
PRINCIPAL COMPONENT ANALYSIS HARDWARE ACCELERATION

NG YEE WEI

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JAN 2020



DEDICATION

This thesis is dedicated to my parents, who taught me never to give up and always

strive to be the best. It is also dedicated to my siblings, who provided me with moral

support throughout the entire length of the project.

iv



ACKNOWLEDGEMENT

Throughout project execution, I had received a lot of assistance and support

from people surrounding me in various aspects. Therefore, I would like to take this

opportunity to express my deepest appreciation to those people. I would like to show the

greatest gratitude to my project supervisor, Associate Professor Dr Muhammad Nadzir

bin Marsono who had provided clear guidance to me throughout the implementation

of this project. Next, I wish to thank my course-mates who were willing to share

beneficial knowledge with me to develop the project. They showed no hesitation to

help me whenever I faced some technical problems in doing this project. Their sincere

comment on the project has resulted in the improvement of this project.

v



ABSTRACT

Since machine learning is getting more attention in various applications, the

performance of those applications has become themain concern of its users. To perform

machine learning, one of the vital processes is feature extraction which is to reduce the

raw data dimension that aims to get rid of noise and speed up further data analysis.

Principal Component Analysis (PCA) is one of dimension reduction techniques that

often used with other complex feature extraction techniques. However, PCA involves

heavy computation and plays an important role to determine the speed performance

of the application. This project is to propose PCA hardware acceleration to enhance

its performance. From software profiling, the most intensive function in the PCA

algorithm is the computation of eigenvalues and eigenvectors (eigensolver). Thus,

this project has developed an eigensolver hardware accelerator by applying parallel

execution through unrolling, pipelining and scheduling techniques in order to improve

the performance of PCA. The proposed eigensolver is developed using Vivado HLS

2019.2. The performance of the proposed accelerator is evaluated by comparing it

with conventional PCA hardware. The proposed eigensolver hardware accelerator has

achieved a speedup of 6.27 compared with its conventional implementation.

vii



ABSTRAK

Memandangkan pembelajaran mesin semakin mendapat perhatian dalam

pelbagai aplikasi, prestasi aplikasi tersebut telahmenjadi fokus utama pengguna. Untuk

melaksanakan pembelajaran mesin, salah satu proses penting ialah pengekstrakan

ciri. Pengekstrakan ciri bertujuan untuk mengurangkan dimensi data asal dengan

menghilangkan signal bising dan mempercepat analisis data selanjutnya. Analisis

Komponen Utama (PCA) ialah salah satu teknik pengurangan dimensi yang sering

digunakan dengan teknik pengekstrakan ciri kompleks yang lain. Walau bagaimanapun,

PCAmelibatkan banyak pengiraan dan memainkan peranan penting untuk menentukan

prestasi kelajuan aplikasi. Projek ini telah mengusulkan pemecut perkakasan PCA

untuk meningkatkan prestasinya. Melalui analisis secara perisian, fungsi yang paling

intensif dalam algoritma PCA ialah pengiraan nilai eigen dan vektor eigen. Oleh itu,

projek ini telah membangunkan alat pemecut perkakasan eigensolver dengan kaedah

QR denganmenggunakan pelaksanaan selari melalui teknik pembukaan, pipelining dan

penjadualan untuk meningkatkan prestasi PCA. Alat pemecut perkakasan eigensolver

yang dicadangkan telah dibangunkan dengan mengguna Vivado HLS 2019.2. Prestasi

pemecut yang dicadangkan dalam projek ini dinilai denganmembandingkannya dengan

perkakasan PCA konvensional. Pemecut perkakasan eigensolver yang dicadangkan

dalam projej ini telah mencapai kelajuan 6.27 kali berbanding dengan pelaksanaan

konvensionalnya.

viii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xiv
LIST OF APPENDICES xv

CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Project Scope 4

1.5 Project Report Outline 4

CHAPTER 2 LITERATURE REVIEW 7
2.1 Chapter Overview 7

2.2 Principal Component Analysis 7

2.3 Covariance-based PCA Algorithm 8

2.3.1 Eigenvalues and Eigenvectors using

QR Algorithm 9

2.4 Related Work on PCA Hardware Acceleration 11

2.4.1 Memory Access Latency Reduction 11

2.4.2 Unrolling 13

2.4.3 Pipelining 14

2.4.4 Semi Systolic Array 18

2.4.5 Fixed-point Implementation 20

ix



2.4.6 Floating-point Implementation 21

2.5 Chapter Summary 23

CHAPTER 3 RESEARCHMETHODOLOGY 25
3.1 Chapter Overview 25

3.2 Architecture of PCA and Eigensolver 25

3.3 Proposed Methods 27

3.3.1 Unrolling 27

3.3.2 Pipelining 29

3.3.3 Scheduling 31

3.4 Proposed Hardware Accelerator 32

3.5 Chapter Summary 34

CHAPTER 4 VALIDATION AND RESULT 35
4.1 Chapter Overview 35

4.2 Validation Work 35

4.2.1 Execution Work 35

4.2.2 Evaluation Work 36

4.3 Result of Software Profiling 37

4.4 Result of Proposed Methods 38

4.4.1 Unrolling 38

4.4.2 Pipelining 40

4.4.3 Scheduling 41

4.4.4 Combination of unrolling and pipelin-

ing 42

4.4.5 Overall Result 43

4.5 Comparison of Proposed Work with Previous

Works 44

4.6 Chapter Summary 45

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS FOR
FUTUREWORK 47
5.1 Conclusion 47

5.2 Future Works 48

x



REFERENCES 49

xi



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 1.1 Comparison on CPU, Multicore, GPU and FPGA 2

Table 2.1 Output of parallel and iterative pipelined in each time

interval 18

Table 2.2 Semi-systolic array input/output sequence for eigenvalues

and eigenvectors computation 20

Table 2.3 Summary of related works 23

Table 3.1 Module in Eigensolver 27

Table 3.2 Summary of proposed work 33

Table 4.1 Evaluation work of eigensolver hardware accelerator 37

Table 4.2 Software profiling result of PCA algorithm 37

Table 4.3 Evaluation on basic iteration on modules in eigen solver 38

Table 4.4 Result of unrolling 39

Table 4.5 Result of unrolling with factor of 8 on modules in

eigensolver 39

Table 4.6 Result of pipelining on module rj j 41

Table 4.7 Result of pipelining on modules in eigensolver 41

Table 4.8 Result of ASAP and ALAP scheduling 42

Table 4.9 Result of combine unrolling and pipelining on module ri j 43

Table 4.10 Result of combine unrolling and pipelining on modules in

eigensolver 43

Table 4.11 Evaluation on unrolling and pipelining method with ASAP

and ALAP eigensolver 44

Table 4.12 Comparison of proposed work with previous work 45

xii



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Stages of PCA 8

Figure 2.2 Pre-fetching block 12

Figure 2.3 Block diagram of PCA hardware with data dispatcher 12

Figure 2.4 Adder-multiplier module 13

Figure 2.5 Data flow graph of covariance 14

Figure 2.6 Individual hardware architecture for QR algorithm 15

Figure 2.7 Datapath of eigensolver using QR algorithm 16

Figure 2.8 Hardware architecture of QRD 17

Figure 2.9 Parallel pipelining 19

Figure 2.10 Iterative pipelining 19

Figure 2.11 Semi systolic array for QR method 20

Figure 2.12 Fixed point mean 22

Figure 2.13 Floating point unit (a) Multiplier (b) Divider 22

Figure 3.1 System level of PCA 26

Figure 3.2 Architecture of eigen solver 26

Figure 3.3 Partially unroll 28

Figure 3.4 DFG of (a) roll method (b) unroll method 29

Figure 3.5 Memory array partitioning 30

Figure 3.6 Pipeline stage in MAC 31

Figure 3.7 Timing diagram of pipelined MAC 31

Figure 3.8 Computation of vi at each time interval (a) ASAP (b) ALAP 32

Figure 3.9 Pipeline stage in module rj j 34

Figure 4.1 Unrolling on module q 39

Figure 4.2 Pipelining schedule viewer 40

xiii



LIST OF ABBREVIATIONS

AI - Artificial Intelligence

ALAP - As Late As Possible

ASAP - As Soon As Possible

ASIP - Application Specific Instruction Set Processor

BRAM - Block Random-Access Memory

CPU - Central Processing Unit

DFG - Data Flow Graph

FIFO - First In First Out

FPGA - Field-Programmable Gate Array

GPU - Graphic Processing Unit

IP - Intellectual Property

ICA - Independent Component Analysis

KPCA - Kernel Principal Component Analysis

MAC - Multiplication and Accumulation

MGS - Modified Gram-Schmidt

MPCA - Multilinear Principal Component Analysis

NoC - Network on Chip

PCA - Principal Component Analysis

QRD - QR Decomposition

RAM - Random-Access Memory

RPCA - Robust Principal Component Analysis

SIFT - Scale-Invarient Feature Transform

VPD - Vector Dot Product

xiv



LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Code for ALAP implementation of eigensolver 55

