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ABSTRACT 

The microprocessor is an icon of the information age today, which evolved 

from the inventions of the transistor and the integrated circuit (IC).  The extensiveness 

of the microprocessor in this age goes far beyond the wildest imagination at the time 

of the first microprocessor.  The increased use and the importance of microprocessors 

have led to the appearance of microcontroller chips.  Today, unique and more powerful 

microcontroller, AMIR 32-bit softcore processor was created in order to embrace the 

challenges in this era. However, currently AMIR 32-bit softcore processor have yet to 

develop a GCC compiler which is able to compile and run C language application 

program.  

A GCC compiler will convert higher level language such as C programming 

language into low level language (assembly language), which according to instruction 

set architecture (ISA) of AMIR 32-bit softcore processor. In fact, C language has 

always been a preferred language for everyone including students since it is reliable 

and powerful programming language. From operating system (OS) perspectives, 

Linux as the well-known open source OS, allow us to implement the GCC compiler in 

a secure, free as well as highly accessible operating system. In addition, it is also a 

capable OS and commonly-used platform for all sorts of applications, especially for 

embedded applications. Hence, GCC Toolchain’s C Compiler has been developed in 

Linux OS to solve the problem stated. For this project, the C compiler developed will 

be only focus on embedded applications. The main objectives of this research are to 

develop a working compiler according to ISA of AMIR CPU assembly language as 

well as to implement the C compiler using GCC toolchain in Linux environment.  

This project will be designed based on a language processing system to convert 

C language to assembly language. Firstly, the user will write an application program 

using C programming language. The GCC C compiler will compile the program and 

translate it into assembly language according to ISA of AMIR CPU assembly 

language. The compiler will read the whole C program at once and go through few 

analysis before convert into assembler language. The analysis includes lexical 

analysis, syntax analysis and code generation. Each analysis represents different 

phases in the compilation process, each phase takes the input from the previous stage 

and feeds its output to the next phase of the compiler.   

Furthermore, in the development of the compiler, Linux (Ubuntu) computer 

OS will be used for implementation and trouble-shooting. The assembly code 

generated based on AMIR CPU assembly language will be displayed through the code 

output in Linux environment. 

  



vii 

ABSTRAK 

          Dalam zaman kini, kepelbagaian mikropempor telah melampaui imaginasi liar 

pada zaman mikropemproses pertama. Hari ini, mikropengawal yang unik dan lebih 

berkuasa, dilengkapkan dengan pemproses softcore AMIR 32-bit dicipta untuk 

merangkul cabaran-cabaran di era ini. Pada masa yang sama, bahasa pengaturcaraan 

yang boleh diproses dan dilaksanakan oleh pemproses menjadi bahagian penting untuk 

meningkatkan fleksibiliti. Bahasa C sentiasa menjadi bahasa pilihan untuk semua 

orang termasuk pelajar kerana ia adalah bahasa pengaturcaraan yang boleh dipercayai 

dan berkuasa. Walau bagaimanapun, pemproses softcore AMIR 32-bit pada masa kini 

belum mempunyai pengkompil GCC yang dapat mengkompilasi dan menjalankan 

program aplikasi bahasa C. Dalam projek ini, skrip pengkompil direka mengikut 

arkitektur set arahan (ISA) AMIR 32-bit softcore processor dan skrip pengkompil akan 

dikompilasi menggunakan alat GCC. Dari perspektif sistem operasi (OS), Linux 

sebagai OS sumber terbuka yang terkenal, membolehkan pelaksanaan pengkompil 

GCC dalam sistem operasi yang selamat, bebas dan juga boleh diakses. Oleh itu, GCC 

