

GCC TOOLCHAIN’S C COMPILER WRAPPER FOR THE AMIR CPU

ASSEMBLY LANGUAGE

ELINE EE BEE LING

A thesis submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JULY 2020

iv

DEDICATION

To my beloved parents, who gave me endless love, trust, constant

encouragement over the years.

To my family, for the patience and support and for enduring the ups and

downs during the completion of this thesis.

To Prof Madya Dr Muhammad Nasir bin Ibrahim for the support, care and

encouragement during the completion of this report.

This report is dedicated to them.

v

ACKNOWLEDGEMENT

First and foremost, I would like to thank Universiti Teknologi Malaysia (UTM)

for providing me the opportunity in completing my Master Project and my

postgraduate studies. In particular, I wish to express my sincere appreciation to my

main thesis supervisor, Prof Madya Dr Muhammad Nasir bin Ibrahim for

encouragement, guidance, critics and support all the way in my Master Project.

Without his continued support and interest, this thesis would not have been the same

as presented here.

Using this opportunity, I would like to express my very great appreciation to

all who have helped me in every way and making my project completion an enjoyable

experience.

vi

ABSTRACT

The microprocessor is an icon of the information age today, which evolved

from the inventions of the transistor and the integrated circuit (IC). The extensiveness

of the microprocessor in this age goes far beyond the wildest imagination at the time

of the first microprocessor. The increased use and the importance of microprocessors

have led to the appearance of microcontroller chips. Today, unique and more powerful

microcontroller, AMIR 32-bit softcore processor was created in order to embrace the

challenges in this era. However, currently AMIR 32-bit softcore processor have yet to

develop a GCC compiler which is able to compile and run C language application

program.

A GCC compiler will convert higher level language such as C programming

language into low level language (assembly language), which according to instruction

set architecture (ISA) of AMIR 32-bit softcore processor. In fact, C language has

always been a preferred language for everyone including students since it is reliable

and powerful programming language. From operating system (OS) perspectives,

Linux as the well-known open source OS, allow us to implement the GCC compiler in

a secure, free as well as highly accessible operating system. In addition, it is also a

capable OS and commonly-used platform for all sorts of applications, especially for

embedded applications. Hence, GCC Toolchain’s C Compiler has been developed in

Linux OS to solve the problem stated. For this project, the C compiler developed will

be only focus on embedded applications. The main objectives of this research are to

develop a working compiler according to ISA of AMIR CPU assembly language as

well as to implement the C compiler using GCC toolchain in Linux environment.

This project will be designed based on a language processing system to convert

C language to assembly language. Firstly, the user will write an application program

using C programming language. The GCC C compiler will compile the program and

translate it into assembly language according to ISA of AMIR CPU assembly

language. The compiler will read the whole C program at once and go through few

analysis before convert into assembler language. The analysis includes lexical

analysis, syntax analysis and code generation. Each analysis represents different

phases in the compilation process, each phase takes the input from the previous stage

and feeds its output to the next phase of the compiler.

Furthermore, in the development of the compiler, Linux (Ubuntu) computer

OS will be used for implementation and trouble-shooting. The assembly code

generated based on AMIR CPU assembly language will be displayed through the code

output in Linux environment.

vii

ABSTRAK

 Dalam zaman kini, kepelbagaian mikropempor telah melampaui imaginasi liar

pada zaman mikropemproses pertama. Hari ini, mikropengawal yang unik dan lebih

berkuasa, dilengkapkan dengan pemproses softcore AMIR 32-bit dicipta untuk

merangkul cabaran-cabaran di era ini. Pada masa yang sama, bahasa pengaturcaraan

yang boleh diproses dan dilaksanakan oleh pemproses menjadi bahagian penting untuk

meningkatkan fleksibiliti. Bahasa C sentiasa menjadi bahasa pilihan untuk semua

orang termasuk pelajar kerana ia adalah bahasa pengaturcaraan yang boleh dipercayai

dan berkuasa. Walau bagaimanapun, pemproses softcore AMIR 32-bit pada masa kini

belum mempunyai pengkompil GCC yang dapat mengkompilasi dan menjalankan

program aplikasi bahasa C. Dalam projek ini, skrip pengkompil direka mengikut

arkitektur set arahan (ISA) AMIR 32-bit softcore processor dan skrip pengkompil akan

dikompilasi menggunakan alat GCC. Dari perspektif sistem operasi (OS), Linux

sebagai OS sumber terbuka yang terkenal, membolehkan pelaksanaan pengkompil

GCC dalam sistem operasi yang selamat, bebas dan juga boleh diakses. Oleh itu, GCC

