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ABSTRACT 

 Majority of the existing works are based on in-car camera system mounted 

inside the vehicles, which is more suitable to be implemented as driver assistance 

system. This is because most of the driver assistance systems only are available for 

advanced cars. Besides that, a large amount of training datasets is required to train the 

driver monitoring system. However, there are no existing datasets that are captured 

based on camera system mounted outside the vehicles, thus the total amount of dataset 

acquired is limited for this project. Therefore, the aim of conducting this thesis is to 

develop a camera-based automated image recognition system that is mounted outside 

the vehicles for detecting the driver using mobile phones for calling while driving. 

Since there are no datasets available for this project, the images are captured and 

collected using Fujifilm XT 10 with XF 35mm f2 lens at overhead bridge nearby Spice 

Arena, Penang, Malaysia. The captured time is from 5pm to 7.30 pm. There are a total 

of 2,340 images are captured and collected. However, about 42 % of the captured 

images are discarded, left with1,348 images are applicable to be the dataset. The 

proposed system framework is developed based on Faster R-CNN with Inception-V2 

architecture by fine tuning the training configuration parameters. The model is 

proposed to train up to 20,000 steps with the total loss is less than 0.07. The duration 

for the training process is about 64 hours. In terms of performance evaluation of the 

model, it is based on detection evaluation metrics applied by COCO. It shows that the 

mAP for Intersection Over Union threshold of 0.50 obtained 97.75% for the model in 

localizing the object along with the classes and the mAR with 10 detections per image 

obtained 72.03% for the model in classifying the object. In terms of overall detection 

accuracy, it obtained 88.71% for the accuracy. 
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ABSTRAK 

Kebanyakkan kerja sebelum ini adalah berdasarkan pada sistem kamera yang 

dipasangkan di dalam kenderaan. Ini adalah lebih sesuai dilaksanakan sebagai sistem 

bantuan pemandu kerana kebanyakkan sistem bantuan pemandu dipasangkan kepada 

kereta mewah sahaja. Selain itu, sejumlah besar data latihan perlu dikumpulkan untuk 

melatih sistem pengawasan pemandu. Namun, tiada data yang disediakan berdasarkan 

sistem kamera yang dipasangkan di luar kenderaan menyebabkan jumlah data yang 

dikumpulkan adalah terhad. Oleh itu, tujuan penyelidikan ini adalah untuk membina 

sistem pengenalan gambar automatik berdasarkan sistem kamera yang dipasangkan di 

luar kenderaan untuk mengesan pemandu yang menggunakan telefon bimbit untuk 

membuat panggilan semasa memandu. Gambar dirakam dan dikumpulkan dengan 

menggunakan Fujifilm XT 10 dengan XF 35mm f2 lens dan dipasangkan di jambatan 

berdekatan Spice Arena, Pulau Pinang, Malaysia. Waktu yang diambil adalah dari 5 

petang hingga 7.30 malam. Terdapat sejumlah 2,340 gambar yang dikumpul. Namun, 

kira-kira 42% daripada gambar yang terkumpul telah dibuang dan terdapat sejumlah 

1,348 gambar sahaja. Sistem yang dicadangkan adalah berdasarkan struktur Faster R-

CNN dengan Inception-V2 dan mengemas kini parameter konfigurasi latihan. Model 

ini dicadangkan untuk melatih sehingga 20.000 langkah dengan jumlah kehilangan 

kurang daripada 0.07. Tempoh untuk proses latihan adalah sekira-kiranya 64 jam. Dari 

segi penilaian prestasi model, ia adalah berdasarkan metrik penilaian pengesanan yang 

diterapkan oleh COCO. Ini menunjukkan bahawa mAP dengan IOU ambang 0.50 

memperolehi 97.75% dalam melokalisasi objek dan mAR dengan 10 pengesanan 

segambar memperolehi 72.03% dalam mengklasifikasikan objek. Dari segi ketepatan 

pengesanan keseluruhan, ia 88.71% untuk ketepatan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

     Mobile phones have become a necessity for people nowadays. In year 2000, only 

12% of the global population subscribed to mobile phone. In year 2015, the mobile 

phone subscriptions rate of the global population had increased up to 97%, which is 8 

times greater than the mobile phone subscriptions rate in year 2000 [1]. This is because 

nowadays mobile phone is commonly used by people for their work, entertainment, 

learning and communication. Based on [2], it stated that the average number of people 

touching their mobile phones per day can reach up to 2,617 and the average time of an 

American spending on their mobile phones for browsing per day can reach up to 5 

hours. It shows that the prevalence of mobile phone usage has pervasive throughout 

the world. 

