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ABSTRACT 

Math coprocessors are vital components in modern computing to improve the 

overall performance of the system. The AMIR CPU is a homegrown softcore 32-bit 

CPU that can only handle integer numbers making it inadequate for high-performance 

real-time systems. The aim of this project is to design and develop a math coprocessor 

for the AMIR CPU that can perform addition, subtraction, multiplication and division 

on IEEE-754 single precision floating-point numbers. The design of the math 

coprocessor is devised and improved based on past works on IEEE 754 floating-point 

operations and math coprocessor implementations. The architecture of the proposed 

math coprocessor consists of a control unit with instruction decode, floating-point 

computation unit and a register file. The architecture type is a serial controller with 

pipelined data path. The proposed math coprocessor retrieves instruction from the 

instruction register, decodes it, retrieves operands from the CPU register, performs 

computation then stores the results into the internal register, pending retrieval from the 

AMIR CPU. The proposed math coprocessor managed to achieve at least 99.999% 

accuracy for all four arithmetic operations with a maximum frequency of 63.8 MHz, 

while utilizing less than 30% of the available resource on board an Intel Cyclone IV 

EP4CE10E22C8 FPGA. The design is not without flaws as the proposed design has 

problems with instruction queueing due to the absence of an instruction buffer. 

Nevertheless, with further improvements and features, the proposed math coprocessor 

has the potential to enable the AMIR CPU to be used in a wide range of applications. 
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ABSTRAK 

Pemprosesan matematik adalah komponen yang amat penting dalam 

pengkomputeran moden untuk menambah baik prestasi keseluruhan sistem. AMIR 

CPU adalah satu 32-bit CPU teras lembut buatan tempatan yang hanya mampu 

mengendalikan nombor bulat membuatkan ianya tidak mencukupi untuk 

mengendalikan sistem masa nyata berprestasi tinggi. Tujuan project ini adalah untuk 

mereka dan memperbaik satu pemprosesan matematik untuk AMIR CPU yang mampu 

melaksanakan proses penambahan, penolakkan, pendaraban dan pembahagi atas 

nombor-nombor terapung ketepatan tunggal IEEE-754. Reka bentuk pemprosesan 

matematik dirangka dan diperbaiki berdasarkan penyelidikan sebelum ini atas operasi 

IEEE-754 titik-terapung dan implimentasi pomproses-bersama matematik. Senibina 

pemprosesan matematik yang dicadangkan terdiri daripada unit kawalan dengan dekod 

arahan, unit pengiraan titik terapung dan fail daftar. Jenis senibina adalah pengawal 

bersiri dengan jalur data saluran. Pemproses yang dicadangkan akan mengambil 

arahan dari daftar arahan, menyahkodnya, mengambil operan dari unit penyimpanan 

CPU, melakukan pengiraan dan menyimpan hasilnya ke dalam unit penyimpanan 

dalaman, sementara menunggu pengambilan dari AMIR CPU. Pemprosesan 

matematik yang dicadangkan berjaya mencapai sekurang-kurangnya ketepatan 

99,999% untuk keempat-empat operasi aritmetik dengan frekuensi maksimum 63.8 

MHz, sambil menggunakan kurang dari 30% sumber yang ada pada Intel Cyclone IV 

EP4CE10E22C8 FPGA. Reka bentuk mempunyai sedikt kelemahan kerana reka 

bentuk yang dicadangkan mempunyai masalah dengan pengaturan arahan disebabkan 

oleh ketiadaan penyangga arahan. Walau demikian, dengan peningkatan dan ciri-ciri 

yang lebih maju, pemprosesan matematik yang diusulkan berpotensi untuk 

membolehkan AMIR CPU digunakan dalam pelbagai aplikasi.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Data is everywhere these days. They are in your computer, mobile phone, tablet, watch, 

car, and even in your rice cooker. Modern day computing devices are data-centric devices 

which process huge amounts of data every second. However, the central processing unit (CPU) 

of a system could not optimally process the various types of data. A coprocessor is designed to 

work together with the CPU to effectively process specific types of data, such as digital signal 

processing, encryption and memory management (Zhao et al., 2016). The presence of a 

coprocessor would alleviate the load on the CPU and improve the overall performance of the 

system. 

