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ABSTRACT

Implementation of deep learning for Acoustic Event Detection (AED) on

embedded systems is challenging due to constraints on memory, computational

resources and, power dissipation. Various solutions to overcome this limitation have

been proposed. One of the latest methods to overcome this limitation is by using

Binarized Neural Network (BNN) which has been proven to achieve approximately 32x

memory savings and 58x lower computational resources. XNOR-Net is a type of BNN

which uses the XNOR gate to perform a logical function on the input data and give all

outputs in binary form. In this project, the XNOR-Net model is constructed and trained

for the AED task using urban sound (UrbanSound8K) and bird sound (Xeno-Canto)

datasets. Prior to performing the training, the datasets were pre-processed through

audio segmentation to produce 1-second sound files. Each audio file is converted from

the time domain to Mel-Spectrogram in the frequency domain and thresholding was

implemented to convert each spectrogram into a binary image. The images are then

reshaped to 32×32 pixels before being used for the training procedure. A performance

comparison between BinaryNet and XNOR-Net in terms of the number of hidden

layers used was performed and one binary convolutional layer structure XNOR-Net

was determined and constructed. The block structure and hyperparameters of the

XNOR-Net were analyzed and optimized to achieve a training accuracy of 96.06% and

validation accuracy of 94.08%.
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ABSTRAK

Pelaksanaan pembelajaran mendalam untuk Pengesanan Acara Akustik (AED)

pada sistem tertanam sangat mencabar kerana kekangan pada memori, sumber

komputasi dan pelesapan daya. Pelbagai penyelesaian untuk mengatasi batasan ini

telah dicadangkan. Salah satu kaedah terkini untuk mengatasi batasan ini adalah

dengan menggunakan Binarized Neural Network (BNN) yang telah terbukti mencapai

kira-kira 32x penjimatanmemori dan 58x sumber pengiraan yang lebih rendah. XNOR-

Net adalah jenis BNN yang menggunakan gerbang XNOR untuk melakukan fungsi

logik pada data input dan memberikan semua output dalam bentuk binari. Dalam

projek ini, model XNOR-Net dibina dan dilatih untuk tugas AED menggunakan

set data bunyi bandar (UrbanSound8K) dan suara burung (Xeno-Canto). Sebelum

melakukan latihan, set data telah diproses sebelumnya melalui segmentasi audio untuk

menghasilkan fail suara 1 saat. Setiap fail audio ditukarkan dari domain waktu ke

Mel-Spectrogram dalam domain frekuensi dan ambang dilaksanakan untuk mengubah

setiap spektrogrammenjadi gambar biner. Gambar kemudian dibentuk semula menjadi

32×32 piksel sebelum digunakan untuk prosedur latihan. Perbandingan prestasi antara

BinaryNet dan XNOR-Net dari segi jumlah lapisan tersembunyi yang digunakan telah

dilakukan dan satu struktur lapisan konvolusional binari XNOR-Net telah ditentukan

dan dibina. Struktur blok dan hiperparameter XNOR-Net dianalisis dan dioptimumkan

untuk mencapai ketepatan latihan 96.06% dan ketepatan pengesahan 94.08%

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xvi

LIST OF SYMBOLS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Research 1

1.2 Problem Statement 2

1.3 Objective 3

viii



1.4 Scope of work 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Bird Sound Detection 5

2.2 Deep Learning Architectures for Bird Sound

Detection 6

2.3 Binarized Neural Networks 9

2.4 Binarized Neural Networks for Sound Detction 13

2.5 Chapter Summary 15

CHAPTER 3 RESEARCHMETHODOLOGY 17

3.1 Project Flow 17

3.2 Proposed System Methodology 19

3.2.1 Prepare audio datasets 19

3.2.2 Convert audio datasets to image spec-

trograms 21

3.2.3 XNOR-Net Architecture 25

3.2.4 XNOR-Net model preparation 26

ix



3.2.5 XNOR-Net model construction 28

3.3 Project Tools 30

3.4 Chapter Summary 31

CHAPTER 4 RESULTS AND DISCUSSION 33

4.1 Case Study Results 33

4.2 XNOR-Net Implementation 39

4.2.1 Building of Model block structure of

XNOR-Net 39

4.2.2 Optimization of XNOR-Net Hyperpa-

rameters 44

4.3 Best model selection 48

CHAPTER 5 CONCLUSION 51

5.1 Research Outcome 51

5.2 Future Works 52

REFERENCES 53

x



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 1.1 Types of sounds and their center frequencies [2]. 1

