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ABSTRACT

In the era of artificial intelligence, various applications are using machine
learning to solve some of the engineering problems and ease the people work. Plant
disease is important to be detect as early as possible because the early we found out
there is a disease, the lesser in loss of crops from plant disease which may impact to
the economic and increase of price for crops. Numerous researches have been reported
in the literature that employed different aspects of machine learning methods for plant
disease detection, with the majority of them are focusing on the plant leaves. There are
two common and destructive foliar diseases that are early blight and late blight. Early
blight infection usually associated with plant physiological maturity and fruit load and
late blight can infect and devastate the plants at any developmental stages. Since the
leaves are found to be the most commonly observed part for detecting an infection.
Segmentation technique is a basic and easy way to classify and estimate the severity of
the diseases because it works well with plant disease detection since the infected leaf
area shows significant color differences from its original color. Feature extraction is
an essential step before the segmentation process that determines the applicability of
every machine learning model. Convolution Neural Network (CNN) is a method that
is gaining popularity to solve the feature extraction problem since it can automatically
extract the features directly from the input images. Hence, this project aims to utilize the
semantic segmentation with CNN through transfer learning from the VGG16 network
to segment the plant leaf into healthy, necrotic and symptomatic regions. There are
1200 samples to be labeled as healthy, necrotic and symptomatic and classified into
three severity levels to serve as the training material in the supervise training of CNN.
To observe the performance of the training, normal training and optimized training will
be compared in terms of accuracy and efficiency. Lastly, a deep learning model will be
developed and is capable of recognizing and labeling the given leaves regions whether
it is healthy, necrotic and symptomatic. The deep learning model able to achieve the
global accuracy of 93% and IoU of 67.83% with 1200 data samples which segmented

into 4 different classes.

vii



ABSTRAK

Dalam era kepintaran buatan, pelbagai aplikasi menggunakan pembelajaran
mesin untuk menyelesasikan masalah-masalah kejuruteraaan and memudahkan orang.
Penyakit tumbuh-tumbuhan penting untuk dikesan secepat mungkin kerana kita
boleh mengurangkan kesan kehilangan tanaman dari penyakit tumbuh-tumbuhan and
kenaikan harga tanaman kalau penyakit didapati pada awalnya. Banyak penyelidikan
telah dilaporkan dalam kesusateraan yang menggunakan pelbagai aspek kaedah
pembelajaran mesin untuk mengesanan penyakit tumbub-tumbuhan. Kebanyakan
mereka memberi tumpuan kepada daun tumbuh-tumbuhan. Terdapat dua penyakit
foliar yang biasa dan merosakkan tumbuh-tumbuhan. "Early Blight" yang buasanya
dikaitkan dengan kematangan fisiologi tumbuh-tumbuhan dan hasil buah. "Late
Blight" dapat menginfeksi dan menghancurkan tumbuh-tumbuhan pada mana-mana
peringkat perkembangan. Oleh kerana daun didapti adalah bahagian yang paling
biasa diperhatikan untuk mengesan jangkitan. Teknik segmentasi adalah satu cara
asas dan mudah untuk mengklasifikasikan dan menganggarkan keterukan penyakit
kerana ia dapat mengesan penyakit tumbuh-tumbuhan. Kawasan daun yang dijangkiti
menunjukkan perbezaan warna yang signifikan dari warna asalnya. Pengekstrakan ciri
adalah satu langkah yang perlu sebelum proses segmentasi yang menentukan pemakaian
pembelajaran mesin. "Convolutional Neural Network (CNN)" adalah satu kaedah yang
semakin popular digunakan untuk menyelesaikan masalah pengekstrakan ciri kerana
ia boleh mengeluarkan ciri-ciri secara langsung dari gambar yang dibagikan.Oleh itu,
projek ini bertujuan untuk menggunakan segmentasi semantik dengan menggunakan
CNN melalui pembeljaran pemindahan dari rangkaian VGG16 untuk membahagikan
daun tumbuh-tumbuhan kepada kawasan sihat, nekrotik dan symptomatik. Terdapat
1200 sampel yang dilabelkan sebagai kawasan sihat, nekrotik dan symptomatik dan
diklasifikasikan ke dalam tiga tahap keparahan untuk menjadi bahan latihan dalam
latihan penyeliaan CNN. Untuk melihat prestasi latihan, latihan biasa dan latihan
yang optimum akan dibandingkan dari segi ketepatan dan kecekapan. Akhir sekali,
satu model "Deep Learning” dibuat dan ia dapat mengenali, mengabelkan kawasan
daun yang diberikan sama ada sihat, nekrotik dan symptomatik. Model pembelajaran
mendalam dapat mencapai ketepatan global sebanyak 93% dan IoU daripada 67.83%
dengan 1200 sampel data yang dibahagikan kepada 4 kelas yang berlainan.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Plant disease usually defined as abnormal growth of a plant. Disease is the
result of some disturbance in the plant normal life process. It may cause by living
organisms or non-living environmental conditions such as weathers, soil compaction,

and so on [1]