Arithmetic operations are required to manipulate data in solving computational 

problems (Ardalan and Adibi, 2005). A math coprocessor is a specialized processor that 

complements the CPU to specifically perform arithmetic operations. Early embedded 

processors such as the Intel 4004 does not have hardware support for floating-point operations. 

Eight years later, the famous Intel 8086 still does not have a built-in floating-point unit (FPU). 

However, the Intel 8087 was announced as a mathematical coprocessor to add hardware-based 

floating-point computation for the Intel 8086 and 8088. The Intel 8087 managed to achieve 

20% to 500% performance improvements in floating-point computations (Zhao et al., 2016). 

Math coprocessors are commonly found in general purpose computer architectures and are 

increasingly found in embedded processors. They are an essential module in the modern-day 

computing world. 
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1.2 Problem Statement 

The AMIR CPU, a homegrown softcore 32-bit CPU, can only handle integer numbers, 

which are inadequate for high-performance real-time systems. Software-based floating-point 

computations are slow and inefficient due to the frequent use of load and store operations. The 

AMIR CPU does not have the necessary hardware to perform floating-point computations, 

which are more precise, accurate and vital in today’s computing world. 

1.3 Research Objectives 

At present, there are no math coprocessors developed for the AMIR CPU. The purpose 

of this project is to design and develop a math coprocessor for the AMIR CPU that is capable 

of manipulating IEEE-754 single precision floating-point numbers. The math coprocessor must 

be able to perform addition, subtraction, multiplication and division operations on IEEE-754 

floating-point numbers. The objectives of this project are: 

i. To design an IEEE 754 compliant 32-bit single precision floating point math 

coprocessor for the AMIR CPU on an FPGA system. 

ii. To perform four basic math operations: addition, subtraction, multiplication and 

division 

iii. To achieve an accuracy of 99% for the floating-point computations 

1.4 Scope 

The design and development of the math coprocessor could cover a very wide range. 

Therefore, the scope of this project has been restricted to the following aspects: 
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i. RTL design of a floating-point math coprocessor for the AMIR CPU to perform 

addition, subtraction, multiplication and division operation. 

ii. Floating-point representation is compliant with IEEE 754 32-bit single precision 

floating-point format. 

iii. Define communication protocol and integration guideline between AMIR CPU and the 

proposed math coprocessor. 

iv. RTL development of the math coprocessor using Verilog HDL and synthesized based 

on Intel Cyclone IV EX FPGA using Intel Quartus Prime software. 

v. Develop simulation testbench to measure the result accuracy of the floating-point 

operations. 

1.5 Report Outline 

This report is organized into five chapters, which consists of introduction, literature 

review, methodology, results and discussion, as well as conclusion and future 

recommendations. 

Chapter 1 is the introduction to this project. This chapter covers the general overview 

which includes the background, problem statement, research objectives and report outline. 

Chapter 2 will discuss on the literature review for this project. This chapter covers the 

relevant technical concepts and algorithms needed to carry out this project. This chapter also 

covers the previous works done on floating-point operations and math coprocessor 

implementations. 

Chapter 3 is the methodology of the project. This chapter discusses the overall system 

architecture of the math coprocessor, the integration of the math coprocessor with the AMIR 

CPU, and the microarchitectures of all the modules used to implement the floating-point 

features of the math coprocessor. 
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Chapter 4 details the results and discussion of the project. The main discussion for this 

chapter is the simulation results of the four main floating-point operations. Besides that, this 

chapter also discusses the performance and resource utilization of the design after synthesis as 

well as benchmarking with related works. 

Chapter 5 contains the conclusion of this project along with recommendations that 

could be done for future improvements.
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