Table 3.1 Performance analysis of MNIST, CIFAR-10 and ImageNet

using XNOR-Net. 27

Table 3.2 Summary for tools and libraries version 31

Table 4.1 Accuracy and Performance of five layer BinaryNet and

XNOR-Net. 38

Table 4.2 Accuracy and Performance of one binary convolutional layer

BinaryNet and XNOR-Net. 38

Table 4.3 Training Parameter for XNOR-Net. 40

Table 4.4 Accuracy and Performance of XNOR-Net with different

Binary Convolutional Layer numbers. 40

Table 4.5 Accuracy and Performance of XNOR-Net with added

activation function. 42

Table 4.6 Best hyperparameter setting for XNOR-Net. 49

xi



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Overall block diagram of statistical methods for automated

acoustic recognition of bird species [13]. 6

Figure 2.2 Audio-processing steps of the proposed method of acoustic

activity detection [13]. 6

Figure 2.3 Deep CNN models several seconds of acoustic event sound

directly and outputs the posterior probability of classes [14]. 7

Figure 2.4 Accuracy of the deeper CNN and baseline methods [14]. 7

Figure 2.5 Proposed Context-Adaptive Neural Network (CA-NN) with

spectral summary statistics as auxiliary features [16]. 8

Figure 2.6 Basic neural network layout [21]. 9

Figure 2.7 Operations at one neuron of a neural network [21]. 10

Figure 2.8 Binarized Convolutional Layer [23]. 11

Figure 2.9 Block structure of a typical CNN (left) alongside the proposed

XNOR-Net (right). 13

Figure 2.10 Comparison and Summary of Standard Convolution, Binary

Weight and XNOR-Net architecture and their performance

[24]. 13

xii



Figure 2.11 The binarized convolution block (top-left) and non-binarized

convolution block (top-right) structure [26]. 14

Figure 2.12 Sign(x) (bottom-left) and Htanh(x) (bottom-right) functions

[26]. 15

Figure 3.1 Flow chart for the entire project. 17

Figure 3.2 Steps is BNN training. 19

Figure 3.3 Xeno-Canto database (red circle indicate download button). 20

Figure 3.4 Download Xeno-Canto audio file using R programming. 21

Figure 3.5 Audio wave of Humpback Whales [32]. 21

Figure 3.6 Mel-Spectrogram of Humpback Whales [32]. 22

Figure 3.7 Segmentation of audio wave into 1-second audio wave. 23

Figure 3.8 Data processing flow 24

Figure 3.9 Datasets table 24

Figure 3.10 Structure of BNN. 25

Figure 3.11 Batch Normalizing Transform (Ioffe and Szegedy, 2015) [25]. 26

Figure 3.12 Shift based Batch Normalizing Transform [4]. 26

Figure 3.13 Model structure of (a) BinaryNet and (b) XNOR-Net with five

binary convolutional layers. 28

xiii



Figure 3.14 Model structure of (a) BinaryNet and (b) XNOR-Net with one

binary convolutional layer. 28

Figure 3.15 Structure of XNOR-Net in this project. 30

Figure 4.1 Five binary convolutional layers BinaryNet and XNOR-Net. 34

Figure 4.2 One binary convolutional layer BinaryNet and XNOR-Net. 34

Figure 4.3 Training and Validation Accuracy of five binary convolutional

layers BinaryNet and XNOR-Net. 35

Figure 4.4 Training and Validation Accuracy of one binary convolutional

layer BinaryNet and XNOR-Net. 35

Figure 4.5 Training and Validation Loss of five binary convolutional

layers BinaryNet and XNOR-Net. 36

Figure 4.6 Training andValidation Loss of one binary convolutional layer

BinaryNet and XNOR-Net. 36

Figure 4.7 Training and Validation of one binary convolutional layer

XNOR-Net. 40

Figure 4.8 Training and Validation of two layers XNOR-Net. 41

Figure 4.9 Training and Validation of three layers XNOR-Net. 41

Figure 4.10 Training and Validation of XNOR-Net with added Relu

activation layer. 42

xiv



Figure 4.11 Training and Validation of XNOR-Net with added TanH

activation layer. 43

Figure 4.12 Training and Validation of XNOR-Net with added Relu and

TanH activation layers. 43

Figure 4.13 A table of Training and Validation of XNOR-Net with varying

the model parameters. 44

Figure 4.14 Training and Validation of XNOR-Net with base setting. 45

Figure 4.15 Training andValidation ofXNOR-Netwith increase validation

set to 35 percent. 45

Figure 4.16 Training and Validation of XNOR-Net with increase learning

rate decay to 0.005. 46

Figure 4.17 Training and Validation of XNOR-Net with increase learning

rate decay to 0.01. 46

Figure 4.18 Training and Validation of XNOR-Net with increase learning

rate to 0.001. 47

Figure 4.19 Training and Validation of XNOR-Net with increase learning

rate to 0.01. 47

Figure 4.20 Training and Validation of XNOR-Net with batch size equals

to 258. 48