Toolchain's Compiler C telah dibangunkan dalam OS Linux untuk menyelesaikan

masalah yang dinyatakan. Untuk projek ini, pengkompil C yang dibangunkan hanya

akan memberi tumpuan kepada aplikasi terbenam. Objektif kajian ini termasuk untuk

membangunkan pengkompil yang berkesan mengikut ISA dari bahasa pemasangan

AMIR CPU dan melaksanakan pengkompil C menggunakan toolchain GCC dalam

persekitaran Linux. Pertama, pengguna akan menulis program aplikasi am

menggunakan bahasa pengaturcaraan C. Pengkompil GCC C akan menyusun program

dan menterjemahkannya ke dalam bahasa pemasangan mengikut ISA dari bahasa

pemasangan AMIR CPU. Pengkompil akan membaca keseluruhan program C

sekaligus dan melalui beberapa analisis sebelum menukar ke bahasa pemasang

termasuk analisis leksikal, analisis sintaks dan penjanaan kod. Dalam pembangunan

pengompilasi, OS komputer Linux (Ubuntu) akan digunakan untuk pelaksanaan dan

menimbulkan masalah. Kod pemasangan yang dijana berdasarkan bahasa pemasangan

AMIR CPU akan dipaparkan melalui output kod dalam persekitaran Linux.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 1

1.3 Research Objectives 2

1.4 Scope of Work 2

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Compiler 5

2.2.1 History of Compiler 6

2.2.2 Feature of Compiler 7

2.2.3 Types of Compiler 7

2.2.3.1 Single Pass Compiler 8

2.2.3.2 Two Pass Compiler 8

2.2.3.3 Multi-pass Compiler 9

2.3 Language Processing System 9

2.4 Operation and Phases of a Compiler 11

ix

2.4.1 Lexical Analysis 12

2.4.1.1 Symbol Table Management 13

2.4.2 Syntax Analysis 14

2.4.2.1 AST for C Programming Language 16

2.4.3 Semantic Analysis 17

2.4.4 Intermediate Code Generation 19

2.4.5 Code Optimization 19

2.4.6 Code Generation 20

2.4.7 Error Handling Routine 21

2.5 GCC Toolchain 22

2.5.1 GCC Compiler Structure 23

2.6 Operating System - Linux 24

2.6.1 Advantages of Linux 25

2.7 Motivation to convert C language to assembly

language 26

CHAPTER 3 RESEARCH METHODOLOGY 29

3.1 Introduction 29

3.2 Lexical Analysis 29

3.3 Syntax Analysis 32

3.4 Assembly Code Generation 33

3.5 Project Flow 34

3.6 Compiler Script Implementation on GCC toolchain in

Linux environment 35

3.7 Project Plan 36

CHAPTER 4 RESULTS AND DISCUSSION 39

4.1 Introduction 39

4.2 Test cases of C compiler script 39

4.2.1 Lexical Analysis 40

4.2.2 Syntax Analysis 40

4.2.3 Assembly Code Generation 40

4.3 Results 41

x

4.3.1 Test case 1: Addition and Subtraction 41

4.3.2 Test case 2: Bitwise AND, Bitwise OR and

Bitwise XOR operations 44

4.3.3 Test case 3: Bitwise One’s complement

operations 46

4.3.4 Test case 4: Logical Shift Left and Logical Shift

Right 48

4.3.5 Test case 5: Mathematical operation 51

CHAPTER 5 CONCLUSION 57

5.1 Conclusion 57

5.2 Future Works 57

REFERENCES 59

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Consideration in Code Generation 21

Table 3.1 List of Token Name 29

Table 3.2 Operator and its character sequences 30

Table 3.3 Symbols and its character sequences 30

Table 3.4 Identifier and its format descriptions 31

Table 3.5 Location of token – End of input 31

Table 3.6 List of AMIR 32-bit softcore processor assembly code 33

Table 3.7 Master Project Plan - Semester 1 36

Table 3.8 Master Project Plan - Semester 2 37

Table 4.1 Summary Results Table for Test Case 1 41

Table 4.2 Tokenization Results of Test Case 1 42

Table 4.3 Summary Results Table for Test Case 2 44

Table 4.4 Tokenization Results of Test Case 2 45

Table 4.5 Summary Results Table for Test Case 3 47

Table 4.6 Tokenization Results of Test Case 3 47

Table 4.7 Summary Results Table for Test Case 4 48

Table 4.8 Tokenization Results of Test Case 4 49

Table 4.9 Summary Results Table for Test Case 5 51

Table 4.10 Tokenization Results of Test Case 5 52

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Flowchart of Compiling Process 6

