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ABSTRACT

The peripheral blood film (PBF) is a laboratory work-up that involves cytology
of peripheral blood cells smeared on a slide. As basic as it is, PBF is invaluable in the
characterization of various clinical diseases as the PBF is an informative
haematological tool at the clinician’s disposal in screening, diagnosis and monitoring
of disease progression and therapeutic response. Common clinical indication for PBF
includes unexplained cytopenia, anaemia, unexplained jaundice, chronic myeloid
leukaemia, suspected organ failure such as renal disease, liver failure, lymphoma and
chronic lymphocytic leukaemia. PBF can only be interpreted under the microscope. A
quick assessment of a PBF can be made within 3 minutes by a skilled laboratory
physician but an abnormal film would require a longer time for wider view and
differential cell counts. In addition, with the increasing amount of PBF screening (up
to hundreds) samples requested per day, it is impossible for the laboratory physician
to finish up the PBF screening within the given time frame. Besides, this conventional
method tends to give inconsistent outcome as well as poor accuracy due to the
significant level of inter-observer variation in grading. In Malaysia particularly, the
PBF screening only available in selected General Hospital who has Hematopathology
unit. Thus, all PBF samples from Klinik Kesihatan and District Hospital will be sent
out to this hospital. The process itself is time consuming and tedious. Therefore, this
project is aimed for the PBF to be analysed by a system that could differentiate the
component on PBF which are, red blood cell (RBC), white blood cell (WBC) and
platelets quantitively. Faster R-CNN algorithm for object detection is implemented as
the deep learning framework for training, validating and testing the PBF images. The
framework is built by integrating the Keras object detection package on top of
backbone, Tensorflow library with Python as the programming language.
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ABSTRAK

Filem darah periferal (FDP) adalah kerja makmal yang melibatkan sitologi
selsel darah perifer yang dioleskan pada slaid. FDP adalah sangat bernilai didalam
bidang klinikal dimana ianya berfungsi sebagai alat hematologi bermaklumat dalam
pemeriksaan, diagnosis dan pemantauan perkembangan penyakit dan tindak balas
terapeutik. Petunjuk klinikal yang biasa untuk FDP termasuk sitopenia yang tidak
dapat dijelaskan, anemia, penyakit kuning yang tidak dapat dijelaskan, leukemia
myeloid kronik, kegagalan organ yang disyaki seperti penyakit buah pinggang,
kegagalan hati, limfoma dan leukemia limfositik kronik. FDP hanya boleh ditafsirkan
di bawah mikroskop sahaja. Penilaian FDP yang pantas boleh dibuat dalam masa 3
minit oleh seorang doktor makmal yang mabhir, tetapi filem yang tidak normal
memerlukan masa yang lebih lama dengan melihat gambaran besar dan lebih luas
untuk bilangan sel yang tepat. Di samping itu, dengan peningkatan jumlah
pemeriksaan FDP sehingga beratus-ratus sampel yang diminta setiap hari, adalah
mustahil bagi doctor makmal untuk menamatkan pemeriksaan dalam tempoh masa
yang ditetapkan. Disamping itu, kaedah konvensional ini cenderung untuk
memberikan hasil yang tidak konsisten serta ketepatan yang tidak baik kerana
perbezaannya dalam pengredan. Di Malaysia terutamanya, pemeriksaan FDP hanya
terdapat di Hospital Umum terpilih yang mempunyai unit Hematopatologi. Oleh itu,
semua sampel FDP dari Klinik Kesihatan dan Hospital Daerah akan dihantar ke
hospital ini. Proses itu sendiri memakan masa dan rumit. Juster, projek ini bertujuan
untuk menganalisis FDP dengan sistem yang boleh membezakan komponen FDP 1aitu
sel darah merah (SDM), sel darah putih (SDP) dan platelet secara kuantitatif.
Algoritma untuk pengesanan objek iaitu, Faster R-CNN dipilih sebagai rangka
pembelajaran mendalam untuk latihan, pengesahan dan ujian gambar-gambar FDP.
Rangka ini diintegrasi bersama pakej pengesanan objek, Keras dan tulang belakang
system, Tensorflow dengan menggunakan bahasa pengaturcaraan Python.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Blood is an important fluid that circulates in human body specifically known
as peripheral blood that is vital for humans’ oxygen supply, immunity, nutrition and
waste secretion [1]. A normal human will have about 4.5 to 5.5 litres of blood inside
their body [2]. Thousand and billions of cells are composed inside blood that deliver
different function to the body and the major cells are red blood cell, white blood cell,

and platelets (Figure 1.1). These cells were wrapped around together with another

protein-composed fluid called plasmas.