 

   With the rapid subscriptions of mobile phone throughout the world, distracted 

driving has become a critical topic in traffic safety. According to National Highway 

Traffic Safety Administration Analysis 2018 which carried out by National Safety 

Council, it stated that the total number of fatal distraction-affected traffic crashes has 

increased up to 2,628 where 349 traffic crashes are caused by the mobile phone usage 

while driving, which contributes about 13.3% of the total number of fatal distraction-

affected traffic crashes. Mobile phones are always the main cause for driver 

distraction, which is defined as deviation of driver concentration from the driving task. 

In other words, it means that the driver conducted other activities while driving which 

leads to loss of attentions to the driving condition. Basically, the driver distraction can 

be classified into 3 types which are visual, manual and cognitive distractions. For 

visual distraction, it is occurred when the drivers take their eyes off the road. While, 

for manual distraction, it is occurred when the drivers take off their hands from the 

steering wheel. The driver is considered involving in the cognitive distraction when 

their minds are out of focusing to the driving conditions. Obviously, the acts of using 
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a mobile phone while driving involved in all types of distraction, which may lead to 

property damages, severe injuries or loss of lives [3, 4].  

 

   In order to improve safety and responsible behavior among drivers, many 

countries enforce the law banning for usage of mobile phone while driving, such as 

Malaysia, Singapore and Australia. However, about 1% to 11% of drivers still use their 

mobile phones while driving [5]. Although, the traffic police officers are often to be 

the authority who being assigned for the traffic enforcement on highways and roads, 

the process is laborious and inefficient for them to monitor the driving behavioral for 

each driver visually. This is because it is often required a large amount of police traffic 

officers for setting several checkpoints at different location, which might facing a 

problem of lacking sufficient officer for the inspection operation. At the same time, it 

is often to be the dominant factor for causing traffic jam at the road as it consumed 

time for the officers to track car by car. Thus, a camera-based automated image 

recognition system for detecting the driver using their mobile phones for talking while 

driving is highly required by the traffic safety agencies, which is a highly efficient and 

inexpensive solution to the problems. With the automated enforcement system, it is 

used to track whether the driver making a phone call while driving and provide the 

tracking information to the traffic safety agencies. The system acts as a precaution in 

traffic safety by government with the purpose of reducing the total number of crashes 

that involving the usage of mobile phones while driving. At the same time, it acts as a 

reminder for drivers to be alert and attentive while driving for preventing unintentional 

property-damaged, injury and death. 

 

 

 

1.2 Problem Statement 

   Majority of the prior works are based on the in-car camera system mounted inside 

the vehicles. The captured input data images are not suitable to be used for this project, 

it will be more suitable for driver assistance system. This is because it is not easy for 

government to enforce a law for all drivers to install the camera monitor system into 
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the driver assistance system, impossible to expect all the cars have the driver assistance 

system which only available for highly advanced cars. Therefore, in order to monitor 

the driver behavioural on traffic, a driver monitoring system is required to be designed 

with camera system mounted outside the vehicles. 

 

In order to implement Convolutional Neural Network in the system, it requires 

a large amount of training datasets for training the system to extract the same feature 

space and distribution. However, total amount of dataset acquired is limited for this 

project. Besides that, different researchers implement different image recognition 

system to detect for the usage of mobile phone while driving. But, the accuracy and 

computation time for the system varies with the complexity of the problem. 

 

 

 

1.3 Objectives 

   The objective of this project is to develop a camera-based automated image 

recognition system for detecting the driver using mobile phones for calling while 

driving. Expected achievements in order to fulfill the objectives are:  

i. To collect datasets for driving conditions of car driver in Malaysia. 

ii. To design and develop a Convolutional Neural Network based approach deep 

learning system with high overall detection accuracy. 

iii. To provide performance evaluation between the prior work with the proposed 

framework. 
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1.4 Scope of Work 

The details of scope work for this project are described as follow: 

i. The camera system is set at the overhead bridge for capturing the car driver’s 

driving conditions from front view and captured during daylight. 

ii. Datasets with excessive amount of reflection on windscreen and unclear are 

filtered. 

iii. The detecting system limited to single object in an image for car drivers using 

their mobile phone for calling or not calling only, other distractions are not 

included. 

iv. Assumption on bending driver’s hand toward their head will be consider as an 

action for holding a mobile phone for calling while driving. 

 

 

 

1.5 Thesis Organization 

   This project report consists of 5 chapters. Chapter 1 includes the background, 

problem statement, objectives and scope of work of the project. Chapter 2 discusses 

about the studies on the architecture of CNN and the related works on the driver 

distracted system. The software tools applied and proposed methods are discussed in 

chapter 3, the results and discussions are discussed in chapter 4. Lastly, chapter 5 

discusses about the conclusion, future works and recommendations. 
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