Figure 2.2 Single Pass Compiler 8

Figure 2.3 Two Pass Compiler 8

Figure 2.4 Multi-pass Compiler 9

Figure 2.5 Language Processing System 10

Figure 2.6 Phases of a Compiler 11

Figure 2.7 Overview of Token Generation 12

Figure 2.8 Simple Illustration of an AST 16

Figure 2.9 GCC Compiler Overview (N. B. Jensen, P. Schleuniger, A.

Hindborg, 2015) 24

Figure 3.1 AST structure of Operators 32

Figure 3.2 AST structure of operator Assign 33

Figure 3.3 Overall flow of the project 34

Figure 3.4 Main stages in the compiler script developed 35

Figure 4.1 AST illustration of mathematical equations 54

xiii

LIST OF ABBREVIATIONS

ISA - Instruction Set Architecture

OS - Operating System

GCC - GNU Compiler Collection

CPU - Central Processing Unit

LED - Light-emitting diode

IR - Intermediate Representation

AST - Abstract Syntax Tree

ARM - Advanced RISC Machine

ANSI - American National Standards Institute

K&R - Kidnap & Ransom

UNIX - UNiplexed Information and Computing System

GUI - Graphical User Interface

MIPS - Microprocessor without Interlocked Pipelined Stages

RAM - Random-access memory

MS - Microsoft Studio

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Part of the instruction set summary for AMIR 32-bit

softcore processor (Dr. Muhammad Nasir Ibrahim et al,

2018) 68

Appendix B Lexical Analyzer Script 69

Appendix C Syntax Analyzer Script 76

Appendix D Code Generator Script 87

1

CHAPTER 1

INTRODUCTION

1.1 Problem Background

In this technology-driven era, microprocessors and microcontrollers are

playing an extremely important roles in a wide range of engineering applications.

Nearly all intelligent electronic devices nowadays use microprocessor or

microcontroller chips. The proliferation of microprocessor and microcontrollers as

well as their development systems has led to arising of AMIR A1420A 32-bit softcore

processor with its own instruction set architecture (ISA). To embrace upcoming

challenges, the microcontroller must be able to process not only low-level

programming language (assembly language), but also high-level programming

language. High-level programming language can be very different from the machine

code that the microcontroller can execute, where they are easier to read, write and

maintain. In other words, some gap bridging process is needed, and this is where the

compiler comes in. From the perspectives of operating system (OS) that the program

will be run on, a secure and reliable OS must be chosen. Linux, which recognized as a

great platform for programming, is preferred over Microsoft Windows.

1.2 Problem Statement

Currently, AMIR A1420A 32-bit softcore processor only able to process

assembly language, which are not user-friendly to most of the users, since it is very

close to machine language. It is difficult to use because there are many technical or

hardware details which must be memorized and understood by the developers before

they can actually use the language. Low-level programming languages are machine

oriented and always require the extensive knowledge of the computer architecture

(computer hardware & computer configuration). In addition, low-level language

2

programs are not portable, which means particular program cannot be run on another

microprocessor. In contrast, a high-level programming language such as C enable a

programmer to write program that are independent of a particular type of

microprocessors or microcontrollers. From OS perspectives, Microsoft Windows

brought some disadvantages compared to Linux including it supports only certain

defined platforms and less secure as viruses, hackers and malware can affect the

Windows quickly. Linux OS is chosen as the platform to implement the GCC

toolchain’s C compiler.

1.3 Research Objectives

This Master Project is conducted to fulfil the following objectives:

(a) To develop a working compiler according to ISA of AMIR CPU assembly

language

(b) To implement the C compiler using GCC toolchain in Linux environment

(c) To fulfil the requirement as a part of assessment for the Master of Engineering

(Computer and Microelectronic Systems)

1.4 Scope of Work

The goal of the project is to develop a working compiler according to the

instruction set of AMIR A1420A 32-bit softcore processor. This project mainly

focused on the development of the script of a C compiler using high-level C

programming language. The script must be able to compile the input C program into

assembly language of AMIR A1420A 32-bit softcore processor.

