

FPGA-BASED DESIGN OF A MATH CO-PROCESSOR FOR THE AMIR CPU

ARTHUR TAN FOO YEN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JULY 2020

iii

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my sincere

gratitude to my project supervisor, Assoc. Prof. Dr. Muhammad Nasir Bin Ibrahim,

who offered abundantly helpful, guidance, patience and support throughout the

duration of my project. His advice and encouragement have given me the motivation

to accomplish feats.

I would also like to thank Dr. Suhaila Isaak, Dr. Usman Ullah Sheikh, and Dr.

Zulfakar Aspar for their invaluable advice during the project seminar. Their advice has

allowed me to further improve my work on this project.

In addition, I would like to extend my deepest gratitude to my beloved friends

and family for their continuous blessings and moral support throughout the duration

of this project.

Not forgetting those who had contributed directly or indirectly in the successful

completion of this project, I sincerely appreciate their unconditional support and

guidance throughout this project.

iv

ABSTRACT

Math coprocessors are vital components in modern computing to improve the

overall performance of the system. The AMIR CPU is a homegrown softcore 32-bit

CPU that can only handle integer numbers making it inadequate for high-performance

real-time systems. The aim of this project is to design and develop a math coprocessor

for the AMIR CPU that can perform addition, subtraction, multiplication and division

on IEEE-754 single precision floating-point numbers. The design of the math

coprocessor is devised and improved based on past works on IEEE 754 floating-point

operations and math coprocessor implementations. The architecture of the proposed

math coprocessor consists of a control unit with instruction decode, floating-point

computation unit and a register file. The architecture type is a serial controller with

pipelined data path. The proposed math coprocessor retrieves instruction from the

instruction register, decodes it, retrieves operands from the CPU register, performs

computation then stores the results into the internal register, pending retrieval from the

AMIR CPU. The proposed math coprocessor managed to achieve at least 99.999%

accuracy for all four arithmetic operations with a maximum frequency of 63.8 MHz,

while utilizing less than 30% of the available resource on board an Intel Cyclone IV

EP4CE10E22C8 FPGA. The design is not without flaws as the proposed design has

problems with instruction queueing due to the absence of an instruction buffer.

Nevertheless, with further improvements and features, the proposed math coprocessor

has the potential to enable the AMIR CPU to be used in a wide range of applications.

v

ABSTRAK

Pemprosesan matematik adalah komponen yang amat penting dalam

pengkomputeran moden untuk menambah baik prestasi keseluruhan sistem. AMIR

CPU adalah satu 32-bit CPU teras lembut buatan tempatan yang hanya mampu

mengendalikan nombor bulat membuatkan ianya tidak mencukupi untuk

mengendalikan sistem masa nyata berprestasi tinggi. Tujuan project ini adalah untuk

mereka dan memperbaik satu pemprosesan matematik untuk AMIR CPU yang mampu

melaksanakan proses penambahan, penolakkan, pendaraban dan pembahagi atas

nombor-nombor terapung ketepatan tunggal IEEE-754. Reka bentuk pemprosesan

matematik dirangka dan diperbaiki berdasarkan penyelidikan sebelum ini atas operasi

IEEE-754 titik-terapung dan implimentasi pomproses-bersama matematik. Senibina

pemprosesan matematik yang dicadangkan terdiri daripada unit kawalan dengan dekod

arahan, unit pengiraan titik terapung dan fail daftar. Jenis senibina adalah pengawal

bersiri dengan jalur data saluran. Pemproses yang dicadangkan akan mengambil

arahan dari daftar arahan, menyahkodnya, mengambil operan dari unit penyimpanan

CPU, melakukan pengiraan dan menyimpan hasilnya ke dalam unit penyimpanan

dalaman, sementara menunggu pengambilan dari AMIR CPU. Pemprosesan

matematik yang dicadangkan berjaya mencapai sekurang-kurangnya ketepatan

99,999% untuk keempat-empat operasi aritmetik dengan frekuensi maksimum 63.8

MHz, sambil menggunakan kurang dari 30% sumber yang ada pada Intel Cyclone IV

EP4CE10E22C8 FPGA. Reka bentuk mempunyai sedikt kelemahan kerana reka

bentuk yang dicadangkan mempunyai masalah dengan pengaturan arahan disebabkan

oleh ketiadaan penyangga arahan. Walau demikian, dengan peningkatan dan ciri-ciri

yang lebih maju, pemprosesan matematik yang diusulkan berpotensi untuk

membolehkan AMIR CPU digunakan dalam pelbagai aplikasi.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 ACKNOWLEDGEMENT iv

