

(e) Validation of the robotic eye performance will come via two methods, which 

are laser pointer measurements and the Tracker application software. 

1.5 Operational Definition 

Some of the operational definition used is as follows:  

(a) Up thin McKibben: The thin McKibben actuator attached to the top portion 

of the eyeball structure of the robotic eye. Its main function is to pull the 

robotic eye upwards.  

(b) Down thin McKibben: The thin McKibben actuator attached to the bottom of 

the eyeball structure of the robotic eye. Its main function is to pull the robotic 

eye downwards. 
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(c) Left thin McKibben: The thin McKibben actuator attached to the left side of 

the eyeball structure of the robotic eye. Its main function is to pull the robotic 

eye to the left. 

(d) Right thin McKibben: The thin McKibben actuator attached to the right side 

of the eyeball structure of the robotic eye. Its main function is to pull the 

robotic eye to the left. 
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