3

From operating system perspectives, the compiler script developed need to be

able to compile and process using GCC toolchain in Linux OS environment. Since the

C programming language can be applied on a very wide scope of applications,

therefore the C compiler developed in this project will emphasize on data movement

instruction as well as logical and arithmetic operations instruction of assembly

language of AMIR A1420A 32-bit softcore processor.

59

REFERENCES

A. A. Maliavko, "The Lexical and Syntactic Analyzers of the Translator for the EI

Language," 2018 XIV International Scientific-Technical Conference on Actual

Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, 2018,

pp. 360-364.

A. Barve and B. K. Joshi, "A parallel lexical analyzer for multi-core machines," 2012

CSI Sixth International Conference on Software Engineering (CONSEG),

Indore, 2012, pp. 1-3.

A. Barve and B. K. Joshi, "Parallel syntax analysis on multi-core machines," 2014

International Conference on Parallel, Distributed and Grid Computing, Solan,

2014, pp. 209-213.

A. Benso, S. Chiusano, P. Prinetto and L. Tagliaferri, "A C/C++ source-to-source

compiler for dependable applications," Proceeding International Conference

on Dependable Systems and Networks. DSN 2000, New York, NY, USA, 2000,

pp. 71-78.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffery D. Ullman Compilers : Principles,

Technique and Tools, 2nd ed. PEARSON Education 2009.

Andrew W. Appel. (1998) Modern Compiler Implementation in C. E-book library

[online]. Available at:

https://books.google.com.my/books?hl=en&lr=&id=obI0AAAAQBAJ&oi=f

nd&pg=PT4&dq=compiler&ots=-

odpE3Q3CX&sig=Ad82hG_39oPrDggqZQ1B6hgW3BU&redir_esc=y#v=on

epage&q=compiler&f=false

A. Piotrowski, "Automatic installation of software-based fault tolerance algorithms in

programs generated by GCC compiler," Proceedings of the 17th International

Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010,

Warsaw, 2010, pp. 101-105.

A. Rani, K. Mehla and A. Jangra, "Parsers and parsing approaches: Classification and

state of the art," 2015 International Conference on Futuristic Trends on

Computational Analysis and Knowledge Management (ABLAZE), Noida,

https://books.google.com.my/books?hl=en&lr=&id=obI0AAAAQBAJ&oi=fnd&pg=PT4&dq=compiler&ots=-odpE3Q3CX&sig=Ad82hG_39oPrDggqZQ1B6hgW3BU&redir_esc=y#v=onepage&q=compiler&f=false
https://books.google.com.my/books?hl=en&lr=&id=obI0AAAAQBAJ&oi=fnd&pg=PT4&dq=compiler&ots=-odpE3Q3CX&sig=Ad82hG_39oPrDggqZQ1B6hgW3BU&redir_esc=y#v=onepage&q=compiler&f=false
https://books.google.com.my/books?hl=en&lr=&id=obI0AAAAQBAJ&oi=fnd&pg=PT4&dq=compiler&ots=-odpE3Q3CX&sig=Ad82hG_39oPrDggqZQ1B6hgW3BU&redir_esc=y#v=onepage&q=compiler&f=false
https://books.google.com.my/books?hl=en&lr=&id=obI0AAAAQBAJ&oi=fnd&pg=PT4&dq=compiler&ots=-odpE3Q3CX&sig=Ad82hG_39oPrDggqZQ1B6hgW3BU&redir_esc=y#v=onepage&q=compiler&f=false

60

A. T. Rose, "Syntax error analysis as a problem solving technique," 30th Annual

Frontiers in Education Conference. Building on A Century of Progress in

Engineering Education. Conference Proceedings (IEEE Cat. No.00CH37135),

Kansas City, MO, USA, 2000, pp. F4B/8 vol.2-.

A. Woss, M. Loberbauer and H. Mossenbock, "Compiler generation tools for C#,"

in IEE Proceedings - Software, vol. 150, no. 5, pp. 323-327, 27 Oct. 2003.

B. Al Housani, B. Mutrib and H. Jaradi, "The Linux review - Ubuntu desktop edition

- version 8.10," 2009 International Conference on the Current Trends in

Information Technology (CTIT), Dubai, 2009, pp. 1-6.

Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang and Ding Ma, "Code Comparison

System based on Abstract Syntax Tree," 2010 3rd IEEE International

Conference on Broadband Network and Multimedia Technology (IC-BNMT),

Beijing, 2010, pp. 668-673.