Toolchain's Compiler C telah dibangunkan dalam OS Linux untuk menyelesaikan 

masalah yang dinyatakan. Untuk projek ini, pengkompil C yang dibangunkan hanya 

akan memberi tumpuan kepada aplikasi terbenam. Objektif kajian ini termasuk untuk 

membangunkan pengkompil yang berkesan mengikut ISA dari bahasa pemasangan 

AMIR CPU dan melaksanakan pengkompil C menggunakan toolchain GCC dalam 

persekitaran Linux. Pertama, pengguna akan menulis program aplikasi am 

menggunakan bahasa pengaturcaraan C. Pengkompil GCC C akan menyusun program 

dan menterjemahkannya ke dalam bahasa pemasangan mengikut ISA dari bahasa 

pemasangan AMIR CPU. Pengkompil akan membaca keseluruhan program C 

sekaligus dan melalui beberapa analisis sebelum menukar ke bahasa pemasang 

termasuk analisis leksikal, analisis sintaks dan penjanaan kod. Dalam pembangunan 

pengompilasi, OS komputer Linux (Ubuntu) akan digunakan untuk pelaksanaan dan 

menimbulkan masalah. Kod pemasangan yang dijana berdasarkan bahasa pemasangan 

AMIR CPU akan dipaparkan melalui output kod dalam persekitaran Linux. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

In this technology-driven era, microprocessors and microcontrollers are 

playing an extremely important roles in a wide range of engineering applications.  

Nearly all intelligent electronic devices nowadays use microprocessor or 

microcontroller chips.  The proliferation of microprocessor and microcontrollers as 

well as their development systems has led to arising of AMIR A1420A 32-bit softcore 

processor with its own instruction set architecture (ISA). To embrace upcoming 

challenges, the microcontroller must be able to process not only low-level 

programming language (assembly language), but also high-level programming 

language. High-level programming language can be very different from the machine 

code that the microcontroller can execute, where they are easier to read, write and 

maintain. In other words, some gap bridging process is needed, and this is where the 

compiler comes in. From the perspectives of operating system (OS) that the program 

will be run on, a secure and reliable OS must be chosen. Linux, which recognized as a 

great platform for programming, is preferred over Microsoft Windows.  

1.2 Problem Statement 

Currently, AMIR A1420A 32-bit softcore processor only able to process 

assembly language, which are not user-friendly to most of the users, since it is very 

close to machine language. It is difficult to use because there are many technical or 

hardware details which must be memorized and understood by the developers before 

they can actually use the language. Low-level programming languages are machine 

oriented and always require the extensive knowledge of the computer architecture 

(computer hardware & computer configuration). In addition, low-level language 
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programs are not portable, which means particular program cannot be run on another 

microprocessor. In contrast, a high-level programming language such as C enable a 

programmer to write program that are independent of a particular type of 

microprocessors or microcontrollers. From OS perspectives, Microsoft Windows 

brought some disadvantages compared to Linux including it supports only certain 

defined platforms and less secure as viruses, hackers and malware can affect the 

Windows quickly. Linux OS is chosen as the platform to implement the GCC 

toolchain’s C compiler.  

1.3 Research Objectives 

This Master Project is conducted to fulfil the following objectives: 

(a) To develop a working compiler according to ISA of AMIR CPU assembly 

language 

(b) To implement the C compiler using GCC toolchain in Linux environment  

(c) To fulfil the requirement as a part of assessment for the Master of Engineering 

(Computer and Microelectronic Systems) 

 

1.4 Scope of Work 

The goal of the project is to develop a working compiler according to the 

instruction set of AMIR A1420A 32-bit softcore processor. This project mainly 

focused on the development of the script of a C compiler using high-level C 

programming language. The script must be able to compile the input C program into 

assembly language of AMIR A1420A 32-bit softcore processor.  
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From operating system perspectives, the compiler script developed need to be 

able to compile and process using GCC toolchain in Linux OS environment. Since the 

C programming language can be applied on a very wide scope of applications, 

therefore the C compiler developed in this project will emphasize on data movement 

instruction as well as logical and arithmetic operations instruction of assembly 

language of AMIR A1420A 32-bit softcore processor.  
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