Appendix B Code for ASAP implementation of eigensolver 59

xv



CHAPTER 1

INTRODUCTION

1.1 Research Background

In the advancement of technology, artificial intelligence (AI) [1] is widely

applied in various fields such as security system, transportation, agriculture, and the

list is endless. Machine learning is an implementation of AI that enables a system to

automatically learn and enhance from experience without human assistance. This is

done by detecting a specific pattern in data observed by the systems and make decision

based on experience. Data prepossessing is required to carried out on the original

dataset to extract its important feature by removing noise in the dataset [2].

Principal Component Analysis (PCA) [3] is one of the simplest and oldest

techniques that is used for feature extraction. It is a multivariate statistic method to

transforms each variable in feature space to a linear combination of the original input

variable and keeps crucial information of a dataset by analyzing the correlation of each

element in the dataset. PCA is commonly applied in health monitoring system [4],

network intrusion system [5] and gas leakage detection system [6] that require real-

time effect. Hence, the processing speed of PCA requires to be as fast as possible to

minimize delay in the application.

Generally, the PCA algorithm has four main functions which are mean,

covariance, eigenvalues and eigenvectors, and K-principal component computation.

These functions are carried on a matrix that contains variables of every observation

collected by an application. The computation requires intensive matrix operations

especially matrix multiplication. The amount of operations is highly dependent on the

data size. Due to the involvement of division and square root operation, data precision

is important for PCA algorithm to ensure the reliability of the algorithm. Besides,

it also require plenty of data comparison due to the computation of eigenvalues and

eigenvectors contains a heuristic algorithm.

1



Due to involving big O notation and heuristic algorithm, PCA execution is

complex and time-consuming. Hence, multiple platforms are proposed for high-

performance PCA execution. For high-end applications, the PCA algorithm is running

on a more robust processor such as GPU and multicore processor instead of the

conventional CPU to shorten the execution time [7]. On the other hand, in the lower-end

device that has constraints in terms of cost and power consumption, a specific hardware

accelerator is designed for PCA execution. ASIC and FPGA are examples of platforms

to be used for this implementation. Both of them support parallelism which could

speed up the speed of PCA execution, but FPGA is more flexible than ASIC due to its

re-configurable nature. A comparison of different processors is summarized in Table

1.1.

Table 1.1: Comparison on CPU, Multicore, GPU and FPGA

Property CPU Multicore GPU FPGA
Performance Low High Very High High
Power Medium High High Low
Cost Medium High High Medium

1.2 Problem Statement

PCA is often used for feature extraction to pre-process data in an application and

it is a time-consuming process. While the embedded system is dominating the market,

the design of a hardware accelerator is gaining more attention. By designing a PCA

hardware accelerator, the performance of the application could increase. However,

there is some challenge to implement PCA as a hardware accelerator.

PCA is an algorithm with heavy computation whereby its processing time is

highly dependent on data size. To speed up this process, many proposed works have

focused on higher-level optimization such as reduce memory access latency from the

system level. There is a lack of optimization work is done in operation in the lowest

level operation unit in the PCA algorithm.

2



Parallel computation has been commonly used to design a hardware accelerator

by adding additional resources. In [8], a comparison is made between hardware and

software-based implementation of PCA. The result has shown that the speed of hardware

implementation is five times of software implementation. However, the limitation is

fully unrolled a loop will cause the performance of PCA is no longer in a linear

relationship with the number of resources. A large increase in resources only causes

little improvement in processing time.

Another method to boost up performance is through pipelining for throughput

improvement. PCA is a dimensional reduction method by finding the correlation

between vectors in a dataset. Thus, there is some dependency between certain steps in

eigenvalue computation in the PCA algorithm [9]. Work in [10] has listed out resources

needed for every step in the algorithm, grouped the resource to several pipeline stages

and applied pipelined processing. However, this method is designed manually and

requires a large effort to make sure there is no hazard or delay in the pipelining process

[11, 12].

Furthermore, since PCA has four main functions, acceleration work is applied

to different stages of PCA by researchers with different methods and purposes. This

raises the research question of what is the most effective part of PCA to be hardware

accelerated and how to efficiently apply parallel computing in the PCA algorithm?