B. Su, J. Wang, E. W. Hu and J. Manzano, "Assembly code conversion through pattern

mapping between two VLIW DSP processors: a case study," 6th International

Conference on Signal Processing, 2002., Beijing, China, 2002, pp. 406-409

vol.1.

C. D. Newman, R. S. AlSuhaibani, M. L. Collard and J. I. Maletic, "Lexical categories

for source code identifiers," 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, 2017,

pp. 228-239.

C. Park, M. Han, H. Lee and S. W. Kim, "Performance comparison of GCC and LLVM

on the EISC processor," 2014 International Conference on Electronics,

Information and Communications (ICEIC), Kota Kinabalu, 2014, pp. 1-2.

D.A. Padua and M.J. Wolfe. Advanced compiler optimization for super computers.

Cornmun. ACM, 29(12):1184–1201, 1986.

D. Bokan, M. Ðukić, M. Popović and N. Četić, "Adjustment of GCC compiler frontend

for embedded processors," 2014 22nd Telecommunications Forum Telfor

(TELFOR), Belgrade, 2014, pp. 983-986.

D. Owens and M. Anderson, "A generic framework for automated Quality Assurance

of software models - Application of an Abstract Syntax Tree," 2013 Science

and Information Conference, London, 2013, pp. 207-211.

61

D. Wenjian, "ARM7TDMI Optimization Based on GCC," 2010 Second International

Conference on Computer Research and Development, Kuala Lumpur, 2010,

pp. 639-642.

Dr. Matt Poole. (2002). Compilers. Department of Computer, Science University of

Wales Swansea.

Dr. Muhammad Nasir Ibrahim et al 2018 J. Phys.: Conf. Ser. 1090 012003

D. Svoboda, "Beyond errno: Error Handling in “C”," 2016 IEEE Cybersecurity

Development (SecDev), Boston, MA, 2016, pp. 161-161.

E. A. Santos, J. C. Campbell, D. Patel, A. Hindle and J. N. Amaral, "Syntax and

sensibility: Using language models to detect and correct syntax errors," 2018

IEEE 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Campobasso, 2018, pp. 311-322.

Ellis, J.R. Bulldog: a compiler for VLIW architectures. United States: N. p., 1985.

Web.

E. Moorits and G. Jervan, "Profiling in deeply embedded systems," 2012 13th Biennial

Baltic Electronics Conference, Tallinn, 2012, pp. 127-130.

F. Belli, "Regular Expressions for Fault Handling in Sequential Circuits," ARCS 2015

- The 28th International Conference on Architecture of Computing Systems.

Proceedings, Porto, Portugal, 2015, pp. 1-5.

F. Mulla, S. Nair and A. Chhabria, "Cross Platform C Compiler," 2016 International

Conference on Computing Communication Control and automation

(ICCUBEA), Pune, 2016, pp. 1-4.

Farhanaaz and V. Sanju, "An exploration on lexical analysis," 2016 International

Conference on Electrical, Electronics, and Optimization Techniques

(ICEEOT), Chennai, 2016, pp. 253-258.

G. Costagliola and S. -. Chang, "DR parsers: a generalization of LR

parsers," Proceedings of the 1990 IEEE Workshop on Visual Languages,

Skokie, IL, USA, 1990, pp. 174-180.

G. Fischer, J. Lusiardi and J. Wolff von Gudenberg, "Abstract Syntax Trees - and their

Role in Model Driven Software Development," International Conference on

Software Engineering Advances (ICSEA 2007), Cap Esterel, 2007, pp. 38-38.

G. He, Y. Wang and X. Wu, "A regular expression grouping algorithm based on

partitioning method," 2012 3rd IEEE International Conference on Network

Infrastructure and Digital Content, Beijing, 2012, pp. 271-274.

62

G. R. Gao, "Bridging the gap between ISA compilers and silicon compilers: a

challenge for future SoC design," International Symposium on System

Synthesis (IEEE Cat. No.01EX526), Montreal, Quebec, Canada, 2001, pp. 93-

.

G. Zhai and Y. Li, "Analysis and Study of Security Mechanisms inside Linux

Kernel," 2008 International Conference on Security Technology, Hainan

Island, 2008, pp. 58-61.

H. N. Saha, S. Jasu, S. Biswas and D. Das, "A mixed reality platform based on Linux

X -Windowing system," 2018 IEEE 9th Annual Information Technology,

Electronics and Mobile Communication Conference (IEMCON), Vancouver,

BC, 2018, pp. 1354-1358.