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES viii

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 2

1.3 Research Objectives 2

1.4 Scope 2

1.5 Report Outline 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Floating-Point Overview 5

2.1.1 IEEE 754 Standard for Floating-Point

Arithmetic 5

2.2 Floating-Point Operations for FPU 11

2.2.1 Addition and Subtraction 11

2.2.2 Multiplication 13

2.2.3 Division 14

2.2.4 Optimizations on Floating-Point

Implementations 16

2.2.5 Summary of Floating-Point Optimizations 22

vii

2.3 Previous Works on Math Coprocessors 23

2.4 AMIR CPU 26

CHAPTER 3 METHODOLOGY 29

3.1 Introduction 29

3.2 Architecture of the Math Coprocessor 29

3.2.1 Operations of the Math Coprocessor 30

3.2.2 Integration with the AMIR CPU 32

3.3 Microarchitecture of the Functional Modules 33

3.3.1 Floating-Point Core 34

3.3.2 Data Storage Unit 46

3.3.3 Control Unit with Instruction Decoder 47

CHAPTER 4 RESULTS AND DISCUSSION 51

4.1 Simulation Results of the Math Coprocessor 51

4.1.1 Addition Operation 52

4.1.2 Subtraction Operation 53

4.1.3 Multiplication Operation 55

4.1.4 Division Operation 56

4.1.5 Discussion of Simulation Results 58

4.2 Performance and Resource Utilization 58

4.3 Benchmark with Related Works 61

CHAPTER 5 CONCLUSION AND FUTURE

RECOMMENDATIONS 63

REFERENCES 65

viii

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1
The special values represented in 32-bits floating-point

format.
9

Table 2.2
Comparison of past works on floating-point

adder/subtractor.
24

Table 2.3
Comparison of past works on floating-point

multiplications.
24

Table 2.4 Comparison of past works on floating-point division. 24

Table 3.1 Summary of instruction components and data direction. 34

Table 3.2 IO functions of the Control Unit 51

Table 3.3 Functions and latency of the states in the Control Unit. 51

Table 4.1
Decimal values of hexadecimal floating-point

representation for Figure 4.1.
55

Table 4.2

Addition results and the percentage of error between the

real number and the floating-point number obtained by

the MATHCO.

56

Table 4.3
Decimal values of hexadecimal floating-point

representation for Figure 4.2.
57

Table 4.4

Subtraction results and the percentage of error between

the real number and the floating-point number obtained

by the MATHCO.

58

Table 4.5
Decimal values of hexadecimal floating-point

representation for Figure 4.3.
59

Table 4.6

Multiplication results and the percentage of error

between the real number and the floating-point number

obtained by the MATHCO.

59

Table 4.7
Decimal values of hexadecimal floating-point

representation for Figure 4.4.
61

ix

Table 4.8

Division results and the percentage of error between the

real number and the floating-point number obtained by

the MATHCO.

61

Table 4.9
Maximum frequency of the MATHCO and the three

floating-point operations.
63

Table 4.10
Overall resource utilization and availability on an Intel

Cyclone IV FPGA.
64

Table 4.11
Logic element, memory and multiplier utilization for

each floating-point operation.
64

Table 4.12
Comparison between the proposed work and previous

works on math coprocessor.
65

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 IEEE 754 single precision floating-point format 6

Figure 2.2 IEEE 754 single precision floating-point range. 7

Figure 2.3 Architecture of a floating-point adder/subtractor. 12

Figure 2.4 Architecture of a floating-point multiplication unit. 14

Figure 2.5 Architecture of the Floating-Point Divider. 16

Figure 2.6 Fused adder-subtractor flowchart by Jaiswal et. al. 18

Figure 2.7
Architecture of the fused floating-point add-subtract

unit.
19

Figure 2.8
Floating-point adder/subtractor proposed by Shao et.