Plant disease is a major threat to food production and plant diversity, but rapid
identification is still difficult in many places in the world due to the lack of required
infrastructure. In this smartphone era, the combination of rapid increment of global
smartphone usage and the advanced technology in computer vision made smartphone-
assisted disease diagnosis by deep learning is possible [2]. Modern technologies
have helped human society to produce enough food demand for more than 7 billion
people. But, food security is still threatened by some factors including climate change
[3], the decline in pollinators [4], plant diseases [5], and others. Therefore, plant
diseases require monitoring mechanisms to take appropriate measures to ensure the
food production [6]. Imagine if no appropriate action taken on the plant diseases,
this may become a disaster for the 7.7 billion of the world’s human population. Plant
diseases are not only a threat to food security globally, but they can also bring into
disastrous consequences for smallholder farmers whose livelihoods depend on the
healthiness of their crops. In the developing country, more than 80 percent of the
agricultural production is generated by smallholder farmers [7], and yield loss from the
reports is more than 50 percent due to pests and diseases commonly [8]. Furthermore,
the high density of hungry people lives in smallholder farming households [9], making
smallholder farmers a group that is vulnerable to pathogen-derived disruptions in supply

of food particularly.



Different efforts have been developed to reduce and prevent loss of crops due to
the attack of diseases. In the past decade, historical approaches of the widespread
application of pesticides have increasingly been supplemented by integrated pest
management (IPM) approaches [10]. Identifying a disease correctly is a very crucial
step for efficient disease management when it first appears. In the history, identification
of disease has been supported by agricultural extension organizations or even other
institutions such as local plant clinics. Recently, the efforts have been supported
additionally by providing information for disease diagnosis online, leveraging the
improvement of high-speed Internet services worldwide. With the mobile phones
have proliferated in recent years, taking advantage of the historically unparalleled rapid

uptake of mobile phone technology all around the world [11].

Smartphones are a new rising approaches to help in identifying the diseases due
to their computation ability is rising, high resolution display and wide range of built-in
sets of accessories such as advanced cameras and etc. From the estimation, there will
be 5 to 6 billion of smartphones in the global by 2020. From the previous survey by
the end of 2015, there are 69 percent of the world’s population had access to mobile
broadband coverage and 47 percent penetration, a 12-fold increase since 2007 [11].
With the combined factors of the widely used smartphone, advanced cameras and high
performance processors in the smartphone lead to a situation where disease diagnosis
based on automated image recognition. From the theory, it is making sense that we
can expect that technically feasible too. Previous work in [12] shows an example that
demonstrate the technical feasibility by using a deep learning approach utilizing 54,306
images of 14 different crop species with 26 diseases including healthy made available

through the project of PlantVillage [12].

1.2 Problem Statement

Plant disease should be detected as early as possible to help reducing the loss of
crops from plant disease and prevent the increment of the crops price indirectly. From
[13], plant leaves are the commonly observed part to detect an infection. Most of the

existing work is identifying the disease based on the whole leaf image. It is done by



extracting features like color and, texture, followed by identifying the disease based on

the features.

In general, there are two common and destructive foliar diseases which are early
blight and late blight. Early blight infection usually associated with plant physiological
maturity and fruit load and late blight can infect and devastate the plants at any
developmental stages. To differentiate these two types of disease, it is very hard for the
existing work to identify the input as early blight or late blight since both of them have
a very similar symptoms. Therefore, pathologist tends to identify, classify, quantify,
and predict the plant disease based on the disease phenotype morphology. This is
where the leaf is divided into the necrotic, symptomatic, and healthy areas. Hence, this
project will adopt the existing pathologist approach which is to first segment the leaf

into several meaningful areas.

Problem: Existing works are unable to identify early blight and late blight

since both of them have very similar symptoms.

1.3 Objectives

The objective of this project is to utilize semantic segmentation approach
to produce a more informative feature as identification of diseases. Semantic
Segmentation describes the process of associating each pixel of an image with a class
label. The plant leaf image will be segmented into three disease morphology areas,
which are healthy, symptomatic, and necrotic, by applying deep Convolutional Neural
Network (CNN) through transfer learning with VGG16 as a platform for informative

features generated by semantic segmentation.

14 Scope of Study

The scope of this project is aimed at determining plant diseases from the
images prepared. The focus will be given on 1200 samples of plant leaf images that are

randomly selected from the tomato and potato leaves folder through the online platform,



Plant Villages with more than 50,000 images. The 1200 image samples that are used
to label and they will be used as the input of the transfer learning. There are three
different disease morphology areas to be labeled necrotic, symptomatic, and healthy
areas. The necrotic area indicates a plant cell with dead tissue or generated tissue where
the area is darken and wilt. Besides that, symptomatic indicates some symptom on the
plant leaves image. With the transfer learning method, VGG16 is being considered as

pre-trained network to be used.

1.5 Thesis Outline

This project report consisted of five chapters. In Chapter 1, problem
background, problem statement, objectives, and scope of this study are discussed.
In Chapter 2, the background of deep learning and review of some related works
are explained in detail. Chapter 3 presents the project methodology. The ways to
conduct the research, the proposed algorithm and evaluation metrics are discussed in
this chapter. After that, the project results are presented in Chapter 4. Detailed analysis
for the results, discussions on the results obtained as well as comparison with existing
works are presented in this chapter. Finally, the conclusion and recommendations for

future work are discussed in Chapter 5.
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