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ABSTRACT

The scaling of conventional transistor according to Moore’s Law is predicted to reach
its limitation in the future. The conventional transistor using silicon matenal
particularly at nanoscale channel has experienced the short channel effect (SCE),
which leads to increase in the leakage current. Therefore, alternative device structure
and advanced material are needed to overcome the SCE and reduce the leakage current
(ILeak) with regards to the transistor performance. In this project, a method to control
the leakage current in ultranarrow 10 nm FinFET using High-K diclectric material 1s
proposed. The device’s fabrication and electrical characterization are then executed
using TCAD Sentaurus from Synopsys. Optimmzation of the process parameters using
L9 Taguchi method and finally prediction of the best combination of process
parameters in order to obtain the mimmum leakage current (ILgax) in the 10 nm
FinFET. There are four process parameters were varied, which are the fins dimension
(fin height and width), channel concentration and oxide thickness. Smaller-the-Better
(STB) Signal — to —noise ratio (SNR) and the Analysis of Variance (ANOVA) is used
to study the performance characteristic and finally obtain the best combination of
process parameters in order for the device to perform at its best performance, that will
later benchmarked with predicted data from International Technology Roadmap for
Semiconductors (ITRS) and previous published results. The optimization is expected
to result in the attainment of the lower leakage current value in order to increase the

speed performance of the device.



ABSTRAK

Pengukuran transistor konvensional mengikut Undang-undang Moore diramalkan
akan mencapai batasannya pada masa akan datang. Transistor konvensional
menggunakan bahan silikon terutamanya pada saluran nanoscale telah mengalami
kesan saluran pendek, yang menyebabkan kebocoran arus meningkat. Oleh itu,
struktur peranti alternatif dan bahan canggih diperlukan untuk mengatasi kesan saluran
pendek dan mengurangkan kebocoran arus. Dalam projek ini, kaedah untuk mengawal
kebocoran arus elektrik dalam 10 nm FinFET ialah menggunakan bahan High-K
dielektrik. Fabrikasi dan pencirian elektrik telah dijalankan menggunakan TCAD
Sentaurus dari Synopsys. Kaedah L9 Taguchi digunakan untuk mengoptimumkan
parameter proses dan akhirnya meramalkan kombinasi parameter proses yang terbaik
untuk mendapatkan kebocoran arus yang paling minimum dalam FinFET 10 nm.
Empat parameter proses yang diubah, iaitu dimensi sirip (kelebaran dan ketinggian),
kepekatan saluran dan ketebalan oksida. Smaller-the-Better (STB) Signal — to —noise
ratio (SNR) dan Analysis of Variance (ANOVA) digunakan untuk mengkaji ciri prestasi
dan akhirnya meramalkan gabungan parameter proses terbaik untuk mendapatkan
prestasi terbaik peranti yang akan kemudian ditandai dengan data yang diramalkan
dari Peta Jalan Teknologi Antarabangsa untuk Semikonduktor dan juga karya terbitan
sebelumnya. Pengoptimuman dijangka akan menghasilkan pencapaian nilai kebocoran

arus yang rendah untuk meningkatkan prestasi kelajuan peranti.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

The guiding principle that is used for CMOS scaling for the past few decades
is Moore’s Law [1]. The research and development to improve the performance of
Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is growing at an
unprecedented rate since MOSFET is the most vital device in the field of electronic,
communication and radio frequency application. One of the crucial methods to
improve the performance of the MOSFET is by designing it into smaller dimension,
which also means to downscale the size of the device [2]. Intel’s state-of-art has
doubled its transistor density in the recent years, from 45-nm having 3.3 million
transistors per square millimeter to 10 nm having 100.8 million transistors per square

millimeter [3].
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Figure 1.1: State-of-art for Intel's Transistors Density [3]



The gate controllability of the channel potential decreases as the MOSFET is
shrinking down. This is due to the drain having an increase of longitudinal field, which
causes the short channel effects to become worse [2]. Besides that, as the device
dimension decreases, this also means that the equivalent oxide thickness (EOT)
reduces, thus increases the leakage current, which makes the fabrication process of
SiO> not able to carry out. Higher leakage current increases current densities and
encourages higher power dissipation [4]. In fact, leakage current (ILgax) has been
identified as one of the main sources of leakage to the total power consumption of
CMOS devices [5]. Both the SCE and high leakage current have become the crucial
problems to MOSFET. Thus, having an extra gate is one of the attractive alternative

ways in order to have increment of gate control over the channel [6].

For future scaling of CMOS technologies, Multigate MOSFETs (MuGFETs)
have been considered as one of the attractive and promising candidates. This is because
a better drive current had been shown by MuGFETs at a fixed value of Va4 [7].
FinFETs are one of the examples of MuGFETs, where the multigated architecture of
FinFET having additional discrete fin sizing, which brings an advantage to the design
[7] [8]- Crucially, Intel mentioned that 10 nm FinFET shows the capability in terms of
higher speed performance and better energy efticiencies compared to the predecessors
[3]. Meanwhile, the problem of gate leakage current can be solved by introducing the
combination of high-k gate dielectric layer to replace the conventional SiO; [9]. This
could potentially reduce the leakage current flowing through the gate dielectric layer

and improve the reliability of the device.