al.
20

Figure 2.9 7-stage pipeline of the multiplier by Krishnan et.al. 22

Figure 2.10 Out-of-order FPU coprocessor architecture. 26

Figure 2.11 Floating-point ALU architecture. 27

Figure 2.12 Architecture of 32-bit RISC CPU with FPU. 28

Figure 2.13 Instruction format of the AMIR CPU. 29

Figure 2.14 Simplified block diagram of the AMIR CPU. 30

Figure 3.1 Overall system of the Math Coprocessor. 32

Figure 3.2 Instruction flow between AMIR CPU and MATHCO. 35

Figure 3.3 Functional block diagram of the Floating-Point Core. 37

Figure 3.4
Functional block diagram of the Fused Addition-

Subtraction Unit.
38

Figure 3.5 Flowchart of the Fused Addition-Subtraction Unit. 39

Figure 3.6 Functional block diagram of the Multiplier Unit. 42

Figure 3.7 Flowchart of the Floating-Point Multiplier Unit. 43

xi

Figure 3.8
Functional block diagram of the Floating-Point

Division Unit.
45

Figure 3.9 Flowchart of the Floating-Point Division Unit. 46

Figure 3.10 IO block diagram of the MATHCO register file. 49

Figure 3.11 IO block diagram of the Control Unit. 50

Figure 3.12
Flowchart of the Control Unit of the Math

Coprocessor.
52

Figure 4.1
Simulation waveform of the MATHCO addition

operation.
55

Figure 4.2
Simulation waveform of the MATHCO subtraction

operation.
56

Figure 4.3
Simulation waveform of the MATHCO multiplication

operation.
58

Figure 4.4
Simulation waveform of the MATHCO division

operation.
60

xii

LIST OF ABBREVIATIONS

CISC – Complex Instruction Set Computer

CORDIC – Coordinate Rotation Digital Computer

CPLD – Complex Programmable Logic Devices

CPU – Central Processing Unit

CU – Control Unit

DSP – Digital Signal Processing

FF – Flip Flops

FIFO – First In First Out

FPGA – Field Programmable Gate Array

FPU – Floating-point Unit

HDL – Hardware Description Language

IEEE – Institute of Electrical and Electronics Engineers

IO – Input/Output

IP – Intellectual Property

LOD – Leading One Detector

LSB – Least Significant Bit

LUT – Look Up Table

MATHCO – Math Coprocessor

MSB – Most Significant Bit

NaN – Not a Number

POR – Power on Reset

RISC – Reduce Instruction Set Computer

RTL – Register Transfer Level

VHDL – Very High Speed Integrated Circuit HDL

1

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Data is everywhere these days. They are in your computer, mobile phone, tablet, watch,

car, and even in your rice cooker. Modern day computing devices are data-centric devices

which process huge amounts of data every second. However, the central processing unit (CPU)

of a system could not optimally process the various types of data. A coprocessor is designed to

work together with the CPU to effectively process specific types of data, such as digital signal

processing, encryption and memory management (Zhao et al., 2016). The presence of a

coprocessor would alleviate the load on the CPU and improve the overall performance of the

system.

Arithmetic operations are required to manipulate data in solving computational

problems (Ardalan and Adibi, 2005). A math coprocessor is a specialized processor that

complements the CPU to specifically perform arithmetic operations. Early embedded

processors such as the Intel 4004 does not have hardware support for floating-point operations.

Eight years later, the famous Intel 8086 still does not have a built-in floating-point unit (FPU).

However, the Intel 8087 was announced as a mathematical coprocessor to add hardware-based

floating-point computation for the Intel 8086 and 8088. The Intel 8087 managed to achieve

20% to 500% performance improvements in floating-point computations (Zhao et al., 2016).

Math coprocessors are commonly found in general purpose computer architectures and are

increasingly found in embedded processors. They are an essential module in the modern-day

computing world.

2

1.2 Problem Statement

The AMIR CPU, a homegrown softcore 32-bit CPU, can only handle integer numbers,

which are inadequate for high-performance real-time systems. Software-based floating-point

computations are slow and inefficient due to the frequent use of load and store operations. The

AMIR CPU does not have the necessary hardware to perform floating-point computations,

which are more precise, accurate and vital in today’s computing world.

1.3 Research Objectives

At present, there are no math coprocessors developed for the AMIR CPU. The purpose

of this project is to design and develop a math coprocessor for the AMIR CPU that is capable

of manipulating IEEE-754 single precision floating-point numbers. The math coprocessor must

be able to perform addition, subtraction, multiplication and division operations on IEEE-754

floating-point numbers. The objectives of this project are:

i. To design an IEEE 754 compliant 32-bit single precision floating point math

coprocessor for the AMIR CPU on an FPGA system.

ii. To perform four basic math operations: addition, subtraction, multiplication and

division

iii. To achieve an accuracy of 99% for the floating-point computations

1.4 Scope

The design and development of the math coprocessor could cover a very wide range.