1.3 Objectives

To solve the problem mentioned in section 1.2, there are some tasks needed to

be done for delivering better work. The objectives targeted for this project are stated as

follow:

1. To perform software profiling to investigate time-consuming PCA internal

functions

2. To propose hardware accelerator architecture for improved PCA performance

3



3. To evaluate the performance-area trade-off of proposed PCA hardware

accelerator against the conventional PCA implementation

1.4 Project Scope

PCA hardware accelerator could be designed through different approaches

such as system-level architecture, the connection between the module of PCA’s main

functions and acceleration of kernel inside the module. However, in this project,

the effort is only focused on the acceleration through PCA’s main function module

embedded design and internal operation. Since PCA involves a few functions, this

project only focuses on the most intensive function in PCA based on the result of

the investigation stated in the first objective. Besides, work in this project mainly

aims for enhancing the processing speed of PCA without guarantee its area and power

consumption. Performance evaluation of the proposed PCA hardware accelerator is

done through simulation using Vivado, no hardware component is involved.

1.5 Project Report Outline

This report outlines the hardware acceleration of the PCA algorithm. There is

a total of five chapters in this report with the following organization.

Chapter 2 presents literature review for this project. This chapter includes

introduction and background of PCA and brief explanation of its algorithm. This

chapter also discuss some related previous work on methods to design PCA hardware

accelerator.

Chapter 3 describes the research methodology of project implementation in

order to achieve objectives targeted. Proposed methods to hardware accelerate PCA

execution in this project is explained in this chapter.

Chapter 4 presents validation work and results to prove the proposed methods

with analysis. This includes software profiling of PCA algorithm and performance

4



evaluation of hardware accelerator developed using the proposed methods in Chapter

3. A comparison between proposed work and previous works is also presented here.

The last chapter summarizes the work that is done for this project and future

work.

5



REFERENCES

1. Lu, H., Li, Y., Chen, M., Kim, H. and Serikawa, S. Brain Intelligence: Go

beyond Artificial Intelligence. Mobile Networks and Applications, 2018. 23(2):

368–375. doi:10.1007/s11036-017-0932-8. URL https://doi.org/10.

1007/s11036-017-0932-8.

2. Moravec, H. Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover. 1980. (CMU-RI-TR-80-03).

3. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space.

Philosophical Magazine, 1901. 2: 559–572.

4. Tibaduiza Burgos, D., Mujica, L. and Rodellar, J. Structural HealthMonitoring

based on principal component analysis: damage detection, localization and

classification. 2011: 8–17.

5. Das, A., Misra, S., Joshi, S., Zambreno, J., Memik, G. and Choudhary, A.

An Efficient FPGA Implementation of Principle Component Analysis based

Network Intrusion Detection System. 2008 Design, Automation and Test

in Europe. 2008. ISSN 1530-1591. 1160–1165. doi:10.1109/DATE.2008.

4484835.

6. Wang, L., Gao, X. and Liu, T. Gas pipeline small leakage feature

extraction based on LMD envelope spectrum entropy and PCA. Transactions

of the Institute of Measurement and Control, 2016. 38(12): 1460–

1470. doi:10.1177/0142331215599248. URL https://doi.org/10.1177/

0142331215599248.

7. Martel, E., Lazcano, R., Lopez, J., Madronal, D., Salvador, R., Lopez,

S., Juarez, E., Guerra Hernandez, R., Sanz, C. and Sarmiento, R.

Implementation of the Principal Component Analysis onto High-Performance

Computer Facilities for Hyperspectral Dimensionality Reduction: Results and

Comparisons. Remote Sensing, 2018. 10: 864. doi:10.3390/rs10060864.

8. Perera, D. G. and Li, K. F. Embedded hardware solution for principal

component analysis. Proceedings of 2011 IEEE Pacific Rim Conference on

49

https://doi.org/10.1007/s11036-017-0932-8
https://doi.org/10.1007/s11036-017-0932-8
https://doi.org/10.1177/0142331215599248
https://doi.org/10.1177/0142331215599248


Communications, Computers and Signal Processing. 2011. ISSN 1555-5798.

730–735. doi:10.1109/PACRIM.2011.6032984.

9. Parker, M., Mauer, V. and Pritsker, D. QR decomposition using FPGAs.

2016 IEEE National Aerospace and Electronics Conference (NAECON) and

Ohio Innovation Summit (OIS). 2016. ISSN 2379-2027. 416–421. doi:

10.1109/NAECON.2016.7856841.