I. Budiselic, S. Srbljic and M. Popovic, "RegExpert: A Tool for Visualization of

Regular Expressions," EUROCON 2007 - The International Conference on

"Computer as a Tool", Warsaw, 2007, pp. 2387-2389.

I. C. Bertolotti, "RTOS support in C-language toolchains," 2017 IEEE International

Conference on Industrial Technology (ICIT), Toronto, ON, 2017, pp. 1328-

1333.

I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna and L. Bier, "Clone detection using

abstract syntax trees," Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272), Bethesda, MD, USA, 1998, pp. 368-377.

IEEE Standard for Microprocessor Assembly Language," in IEEE Std 694-1985 , vol.,

no., pp.0_1-, 1985

I. Jaziri, L. Chaarabi and K. Jelassi, "A remote DC motor control using Embedded

Linux and FPGA," 2015 7th International Conference on Modelling,

Identification and Control (ICMIC), Sousse, 2015, pp. 1-5.

J. Alves, M. Held and M. Glesner, "A code generator for an application specific

pipelined processor," Proceedings of MELECON '94. Mediterranean

Electrotechnical Conference, Antalya, Turkey, 1994, pp. 306-308 vol.1.

J. Merrill: Generic and gimple: A new tree representation for entire functions, In

Proceedings of the 2003 GCC Developers’ Summit, pp. 171-179. 2003.

Johnson, Stephen. (2001). Yacc: Yet Another Compiler-Compiler. Unix Programmer's

Manual. 2. Tanaka and King-Sun Fu, "Error-Correcting Parsers for Formal

Languages," in IEEE Transactions on Computers, vol. C-27, no. 7, pp. 605-

616, July 1978.

63

J. Vankeirsbilck, J. Van Waes, H. Hallez and J. Boydens, "Automated Regression

Testing of a GCC Toolchain used on Embedded CPU Programs," 2019 IEEE

XXVIII International Scientific Conference Electronics (ET), Sozopol,

Bulgaria, 2019, pp. 1-4.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang and X. Liu, "A Novel Neural Source

Code Representation Based on Abstract Syntax Tree," 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE), Montreal, QC,

Canada, 2019, pp. 783-794.

Kenneth C. Louden. (2011). Compiler Construction: Principles and Practice, San Jose

State University, USA.

K. H. Yu and Y. H. Hu, "Optimized code generation for programmable digital signal

processors," 1993 IEEE International Conference on Acoustics, Speech, and

Signal Processing, Minneapolis, MN, USA, 1993, pp. 461-464 vol.1.

K. Nakayama and E. Sakai, "Source code pattern as anchored abstract syntax

tree," 2014 IEEE 5th International Conference on Software Engineering and

Service Science, Beijing, 2014, pp. 170-173.

L. Bogdanov, "Statement-level energy simulation in embedded systems using

GCC," 2016 XXV International Scientific Conference Electronics (ET),

Sozopol, 2016, pp. 1-4.

Lei Wang, Boying Lu and Li Zhang, "The study and implementation of architecture-

dependent optimization in GCC," Proceedings Fourth International

Conference/Exhibition on High Performance Computing in the Asia-Pacific

Region, Beijing, China, 2000, pp. 253-255 vol.1.

L. J. Dyadkin, "Multibox parsers: no more handwritten lexical parsers," in IEEE

Software, vol. 12, no. 5, pp. 61-67, Sept. 1995.

L. Johnson, D. C. Pheanis and I. A. Fulton, "Hard-to-detect errors due to the assembly-

language environment," 2007 37th Annual Frontiers In Education Conference

- Global Engineering: Knowledge Without Borders, Opportunities Without

Passports, Milwaukee, WI, 2007, pp. T1E-14-T1E-19.

L. Sharmila, U. Sakthi, A. Geethanjali and S. Sagadevan, "Regular Expression Based

Pattern Matching for Gene Expression Data to Identify the Abnormality

Gnome," 2017 Second International Conference on Recent Trends and

Challenges in Computational Models (ICRTCCM), Tindivanam, 2017, pp.

301-305.

64

L. Simon, D. Chisnall and R. Anderson, "What You Get is What You C: Controlling

Side Effects in Mainstream C Compilers," 2018 IEEE European Symposium

on Security and Privacy (EuroS&P), London, 2018, pp. 1-15.

