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ABSTRACT 

The purpose of this study is to develop a dynamic time-of-use (d-TOU) tariff 

scheme for microgrid (MG) systems in islanded mode. A MG system consists of 

renewable energy sources (RES) which generate limited energy with certain degree of 

uncertainty. Thus, energy consumption can be controlled effectively by the 

implementation of d-TOU tariff.  For this purpose, a MG system was designed using 

HOMER simulation tool to fulfil residential load demand from RES and battery 

storage as a backup. The average cost of energy (COE) was obtained from the 

HOMER’s optimized net present cost (NPC) of the system. Then, a day was divided 

into three time-zones, i.e. peak hours, mid-peak hours, and off-peak hours based on 

the generation profile. Considering the generation cost in each time-zone, the average 

COE was transformed into a d-TOU tariff structure with distinct electricity price for 

each time-zone. The results showed that electricity price in each time-zone was higher 

than conventional electricity prices, but greenhouse gas (GHG) emission from the 

designed MG system was found 85% lesser than conventional electricity generation. 

Finally, the impact of demand response (DR) was evaluated, which showed that only 

10% load-shift from peak hours to off-peak hours saved consumers’ annual electricity 

bills by 3.46%, and increased utility’s annual profit by 57.89% at the same time. 

Similarly, shifting 20% load from peak hours to off-peak hours resulted in 10.58% 

reduction in consumers’ electricity bills annually along with 105.26% increase in the 

utility’s annual profit. The results validated that efficient implementation of d-TOU 

tariff and DR in a MG system, result in the peak load shaving, reduction in consumers’ 

electricity bills, increased utility’s profit, and reduction in GHG emissions.  
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ABSTRAK 

Tujuan kajian ini adalah untuk membangunkan skim tarif masa dinamik yang 

diniagakan (d-TOU) untuk sistem microgrid (MG) dalam mod terasing. Sistem MG 

terdiri daripada sumber tenaga boleh diperbaharui (RES) yang menjana tenaga terhad 

dengan tahap ketidakpastian tertentu. Oleh itu, penggunaan tenaga boleh dikawal 

dengan berkesan melalui pelaksanaan tarif d-TOU. Untuk tujuan ini, sistem MG direka 

menggunakan alat simulasi HOMER untuk memenuhi permintaan beban kediaman 

dari RES dan bateri digunakan sebagai kelengkapan sokongan. Kos purata tenaga 

(COE) diperoleh daripada nilai kini bersih (NPC) yang dioptimumkan oleh HOMER. 

Seterusnya, sehari dibahagikan kepada tiga zon waktu, iaitu waktu puncak, waktu 

pertengahan puncak, dan waktu luar puncak berdasarkan profil penghasilan tenaga. 

Berdasarkan kos penghasilan tenaga di setiap zon waktu, COE purata diubah menjadi 

struktur tarif d-TOU dengan harga elektrik yang berbeza bagi setiap zon masa. 

Keputusan menunjukkan bahawa harga elektrik di setiap zon masa lebih tinggi 

daripada harga elektrik konvensional, tetapi pelepasan gas rumah hijau (GHG) dari 

sistem MG direka mempunyai 85% lebih rendah daripada penjanaan elektrik 

konvensional. Akhir sekali, kesan tindak balas permintaan (DR) turut diuji, dimana 

ianya menunjukkan bahawa 10% beban beralih dari waktu puncak ke waktu 

pertengahan puncak mampu menjimatkan bil elektrik tahunan pengguna sebanyak 

3.46%, dan pada masa yang sama, peningkatan keuntungan tahunan utiliti sebanyak 

57.89%. Selain itu, peralihan 20% beban dari waktu puncak ke waktu pertengahan 

puncak menyebabkan pengurangan 10.58% dalam bil elektrik pengguna setiap tahun 

dengan kenaikan keuntungan utiliti tahunan sebanyak 105.26%. Ini membuktikan 

pelaksanaan tarif d-TOU yang dicadangkan adalah efisien dan DR dalam sistem MG 

mampu mengakibatkan pencukuran beban puncak, pengurangan bil elektrik pengguna, 

peningkatan keuntungan utiliti, dan pengurangan pelepasan GRG. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The unpredictable use of electrical energy by the consumers has rendered 

challenge for the utilities to determine optimal energy generation, because any 

instantaneous energy consumption doesn’t truly reflect the actual energy demand. In 

some parts of the day, the energy consumption hits its peak, and failure to match supply 

and demand at these times may result in extreme abnormalities, including blackouts 

[1].  So, to meet this supplementary demand, as a way of convention, more generation 

units are linked into the network whose operational cost is relatively higher and 

consume fossil fuels as well, thereby resulting in environmental pollution [2]. In order 

words, the generation cost of electricity doesn’t remain constant throughout the day. 