10. Shahrouzi, S. N. and Perera, D. G. Optimized hardware accelerators for data

mining applications on embedded platforms: Case study principal component

analysis. Microprocessors and Microsystems, 2019. 65: 79 – 96. ISSN 0141-

9331. doi:https://doi.org/10.1016/j.micpro.2019.01.001. URL http://www.

sciencedirect.com/science/article/pii/S0141933118302394.

11. Shin, D. and Park, J. A Low-Latency and Area-Efficient GramâSchmidt-Based

QRD Architecture for MIMO Receiver. IEEE Transactions on Circuits and

Systems I: Regular Papers, 2018. 65(8): 2606–2616. ISSN 1558-0806. doi:

10.1109/TCSI.2018.2795342.

12. Lee, H., Kim, H., Cho, M. and Kim, J. Low-latency implementation

of CORDIC-based sorted QR decomposition for high-speed MIMO-

OFDM system. 2018 28th International Conference Radioelektronika

(RADIOELEKTRONIKA). 2018. ISSN null. 1–4. doi:10.1109/RADIOELEK.

2018.8376356.

13. Parivesh and Sharma, R. K. A time efficient architecture implementation of

PCA for ICA. 2017 International conference of Electronics, Communication

and Aerospace Technology (ICECA). 2017, vol. 1. 721–725. doi:10.1109/

ICECA.2017.8203637.

14. Yang, X., Jiang, L., Tang, X. and Ren, X. An improved PCA-SIFT

algorithm application in light small UAV image registration. 2017 Progress In

Electromagnetics Research Symposium - Spring (PIERS). 2017. 2554–2558.

doi:10.1109/PIERS.2017.8262182.

15. FenzÃ¡ndez, D., GonzÃ¡lez, C. and Mozos, D. Dimensionality reduction of

hyperspectral images using reconfigurable hardware. 2016 26th International

Conference on Field Programmable Logic and Applications (FPL). 2016. ISSN

1946-1488. 1–2. doi:10.1109/FPL.2016.7577394.

50

http://www.sciencedirect.com/science/article/pii/S0141933118302394
http://www.sciencedirect.com/science/article/pii/S0141933118302394


16. Fernandez, D., Gonzalez, C., Mozos, D. and Lopez, S. FPGA implementation

of the principal component analysis algorithm for dimensionality reduction of

hyperspectral images. Journal of Real-Time Image Processing, 2019. 16(5):

1395–1406. ISSN 1861-8219. doi:10.1007/s11554-016-0650-7. URL https:

//doi.org/10.1007/s11554-016-0650-7.

17. Gosavi, A. P. and Khot, S. R. Emotion recognition using Principal Component

Analysis with Singular Value Decomposition. 2014 International Conference

on Electronics and Communication Systems (ICECS). 2014. ISSN null. 1–5.

doi:10.1109/ECS.2014.6892683.

18. Sokolovskiy, A. V., Tyapkin, V. N., Veisov, E. A. and Fateev, Y. L.

The Pipelined QR Decomposition Hardware Architecture Based On Givens

Rotation CORDIC Algorithm. 2019 International Siberian Conference on

Control and Communications (SIBCON). 2019. ISSN 2380-6508. 1–4. doi:

10.1109/SIBCON.2019.8729615.

19. Shahrouzi, S. N. and Perera, D. G. Dynamic partial reconfigurable hardware

architecture for principal component analysis onmobile and embedded devices.

EURASIP Journal on Embedded Systems, 2017. 2017(1): 25. ISSN 1687-

3963. doi:10.1186/s13639-017-0074-x. URL https://doi.org/10.1186/

s13639-017-0074-x.

20. Mansoori, M. A. and Casu, M. R. Efficient FPGA Implementation of PCA

Algorithm for Large Data using High Level Synthesis. 2019 15th Conference

on Ph.D Research in Microelectronics and Electronics (PRIME). 2019. ISSN

null. 65–68. doi:10.1109/PRIME.2019.8787782.

21. Ali, A. A. S., Amira, A., Bensaali, F. and Benammar, M. Hardware PCA for gas

identification systems using high level synthesis on the Zynq SoC. 2013 IEEE

20th International Conference on Electronics, Circuits, and Systems (ICECS).

2013. ISSN null. 707–710. doi:10.1109/ICECS.2013.6815512.

22. Perera, D. G. and Li, K. F. FPGA-Based Reconfigurable Hardware for Compute

Intensive Data Mining Applications. 2011 International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing. 2011. 100–108. doi:10.1109/

3PGCIC.2011.25.