Therefore, the scope of this project has been restricted to the following aspects:

3

i. RTL design of a floating-point math coprocessor for the AMIR CPU to perform

addition, subtraction, multiplication and division operation.

ii. Floating-point representation is compliant with IEEE 754 32-bit single precision

floating-point format.

iii. Define communication protocol and integration guideline between AMIR CPU and the

proposed math coprocessor.

iv. RTL development of the math coprocessor using Verilog HDL and synthesized based

on Intel Cyclone IV EX FPGA using Intel Quartus Prime software.

v. Develop simulation testbench to measure the result accuracy of the floating-point

operations.

1.5 Report Outline

This report is organized into five chapters, which consists of introduction, literature

review, methodology, results and discussion, as well as conclusion and future

recommendations.

Chapter 1 is the introduction to this project. This chapter covers the general overview

which includes the background, problem statement, research objectives and report outline.

Chapter 2 will discuss on the literature review for this project. This chapter covers the

relevant technical concepts and algorithms needed to carry out this project. This chapter also

covers the previous works done on floating-point operations and math coprocessor

implementations.

Chapter 3 is the methodology of the project. This chapter discusses the overall system

architecture of the math coprocessor, the integration of the math coprocessor with the AMIR

CPU, and the microarchitectures of all the modules used to implement the floating-point

features of the math coprocessor.

4

Chapter 4 details the results and discussion of the project. The main discussion for this

chapter is the simulation results of the four main floating-point operations. Besides that, this

chapter also discusses the performance and resource utilization of the design after synthesis as

well as benchmarking with related works.

Chapter 5 contains the conclusion of this project along with recommendations that

could be done for future improvements.

65

REFERENCES

Ardalan, S. and Adibi, A. (2005) ‘Design, simulation and synthesis of a 32-bit math-processor’,

in Midwest Symposium on Circuits and Systems, pp. 1469–1472. doi:

10.1109/MWSCAS.2005.1594390.

Arish, S. and Sharma, R. K. (2015) ‘Run-time reconfigurable multi-precision floating point

multiplier design for high speed, low-power applications’, in 2nd International

Conference on Signal Processing and Integrated Networks, SPIN 2015. Institute of

Electrical and Electronics Engineers Inc., pp. 902–907. doi:

10.1109/SPIN.2015.7095315.

Arun, K. and Srivatsan, K. (2017) ‘A binary high speed floating point multiplier’, in 2017

International Conference On Nextgen Electronic Technologies: Silicon to Software,

ICNETS2 2017. Institute of Electrical and Electronics Engineers Inc., pp. 316–321. doi:

10.1109/ICNETS2.2017.8067953.

Barrabés Castillo Bratislava, A. and Zálusky Viera Stopjaková, R. (2012) DESIGN OF

SINGLE PRECISION FLOAT ADDER (32-BIT NUMBERS) ACCORDING TO IEEE

754 STANDARD USING VHDL.

Chen, K. T. F. of E. E. (2017) ‘An IEEE-754 compliant floating-point coordinate rotation

digital computer coprocessor on field programmable gate array’.

Cornea, M. et al. (2009) ‘A software implementation of the IEEE 754R decimal floating-point

arithmetic using the binary encoding format’, IEEE Transactions on Computers, 58(2),

pp. 148–162. doi: 10.1109/TC.2008.209.

Hemmert, K. S. and Underwood, K. D. (2007) ‘Floating-point divider design for FPGAs’,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(1), pp. 115–

118. doi: 10.1109/TVLSI.2007.891099.

Hu, H. et al. (2007) ‘A floating-point coprocessor configured by a FPGA in a digital platform

based on fixed-point DSP for power electronics’, in Conference Proceedings - IPEMC

2006: CES/IEEE 5th International Power Electronics and Motion Control Conference.

doi: 10.1109/IPEMC.2006.297256.

Ibrahim, M. N. et al. (2018) ‘AMIR CPU: World’s First and only 32-bit Softcore Processor in

Schematic on Freeware Platform’, in Journal of Physics: Conference Series. Institute

of Physics Publishing. doi: 10.1088/1742-6596/1090/1/012003.