L. Shan, "Exploration of education reform based on 32-bit assembly language

programming," 2011 6th International Conference on Computer Science &

Education (ICCSE), Singapore, 2011, pp. 595-599.

M. Kong, J. Li and Wang Fengming, "Study on educational mode of Linux majors in

colleges," 2010 International Conference on Artificial Intelligence and

Education (ICAIE), Hangzhou, 2010, pp. 623-626.

M. Mernik and V. Zumer, "An educational tool for teaching compiler construction,"

in IEEE Transactions on Education, vol. 46, no. 1, pp. 61-68, Feb. 2003.

M. Sičák, "Higher order regular expressions," 2015 13th International Conference on

Engineering of Modern Electric Systems (EMES), Oradea, 2015, pp. 1-4.

M. Tabassum and K. Mathew, "Software evolution analysis of linux (Ubuntu)

OS," 2014 International Conference on Computational Science and

Technology (ICCST), Kota Kinabalu, 2014, pp. 1-7.

M. Zaki and S. Tahar, "Syntax code analysis and generation for Verilog," CCECE

2003 - Canadian Conference on Electrical and Computer Engineering.

Toward a Caring and Humane Technology (Cat. No.03CH37436), Montreal,

Quebec, Canada, 2003, pp. 235-240 vol.1.

N. Bellas, I. N. Hajj, C. D. Polychronopoulos and G. Stamoulis, "Architectural and

compiler techniques for energy reduction in high-performance

microprocessors," in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 8, no. 3, pp. 317-326, June 2000.

N. B. Jensen, P. Schleuniger, A. Hindborg, M. Walter and S. Karlsson, "Experiences

with Compiler Support for Processors with Exposed Pipelines," 2015 IEEE

International Parallel and Distributed Processing Symposium Workshop,

Hyderabad, 2015, pp. 137-143.

N. Hasabnis, R. Qiao and R. Sekar, "Checking correctness of code generator

architecture specifications," 2015 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), San Francisco, CA, 2015, pp. 167-

178.

65

N. Vun, H. F. Hor and J. W. Chao, "Real-Time Enhancements for Embedded

Linux," 2008 14th IEEE International Conference on Parallel and Distributed

Systems, Melbourne, VIC, 2008, pp. 737-740.

P. Wang, G. R. Bai and K. T. Stolee, "Exploring Regular Expression Evolution," 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Hangzhou, China, 2019, pp. 502-513.

R. Barua, W. Lee, S. Arnarasinghe and A. Agarwal, "Compiler support for scalable

and efficient memory systems," in IEEE Transactions on Computers, vol. 50,

no. 11, pp. 1234-1247, Nov. 2001.

R. Szabó and A. Gontean, "Image acquistion with Linux on FPGA," 2014 22nd

Telecommunications Forum Telfor (TELFOR), Belgrade, 2014, pp. 1007-

1010.I

S. D. Sharma, D. N. Sonawane, T. Chakravorty and T. Patil, "GNU/Linux shell access

through a web-browser for an embedded Linux e-learning system," 2011 3rd

International Conference on Electronics Computer Technology, Kanyakumari,

2011, pp. 335-338.

Shuai, Wang & Heng, Zhang & Han-qing, Tan & Lin-ying, Jiang. (2012).

Implementation of Step Motor Control under Embedded Linux Based on

S3C2440. Energy Procedia. 16. 1541–1546. 10.1016/j.egypro.2012.01.241.

S. Levinson, A. Rosenberg and J. Flanagan, "Evaluation of a word recognition system

using syntax analysis," ICASSP '77. IEEE International Conference on

Acoustics, Speech, and Signal Processing, Hartford, CT, USA, 1977, pp. 483-

486.

S. Loglo, Sarula and HuaShabao, "Research on Mongolian lexical analyzer based on

NFA," 2010 IEEE International Conference on Intelligent Computing and

Intelligent Systems, Xiamen, 2010, pp. 240-245.

S. MacKenzie, "A structured approach to assembly language programming," in IEEE

Transactions on Education, vol. 31, no. 2, pp. 123-128, May 1988.