51

https://doi.org/10.1007/s11554-016-0650-7
https://doi.org/10.1007/s11554-016-0650-7
https://doi.org/10.1186/s13639-017-0074-x
https://doi.org/10.1186/s13639-017-0074-x


23. Zhou, T., Guo, S., Lei, Y. and Dou, Y. Area-efficient high-throughput sorted

QR decomposition-based MIMO detector on FPGA. 2015 IEEE International

Conference on Computer and Communications (ICCC). 2015. ISSN null.

394–398. doi:10.1109/CompComm.2015.7387603.

24. Karnthak, T. and Kumhom, P. A hardware implementation of PCA based-

on the Networks-on-Chip paradigm. 2012 International Symposium on

Communications and Information Technologies (ISCIT). 2012. ISSN null.

834–839. doi:10.1109/ISCIT.2012.6381018.

25. Liu, T., Ko, Y., Chiu, Y., Lin, W. and Chu, Y. Hardware Implementation of

the Preprocessing QR-Decomposition for the Soft-Output MIMO Detection

With Multiple Tree Traversals. IEEE Transactions on Circuits and Systems II:

Express Briefs, 2018. 65(2): 186–190. ISSN 1558-3791. doi:10.1109/TCSII.

2017.2703818.

26. Schellhorn, M. and Notni, G. Optimization of a Principal Component Analysis

Implementation on Field-Programmable Gate Arrays (FPGA) for Analysis of

Spectral Images. 2018 Digital Image Computing: Techniques and Applications

(DICTA). 2018. ISSN null. 1–6. doi:10.1109/DICTA.2018.8615866.

27. Alhamed, A. and Alshebeili, S. FPGA implementation of complex-valued

QR decomposition. 2016 5th International Conference on Electronic Devices,

Systems and Applications (ICEDSA). 2016. ISSN 2159-2055. 1–4. doi:

10.1109/ICEDSA.2016.7818557.

28. Guerrero-RamÃrez, J. E., Velasco-Medina, J. andArce-Clavijo, J. C. Hardware

design of an eigensolver based on the QR method. 2013 IEEE 4th Latin

American Symposium on Circuits and Systems (LASCAS). 2013. ISSN null.

1–4. doi:10.1109/LASCAS.2013.6519065.

29. Korat, U. A. and Alimohammad, A. A Reconfigurable Hardware Architecture

for Principal Component Analysis. Circuits, Systems, and Signal Processing,

2019. 38(5): 2097–2113. ISSN 1531-5878. doi:10.1007/s00034-018-0953-y.

URL https://doi.org/10.1007/s00034-018-0953-y.

30. Thethi, S. K. and Kumar, R. Area and power efficient register allocation

technique for the implementation of PCA. 2017 4th International Conference

52

https://doi.org/10.1007/s00034-018-0953-y


on Signal Processing, Computing and Control (ISPCC). 2017. ISSN null.

251–257. doi:10.1109/ISPCC.2017.8269684.

53


	COVER PAGE
	PSZ FORM
	SUPERVISOR(S) DECLARATION
	TITLE PAGE
	 DECLARATION
	 DEDICATION
	 ACKNOWLEDGEMENT
	 ABSTRACT
	 ABSTRAK
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ABBREVIATIONS
	 LIST OF APPENDICES
	Introduction
	Research Background
	Problem Statement
	Objectives
	Project Scope 
	Project Report Outline

	Literature Review
	Chapter Overview
	Principal Component Analysis
	Covariance-based PCA Algorithm 
	Eigenvalues and Eigenvectors using QR Algorithm

	Related Work on PCA Hardware Acceleration 
	Memory Access Latency Reduction
	Unrolling
	Pipelining
	Semi Systolic Array
	Fixed-point Implementation
	Floating-point Implementation

	Chapter Summary

	Research Methodology
	Chapter Overview
	Architecture of PCA and Eigensolver
	Proposed Methods
	Unrolling
	Pipelining
	Scheduling

	Proposed Hardware Accelerator
	Chapter Summary

	Validation and Result
	Chapter Overview
	Validation Work
	Execution Work
	Evaluation Work

	Result of Software Profiling
	Result of Proposed Methods
	Unrolling
	Pipelining
	Scheduling
	Combination of unrolling and pipelining
	Overall Result

	Comparison of Proposed Work with Previous Works
	Chapter Summary

	Conclusion and Recommendations for future work
	Conclusion
	Future Works

	REFERENCES