xv



LIST OF ABBREVIATIONS

AED - Acoustic Event Detection

ASR - Autonomous Speech Recognition

AUC - Area Under the ROC curve

BatchNormal - Batch Normalizing

BAD - Bird Acoustic Detection

BCNN - Binarized Convolutional Neural Networks

BNN - Binarized Neural Network

BSD - Bird Sound Detection

CA-NN - Context-Adaptive Neural Network

CNN - Convolutional Neural Network

DNN - Deep Neural Network

GMM - Gaussian Mixture Model

GPU - Graphical Processing Unit

HMM - Hidden Markov Model

MAC - Multiply-Accumulate

MFCCs - Mel-Frequency Cepstral Coefficients

PCEN - Per-Channel Energy Normalization

RNN - Recurring Neural Network

ROC - Receiver Operating Characteristic

SIMD - Single Instruction, Multiple Data

SWAR - SIMD within a register

xvi



LIST OF SYMBOLS

f - Sigma

xvii



CHAPTER 1

INTRODUCTION

1.1 Background of Research

The sound comes with a wide variety of frequency content and temporal

structure in unstructured environments. The wide range of frequency variations gives

different kinds of information especially in urban areas such as car horns, dog bark,

birds chirp, and others [1]. For example, the center frequency of baby crying is at 2

kHz and glass shattering at 4 kHz as shown in Table 1.1.

Table 1.1 Types of sounds and their center frequencies [2].

Sound Number Sound Name Center Frequency (Hz)

1 Airplane passing 250

2 Baby crying 2000

3 Bird singing 2000

4 Cow mooing 500

5 Cuckoo clock sounding 1000

6 Dog barking 1000

7 Coyote howling 500

8 Glass shattering 4000

9 Baby rattle shaking 4000

10 Train chugging along 250

11 Thunder cracking 250

12 Drum beating 500

For home surveillance, Amazon has introduced a smart sensor that can help

users to keep their home safe, known as the Alexa Guard [3]. The Alexa Guard can

1



be activated by the sound of smoke alarms, carbon monoxide alarms, or glass breaking

that happens when the user is out of the home. This system uses a Convolutional Neural

Network (CNN) to recognize the type of sounds detected. If it is an alarm sound, the

Alexa Guard will send the sound recording to notify the user remotely.

The Convolutional Neural Network (CNN) is one of the fundamental network

architectures ofDeepNeural Networks (DNNs). TheCNNperforms verywell on object

recognition and detection in real-world applications. In common with other classes of

intelligent systems, CNN must be trained to obtain the model of the desired behaviour.

TrainingCNN-based recognition systems require large amounts of computational power

and memory resources. Today very fast and power-hungry Graphics Processing Units

(GPUs) are used to train the neural network [4].

For the embedded system such as the Alexa Guard, the training can be done by

high-performance computers. The embedded system only requires the model produced

by the training process for run-time inference [5, 6]. The main issue with embedded

systems is the limited resources available on the devices. The CNN architecture must

run with sufficient performance at low power with the available memory and compute

capabilities.

1.2 Problem Statement

• The Deep Neural Networks (DNNs) are becoming more powerful and hence

the power and resource constraints have become the challenge as they require

more storage and computational power.

• This causes the DNN is not capable to be implemented into low power devices

such as smartphones, drones, mobile devices, and embedded systems that are

able to provide low memory storage and low computational power.

2



1.3 Objective

• To implement Binarized Neural Networks (BNNs) in performing training and

validation using binary input images.

• To explore the architecture of Binarized Neural Networks (BNNs) so that to

optimize the training and accuracy of the model.

• To analyze and optimize the hyperparameter of the neural network improve the

testing and validation accuracy.

1.4 Scope of work

• All work was performed on a personal laptop with the Intel Core i5 7th-

generation processor and NVIDIA GeForce MX150 graphics card in the

Windows environment.

• Process the input sound datasets to create a binarized spectrogram for BNN

training samples.

• Preparation of positive datasets from Xeno-Canto website [7] and negative

datasets from UrbanSound8K [8].

• BinaryNet was used to structure the neural network for bird sound

presence/absence detection and recognition using the Python Keras framework.

3
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