Steven Muchnick, Muchnick and Associates. (1997). Advanced Compiler Design

Implementation. Available at:

https://books.google.com.my/books?hl=en&lr=&id=Pq7pHwG1_OkC&oi=fn

d&pg=PR31&dq=compiler&ots=4Za_Hna8nT&sig=BdcBJ-hrc1bBn5a-

eXkJ9SQGL2g&redir_esc=y#v=onepage&q=compiler&f=false

https://books.google.com.my/books?hl=en&lr=&id=Pq7pHwG1_OkC&oi=fnd&pg=PR31&dq=compiler&ots=4Za_Hna8nT&sig=BdcBJ-hrc1bBn5a-eXkJ9SQGL2g&redir_esc=y#v=onepage&q=compiler&f=false
https://books.google.com.my/books?hl=en&lr=&id=Pq7pHwG1_OkC&oi=fnd&pg=PR31&dq=compiler&ots=4Za_Hna8nT&sig=BdcBJ-hrc1bBn5a-eXkJ9SQGL2g&redir_esc=y#v=onepage&q=compiler&f=false
https://books.google.com.my/books?hl=en&lr=&id=Pq7pHwG1_OkC&oi=fnd&pg=PR31&dq=compiler&ots=4Za_Hna8nT&sig=BdcBJ-hrc1bBn5a-eXkJ9SQGL2g&redir_esc=y#v=onepage&q=compiler&f=false

66

T. G. Rose and L. J. Evett, "Semantic analysis for large vocabulary cursive script

recognition," Proceedings of 2nd International Conference on Document

Analysis and Recognition (ICDAR '93), Tsukuba Science City, Japan, 1993,

pp. 236-239.

T. Hasu, "Concrete error handling mechanisms should be configurable," 2012 5th

International Workshop on Exception Handling (WEH), Zurich, 2012, pp. 46-

48.

Torben Ægidius Mogensen. (2010). Basics of Compiler Design. DEPARTMENT OF

COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN.

Tzer-Shyong Chen, Feipei Lai and Rung-Ji Shang, "A simple tree pattern matching

algorithm for code generator," Proceedings Nineteenth Annual International

Computer Software and Applications Conference (COMPSAC'95), Dallas, TX,

USA, 1995, pp. 162-167.

Waite, William & Goos, Gerhard. (1984). Compiler Construction. 10.1007/978-1-

4612-5192-7.

W. Kreuzer, M. Gotschlich and B. Wess, "A retargetable optimizing code generator

for digital signal processors," 1996 IEEE International Symposium on Circuits

and Systems (ISCAS), Atlanta, GA, USA, 1996, pp. 257-260 vol.2.

W. W. Hwu et al., "Compiler technology for future microprocessors," in Proceedings

of the IEEE, vol. 83, no. 12, pp. 1625-1640, Dec. 1995.

X. Zhou, "First-Level Bottom-Up Parser," 2009 International Forum on Computer

Science-Technology and Applications, Chongqing, 2009, pp. 192-195.

Yan Zhang, Xinyu Gao, Ce Bian, Ding Ma and Baojiang Cui, "Homologous detection

based on text, Token and abstract syntax tree comparison," 2010 IEEE

International Conference on Information Theory and Information Security,

Beijing, 2010, pp. 70-75.

Y. Chen and A. Zhu, "Implementation of Linux centralized user authentication and

cloud storage in teaching," 2014 International Conference on Information

Science, Electronics and Electrical Engineering, Sapporo, 2014, pp. 626-628.

Y. Dun-fan, Z. Fei-fan and M. Liang-liang, "Design and Implementation of High-

Precision Timer in Linux," 2009 WRI World Congress on Computer Science

and Information Engineering, Los Angeles, CA, 2009, pp. 341-345.

Y.N. Srikant. (2012). NPTEL Course on Principles of Compiler Design, Department

of Computer Science and Automation Indian Institute of Science Bangalore.

67

Y. Zhou and Q. Zhou, "The embeded real-time Linux operation system based on the

Xenomai," 2011 International Conference on Electrical and Control

Engineering, Yichang, 2011, pp. 3286-3290.

Z. Fu and J. Li, "Spectral clustering based regular expression grouping," 2014

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), Marina del Rey, CA, 2014, pp. 243-244.

Z. Yanyan and R. Xiangjin, "Analysis of Linux Kernel’s Real-Time

Performance," 2018 International Conference on Smart Grid and Electrical

Automation (ICSGEA), Changsha, 2018, pp. 191-194.

Z. Zhang, S. Qin, X. Wang and D. Zhan, "Implementation of embedded Linux based

on PC/104 platform," 2015 6th IEEE International Conference on Software

Engineering and Service Science (ICSESS), Beijing, 2015, pp. 1073-1077.