@

Figure 1.1 [1lustration of 3 major cells in the peripheral blood (left) and Peripheral
Blood Film (right).

The diagnosis of this peripheral blood film helps in determine the health
condition of a person. This is done by having the peripheral blood smeared on a
slide with utmost care following the SOP as to have the specimen in good condition
when diagnosed later. The specimen will be placed under microscope to gets its image
as peripheral blood film (Figure 1.1). Specialist in charge of making the deduction
throughout the diagnosis is known as haematologist. They will gather the useful
information on the blood cell morphology from the PBF for example, the cell counts,

volume or its variation in shape and size [3]



1.2 Blood Cell Count

A simple blood test is done to acquire the complete blood count (CBC) to
monitor the possibility of the patient having a disease. According to Laura [4], the
RBC cell count for a normal adult is different between female and male. Normally, the
red blood cell will have a higher count than white blood cell and platelets with values
of 40% to 45% of its blood volume [5]. The blood count range for RBC, WBC and

platelets are summarised as Table 1.1.

Table 1.1 Complete Blood Count

Reference Range
Blood Cell
Male (per mm?3) Female (per mm?)
Red Blood Cell 4.3-5.9 million 3.5-5.5 million
White Blood Cell 4500-11,000
Platelets 150,000-400,000

When the counts of the blood cell are not in the reference range, it can help
haematologist to diagnose on the symptom to the related disease in which need to be
further investigated. For example, some known disease that are related to RBC is the
anaemia. Apart from RBC count, its average size, total space consumed in the blood
and amount of Haemoglobin are also taken into consideration [6]. If the RBC count

1s below the reference range, the patient is diagnosed from having anaemia.

Meanwhile for WBC, the low counts might lead to the condition of infection,
chemotherapy as to kill cancerous cells, AIDS and Lupus and high cell count points to
leukaemia, a type of cancer [7]. As for the platelets, having a higher count can
associates with thrombocytosis that can lead to stroke, heart attack or blood clot

formed in blood vessels [8].



1.3 Problem Statement

To evaluate the PBF, a skilled laboratory physician would take up about 3
minutes of a quick assessment but for peculiar or abnormal ones would take up more
2 time for wider view and to get the correct differential cell counts [9]. The PBF
diagnosis is first done by preparing a correctly made peripheral blood smear. It is then
stained with a specific stainer to get the details of blood component such as its

respective nuclei and cytoplasm [5].

1.4  Research Objective

1. To implement the deep learning algorithm that can identify between RBC,
WBC and Platelet from PBF.

2. To have the cell count of RBC, WBC and Platelet from PBF by using deep

learning model.

3. To achieve high accuracy for cells identification.

1.5  Scope of Work

1.5.1 Software and tools

This system implements Faster R-CNN deep learning model framework for
object detection algorithm. The coding will be using Python programming
language with Anaconda Python version 3.6. This architecture is installed
with Keras package and Tensorflow Library for the object detection model. The
dataset augmentation and the calculation of the blood cell will be done in Jupyter

Notebook.



1.5.2 Datasets

Input dataset is collected from MIT-licensed Roboflow BCCD Dataset in two
different data format for its annotation which are .xml file as Pascal VOC and .csv file
as Tensorflow Object Detection [10]. The model is tested with another dataset with
different image from testing and validation to get the accuracy of the prediction as well

as the count for each blood cell in an image.

1.5.3 Limitation

The model will only predict three major blood component which are RBC,
WBC and Platelets and would not further classify the class for each blood cell. As for

the testing dataset, the image was selected only for the clear RBC shape composition.

Figure 1.2 Example image used as testing dataset (left). Example image of
overlapped RBC that is discarded from dataset (right).
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