66

Institute of Electrical and Electronic Engineering - IEEE (2008) IEEE Std 754-2008, Standard

for Floating-Point Arithmetic. IEEE. doi: 10.1109/IEEESTD.2008.4610935.

Institute of Electrical and Electronic Engineering, I. (2019) IEEE Std 754-2019 - IEEE

Standard for Floating-Point Arithmetic. IEEE.

Jaiswal, M. and Cheung, R. C. C. (2011) ‘High Performance FPGA Implementation of Double

Precision Floating Point Adder/Subtractor’, International Journal of Hybrid

Information Technology, SERSC, 4.

Jun, K. and Swartzlander, E. E. (2012) ‘Modified non-restoring division algorithm with

improved delay profile and error correction’, in Conference Record - Asilomar

Conference on Signals, Systems and Computers, pp. 1460–1464. doi:

10.1109/ACSSC.2012.6489269.

Kamble, L., Palsodkar, P. and Palsodkar, P. (2018) ‘Research trends in development of floating

point computer arithmetic’, in Proceedings of the 2017 IEEE International Conference

on Communication and Signal Processing, ICCSP 2017. Institute of Electrical and

Electronics Engineers Inc., pp. 329–333. doi: 10.1109/ICCSP.2017.8286371.

Karatsuba, A. and Ofman, Y. P. (1963) ‘Multiplication of Many-Digital Numbers by

Automatic Computers’, in.

Kong, I. and Swartzlander, E. E. (2011) ‘A goldschmidt division method with faster than

quadratic convergence’, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 19(4), pp. 696–700. doi: 10.1109/TVLSI.2009.2036926.

Krishnan, T. and Saravanan, S. (2020) ‘Design of Low-Area and High Speed Pipelined Single

Precision Floating Point Multiplier’, in 2020 6th International Conference on Advanced

Computing and Communication Systems, ICACCS 2020. Institute of Electrical and

Electronics Engineers Inc., pp. 1259–1264. doi:

10.1109/ICACCS48705.2020.9074366.

Kumar, J. V. et al. (2014) FPGA Based Implementation of Pipelined 32-bit RISC Processor

with Floating Point Unit, Journal of Engineering Research and Applications

www.ijera.com. Available at: www.ijera.com (Accessed: 18 December 2019).

Kwon, T. J., Sondeen, J. and Draper, J. (2007) ‘Floating-point division and square root using

a Taylor-series expansion algorithm’, in Midwest Symposium on Circuits and Systems,

pp. 305–308. doi: 10.1109/MWSCAS.2007.4488594.

67

Lavanya, B. K. and Shetty, S. (2017) ‘Computing Non-Restoring and Newton Raphson’s

Method for Division’, Journal of Electronics and Communication Engineering. Ver. II,

12(4), pp. 57–60. doi: 10.9790/2834-1204025760.

Malik, A. and Ko, S. B. (2006) ‘A study on the floating-point adder in FPGAS’, in Canadian

Conference on Electrical and Computer Engineering. doi:

10.1109/CCECE.2006.277498.

Nannarelli, A. (2019) ‘Fused Multiply-Add for Variable Precision Floating-Point’, in

International System on Chip Conference. IEEE Computer Society, pp. 342–347. doi:

10.1109/SOCC46988.2019.1570555329.

Nasir Ibrahim, M. et al. (2015) The Implementation of a Pipelined Floating-point CORDIC

Coprocessor on NIOS II Soft Processor, International Journal of Electrical,

Electronics and Data Communication.

Palekar, S. and Narkhede, N. (2017a) ‘32-bit RISC Processor with floating point unit for DSP

applications’, in 2016 IEEE International Conference on Recent Trends in Electronics,

Information and Communication Technology, RTEICT 2016 - Proceedings. Institute of

Electrical and Electronics Engineers Inc., pp. 2062–2066. doi:

10.1109/RTEICT.2016.7808202.

Palekar, S. and Narkhede, N. (2017b) ‘High speed and area efficient single precision floating

point arithmetic unit’, in 2016 IEEE International Conference on Recent Trends in

Electronics, Information and Communication Technology, RTEICT 2016 -

Proceedings. doi: 10.1109/RTEICT.2016.7808177.

Palsodkar, P. and Palsodkar, P. (2017) ‘Three operand fused floating point add-subtract unit

using redundant adder’, in IEEE Region 10 Annual International Conference,

Proceedings/TENCON. Institute of Electrical and Electronics Engineers Inc., pp. 1343–

1346. doi: 10.1109/TENCON.2017.8228066.