Hence, volumetric tariff, also called as flat-rate tariff, as prevalent in the past, cannot 

be an appropriate method to charge for electricity prices because it doesn’t 

accommodate the impact of changing generation cost [3]. Therefore, instead of 

increasing the unneeded generation capacity, time-varying pricing schemes are 

deployed to control peak energy consumption [4]. Under this approach, a day is 

divided into different time-zones with distinct electricity prices. In conventional 

systems, electricity prices are kept higher when consumption is higher, and kept lower 

when consumption drops down. Thus, by doing so, to gain monetary advantages, 

customers are encouraged to shift their consumption to low-priced hours of the day, 

called as demand response (DR) [5].  

The formulation a tariff scheme is a challenge in microgrid (MG) systems, 

especially in islanded or off-grid configuration. Unlike conventional large-scale 

generating stations, MG system contains distributed generation units (DGs), mainly 

renewable energy sources (RES), which generate time-limited energy with certain 

degree of uncertainty [6]. On the other hand, the load profile may be continuous which 
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needs to be fulfilled through limited generation. Thus, development of a dynamic tariff 

scheme is necessitated for islanded MG systems, which can accommodate the 

stochastic nature of renewable generation in its consideration.   

1.2 Problem Statement 

The main feature that discriminates a MG system, consisting of RES, from a 

conventional grid system is its sporadic, intermittent and uncertain nature of energy 

generation [7]. The energy production is enough and, sometimes, even surplus during 

the availability of the resources. On the other hand, during the unavailability of the 

resources, the energy is supplied through energy storage systems [8], which is 

relatively costlier entity. To ensure the system balancing without any external 

assistance, time varying pricing schemes are needed to be introduced, so that users 

minimize and/or shift their load from peak hours to off-peak hours to shave the load 

curve [9]. The real challenge with the current pricing strategies in MG systems is that, 

so far, they have been deployed only in grid-tied systems. In grid-tied mode, the large-

scale main grid is the dominant factor affecting the prices, as energy supply can be 

made continuous by linking-up additional generators at the time of need [2]. 

Furthermore, the current strategies are inclined towards consumer side for the 

calculation of net pricing [10]. In case of MG in islanded mode, due to its stochastic 

nature, generation profile becomes the main factor affecting the electricity prices. The 

purpose of this research is to make a dynamic time-of-use (d-TOU) pricing scheme for 

islanded MG systems which is flexible, comprehensive, and accommodates both the 

generation side and load side for the final version of a dynamic energy tariff. 

1.3 Research Objective 

The objectives of this research work are: 

i. To design a MG system on HOMER with RES along with batteries as 

storage element to fulfil a residential load demand. 
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ii. To develop time-zones (peak hours, mid-peak hours and off-peak hours) 

based on electricity generation profile from RES.  

iii. To formulate a d-TOU tariff, and to evaluate the impact of DR on system 

economics. 

1.4 Research Scope 

i. The DGs to be used in this work are solar photovoltaic (PV) system, wind 

turbines (WT), and battery energy storage system (BESS).  

ii. HOMER simulation tool is used for modelling and analysis of the 

proposed MG system. 

iii. The levelized cost of energy (LCOE), and d-TOU tariff structure is 

developed based on the net present cost (NPC) optimized by HOMER. 

iv. Estimation of greenhouse gas (GHG) emissions from the designed MG, 

and comparison with GHG emission rate from conventional electricity. 

1.5 Significance of the Study 

The successful simulations and results of the proposed system will prove the 

effectiveness of d-TOU tariff scheme on a MG in islanded configuration. The 

stochastic generation profile in islanded MG systems is a challenge, and an efficient 

implementation of d-TOU tariff and dynamic DR ensures optimal balancing between 

continuous load consumption and limited generation. Furthermore, the deployment of 

RES in the design render lesser consumption of fossil fuels, thus guarantee the 

reduction in GHG emissions to the atmosphere. Due to higher capital cost of renewable 

energy products used in RES, the electricity prices of the designed MG system are, of 

course, higher than conventional electricity tariff, but this is justifiable by the gain of 

immensely reduced carbon prints in the atmosphere.  
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1.6 Report Structure 

In the following thesis sections, Chapter 2 discusses and compares the literature 

review carried out for this work. The proposed research methodology is explained in 

Chapter 3. The simulation results and detailed discussions in presented Chapter 4. 

Finally, Chapter 5 draws the conclusion and recommendations.  
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