In fact, in the advancement of CMOS technologies, both the Moore’s Law and
ITRS played a very significant role. Since the very first edition of the ITRS roadmap
in the beginning of 90°s, Moore’s Law and ITRS have been the compliment to each
other. The initial forecast of Gordon Moore is on the number of transistors that can be
integrated into the microchip for the coming ten years, which is from 1965 to 1975,
but it can be seen for the next three decades, the trend remain unchanged [10].
Meanwhile, ITRS, on the other hand, is an ambitious and reliable document, which is
widely used as a guiding reference for the research of the advanced semiconductor

device and manufacturing purposes that gives direction for the next generation of



devices. One of the vital sections which included in ITRS is finding and developing
new device structures to replace the current conventional MOSFETs for a better
performance. One of the suggestions provided in ITRS is using FInFET as the device

to boost the performance without neglecting the short channel effects [11].

1.2 Problem Statement

Scaling down the size of MOSFET is the main trend to achieve the target set
by Moore’s Law. In the current trend, the performance of MOSFET can be improved
easily by scaling down its size. Over the past decades, many researchers have tried to
enhance the scaling technology and have been successfully changed the physical
dimensions of MOSFETs from larger to a smaller dimension [12]. However, the
reduction of the channel length of the transistor has reached the limit in current
technology. As the channel length are scaled to nanometer, the undesirable effects
which are named short channel effects (SCEs) occur and become more problematic.
The SCEs is defined as the channel length, Lch of a MOSFET becomes the same order
of magnitude as the depletion widths associated with the drain and source, in other
words, device downscaling has caused the drain area and source to be much closer to
each other, thus resulting in short channel effects [13]. In this situation, the behaviour
of'the MOSFET is out of expected, and this undesired effect has created a huge impact

in terms on the reliability, modelling and the performance.

Over the past few decades, silicon dioxide (SiO2) has been used as the gate
dielectric material. The continually scaling down of CMOS causes the continuous
reduction of the equivalent oxide thickness (EOT) until as low as 1nm, which makes
the fabrication of SiO2 having difficulty to be achieved since this thickness would
cause higher gate leakage current, and consequently causing increased of current
densities and encourages high power dissipation [4]. In fact, one of the main causes of
the current leakage is because of the ultra-thin gate which contribute much to the total

static power dissipation of the CMOS device.



1.3  Objectives

The main aim of this project is to simulate and optimize the process parameters for
lowering leakage current in a 10 nm FinFET by replacing the conventional SiO; and
polysilicon layers respectively with high-k dielectric materials, using L9 Taguchi

Method.

Below are the objectives, which needed to be achieved to realize the aim of the project:

1. To simulate a 10 nm FinFET with the deposition of high-k material (Hafnium
Oxide) using TCAD Sentaurus from Synopsys.

1.  To optimize the process parameters using L9 Taguchi Method in order to

obtain a lower leakage current (ILgax).

iii.  To perform a statistical analysis and predict the best process parameters
combination of the 10 nm FinFET device using Analysis of Variance
(ANOVA) while benchmarking with predicted data from ITRS and previous
published results.

1.4  Project Scope

1. 10 nm FinFET is developed and simulated as the device structure with this gate
length shows reduced SCE and leakage current with a higher drive current, thus

lowering the leakage current.

ii.  The device’s process will be executed using TCAD Sentaurus from Synopsys.
TCAD Sentaurus software is used throughout this whole project to organize,

design and run simulations.

iii.  Optimization of the 10 nm FinFET using Hafnium Oxide (HfO2) as the

dielectric layer to replace the conventional silicon dioxide for lower leakage

4



current. Hafnium oxide appears to be one of the most attractive type of high k-
dielectric materials and the demand for high-k dielectric materials in integrated
circuits (IC) has becoming more and more imminent in the development of
electronic devices towards miniaturization. Besides, the thickness of the gate

oxide using HfO> would then be optimized throughout the simulation process.

iv. L9 Taguchi Method is used for the optimization of the process parameters. The
advantages of Taguchi method over the other methods are that numerous
factors can be simultaneously optimized, and more quantitative information

can be extracted from fewer experimental trials.

1.5  Chapter Organization

This report is separated into five chapters covering different aspects of this research.

The overview of the work is described as follows:

Chapter 1: This chapter contains the introduction of this research project and brief
discussion on background, problem statement, aim, objectives and project scope of

this research project.

Chapter 2: This chapter covers the literature review of the project. It contains the
concept of this project and on previous work done by various researchers. This chapter
also discusses about the optimization process using L9 Taguchi method by various

researchers.

Chapter 3: This chapter defines the methodology or procedure used in the project. Flow
charts are also included for better description. Besides, this chapter explains the
procedure to model and simulate the design. Performance parameters used to compare
and analyse the 10 nm FinFET using Taguchi method and ANOVA also been

discussed.



Chapter 4: This chapter contains the results for this project. The simulation results
obtained are also discussed and the best setting of parameters is then chosen based on

the statistical analysis on the performance of the device.

Chapter 5: The chapter contains the summary or conclusion of the research project and
findings. Apart from that, this chapter also included the directions and suggestions of

future works for improvement of current work.
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