Patil, V. et al. (2015) ‘Out of order floating point coprocessor for RISC v ISA’, in 19th

International Symposium on VLSI Design and Test, VDAT 2015 - Proceedings. Institute

of Electrical and Electronics Engineers Inc. doi: 10.1109/ISVDAT.2015.7208116.

San, A. M. and Yakunin, A. N. (2019) ‘Hardware implementation of floating-point operating

devices by using IEEE-754 binary arithmetic standard’, in Proceedings of the 2019

IEEE Conference of Russian Young Researchers in Electrical and Electronic

Engineering, ElConRus 2019. Institute of Electrical and Electronics Engineers Inc., pp.

1624–1630. doi: 10.1109/EIConRus.2019.8656775.

68

Shao, J., Ye, N. and Zhang, X. Y. (2008) ‘An IEEE compliant floating-point adder with the

deeply pipelining paradigm on FPGAs’, in Proceedings - International Conference on

Computer Science and Software Engineering, CSSE 2008. doi:

10.1109/CSSE.2008.590.

Sharma, A., Singh, S. and Sharma, A. (2018) ‘Implementation of single precision conventional

and fused floating point add-sub unit using Verilog’, in Proceedings of the 2017

International Conference on Wireless Communications, Signal Processing and

Networking, WiSPNET 2017. Institute of Electrical and Electronics Engineers Inc., pp.

169–171. doi: 10.1109/WiSPNET.2017.8299741.

Sharma, J. et al. (2016) ‘Fused floating-point add and subtract unit’, in IC-GET 2015 -

Proceedings of 2015 Online International Conference on Green Engineering and

Technologies. doi: 10.1109/GET.2015.7453797.

Singh, N. and Sasamal, T. N. (2016a) ‘Design and synthesis of goldschmidt algorithm based

floating point divider on FPGA’, in International Conference on Communication and

Signal Processing, ICCSP 2016. Institute of Electrical and Electronics Engineers Inc.,

pp. 1286–1289. doi: 10.1109/ICCSP.2016.7754360.

Singh, N. and Sasamal, T. N. (2016b) ‘Design and Synthesis of Single Precision Floating Point

Division based on Newton-Raphson Algorithm on FPGA’, MATEC Web of

Conferences. EDP Sciences, 57, p. 01009. doi: 10.1051/MATECCONF/20165701009.

Soni, M. K. and Hemant, M. B. K. (2009) FPGA Implementation of IEEE 754 Standard Based

Arithmetic Unit for Floating Point Numbers VLSI Design & CAD.

Sureka, N., Porselvi, R. and Kumuthapriya, K. (2013) ‘An efficient high speed Wallace tree

multiplier’, in 2013 International Conference on Information Communication and

Embedded Systems, ICICES 2013. doi: 10.1109/ICICES.2013.6508192.

Vikas Krishnan, R., Alwyn Rajiv, S. and Nancy Deborah, R. (2019) ‘A comparative study on

the performance of FPGA implementations of high-speed single-precision binary

floating-point multipliers’, in Proceedings of the 2nd International Conference on

Smart Systems and Inventive Technology, ICSSIT 2019. Institute of Electrical and

Electronics Engineers Inc., pp. 1041–1045. doi: 10.1109/ICSSIT46314.2019.8987800.

Xunying, Z. and Xubang, S. (2008) ‘A power-efficient floating-point Co-processor design’, in

Proceedings - International Conference on Computer Science and Software

Engineering, CSSE 2008, pp. 75–78. doi: 10.1109/CSSE.2008.795.

69

Yang, H. J., Yu, F. and Han, D. D. (2013) High performance FPGA implementation of floating

point addition, Applied Mechanics and Materials. doi:

10.4028/www.scientific.net/AMM.380-384.3316.

Zhang, H., Chen, D. and Ko, S. B. (2017) ‘Area- and power-efficient iterative single/double-

precision merged floating-point multiplier on FPGA’, IET Computers and Digital

Techniques. Institution of Engineering and Technology, 11(4), pp. 149–158. doi:

10.1049/iet-cdt.2016.0100.

Zhao, C. et al. (2016) ‘A high-efficient floating point coprocessor for SPARC Leon2 embedded

processor’, in Proceedings - 2015 IEEE 11th International Conference on ASIC,

ASICON 2015. doi: 10.1109/ASICON.2015.7517173.

