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ABSTRACT

Since machine learning is getting more attention in various applications, the

performance of those applications has become themain concern of its users. To perform

machine learning, one of the vital processes is feature extraction which is to reduce the

raw data dimension that aims to get rid of noise and speed up further data analysis.

Principal Component Analysis (PCA) is one of dimension reduction techniques that

often used with other complex feature extraction techniques. However, PCA involves

heavy computation and plays an important role to determine the speed performance

of the application. This project is to propose PCA hardware acceleration to enhance

its performance. From software profiling, the most intensive function in the PCA

algorithm is the computation of eigenvalues and eigenvectors (eigensolver). Thus,

this project has developed an eigensolver hardware accelerator by applying parallel

execution through unrolling, pipelining and scheduling techniques in order to improve

the performance of PCA. The proposed eigensolver is developed using Vivado HLS

2019.2. The performance of the proposed accelerator is evaluated by comparing it

with conventional PCA hardware. The proposed eigensolver hardware accelerator has

achieved a speedup of 6.27 compared with its conventional implementation.
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ABSTRAK

Memandangkan pembelajaran mesin semakin mendapat perhatian dalam

pelbagai aplikasi, prestasi aplikasi tersebut telahmenjadi fokus utama pengguna. Untuk

melaksanakan pembelajaran mesin, salah satu proses penting ialah pengekstrakan

ciri. Pengekstrakan ciri bertujuan untuk mengurangkan dimensi data asal dengan

menghilangkan signal bising dan mempercepat analisis data selanjutnya. Analisis

Komponen Utama (PCA) ialah salah satu teknik pengurangan dimensi yang sering

digunakan dengan teknik pengekstrakan ciri kompleks yang lain. Walau bagaimanapun,

PCAmelibatkan banyak pengiraan dan memainkan peranan penting untuk menentukan

prestasi kelajuan aplikasi. Projek ini telah mengusulkan pemecut perkakasan PCA

untuk meningkatkan prestasinya. Melalui analisis secara perisian, fungsi yang paling

intensif dalam algoritma PCA ialah pengiraan nilai eigen dan vektor eigen. Oleh itu,

projek ini telah membangunkan alat pemecut perkakasan eigensolver dengan kaedah

QR denganmenggunakan pelaksanaan selari melalui teknik pembukaan, pipelining dan

penjadualan untuk meningkatkan prestasi PCA. Alat pemecut perkakasan eigensolver

yang dicadangkan telah dibangunkan dengan mengguna Vivado HLS 2019.2. Prestasi

pemecut yang dicadangkan dalam projek ini dinilai denganmembandingkannya dengan

perkakasan PCA konvensional. Pemecut perkakasan eigensolver yang dicadangkan

dalam projej ini telah mencapai kelajuan 6.27 kali berbanding dengan pelaksanaan

konvensionalnya.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In the advancement of technology, artificial intelligence (AI) [1] is widely

applied in various fields such as security system, transportation, agriculture, and the

list is endless. Machine learning is an implementation of AI that enables a system to

automatically learn and enhance from experience without human assistance. This is

done by detecting a specific pattern in data observed by the systems and make decision

based on experience. Data prepossessing is required to carried out on the original

dataset to extract its important feature by removing noise in the dataset [2].

Principal Component Analysis (PCA) [3] is one of the simplest and oldest

techniques that is used for feature extraction. It is a multivariate statistic method to

transforms each variable in feature space to a linear combination of the original input

variable and keeps crucial information of a dataset by analyzing the correlation of each

element in the dataset. PCA is commonly applied in health monitoring system [4],

network intrusion system [5] and gas leakage detection system [6] that require real-

time effect. Hence, the processing speed of PCA requires to be as fast as possible to

minimize delay in the application.

Generally, the PCA algorithm has four main functions which are mean,

covariance, eigenvalues and eigenvectors, and K-principal component computation.

These functions are carried on a matrix that contains variables of every observation

collected by an application. The computation requires intensive matrix operations

especially matrix multiplication. The amount of operations is highly dependent on the

data size. Due to the involvement of division and square root operation, data precision

is important for PCA algorithm to ensure the reliability of the algorithm. Besides,

it also require plenty of data comparison due to the computation of eigenvalues and

eigenvectors contains a heuristic algorithm.
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Due to involving big O notation and heuristic algorithm, PCA execution is

complex and time-consuming. Hence, multiple platforms are proposed for high-

performance PCA execution. For high-end applications, the PCA algorithm is running

on a more robust processor such as GPU and multicore processor instead of the

conventional CPU to shorten the execution time [7]. On the other hand, in the lower-end

device that has constraints in terms of cost and power consumption, a specific hardware

accelerator is designed for PCA execution. ASIC and FPGA are examples of platforms

to be used for this implementation. Both of them support parallelism which could

speed up the speed of PCA execution, but FPGA is more flexible than ASIC due to its

re-configurable nature. A comparison of different processors is summarized in Table

1.1.

Table 1.1: Comparison on CPU, Multicore, GPU and FPGA

Property CPU Multicore GPU FPGA
Performance Low High Very High High
Power Medium High High Low
Cost Medium High High Medium

1.2 Problem Statement

PCA is often used for feature extraction to pre-process data in an application and

it is a time-consuming process. While the embedded system is dominating the market,

the design of a hardware accelerator is gaining more attention. By designing a PCA

hardware accelerator, the performance of the application could increase. However,

there is some challenge to implement PCA as a hardware accelerator.

PCA is an algorithm with heavy computation whereby its processing time is

highly dependent on data size. To speed up this process, many proposed works have

focused on higher-level optimization such as reduce memory access latency from the

system level. There is a lack of optimization work is done in operation in the lowest

level operation unit in the PCA algorithm.
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Parallel computation has been commonly used to design a hardware accelerator

by adding additional resources. In [8], a comparison is made between hardware and

software-based implementation of PCA. The result has shown that the speed of hardware

implementation is five times of software implementation. However, the limitation is

fully unrolled a loop will cause the performance of PCA is no longer in a linear

relationship with the number of resources. A large increase in resources only causes

little improvement in processing time.

Another method to boost up performance is through pipelining for throughput

improvement. PCA is a dimensional reduction method by finding the correlation

between vectors in a dataset. Thus, there is some dependency between certain steps in

eigenvalue computation in the PCA algorithm [9]. Work in [10] has listed out resources

needed for every step in the algorithm, grouped the resource to several pipeline stages

and applied pipelined processing. However, this method is designed manually and

requires a large effort to make sure there is no hazard or delay in the pipelining process

[11, 12].

Furthermore, since PCA has four main functions, acceleration work is applied

to different stages of PCA by researchers with different methods and purposes. This

raises the research question of what is the most effective part of PCA to be hardware

accelerated and how to efficiently apply parallel computing in the PCA algorithm?

1.3 Objectives

To solve the problem mentioned in section 1.2, there are some tasks needed to

be done for delivering better work. The objectives targeted for this project are stated as

follow:

1. To perform software profiling to investigate time-consuming PCA internal

functions

2. To propose hardware accelerator architecture for improved PCA performance
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3. To evaluate the performance-area trade-off of proposed PCA hardware

accelerator against the conventional PCA implementation

1.4 Project Scope

PCA hardware accelerator could be designed through different approaches

such as system-level architecture, the connection between the module of PCA’s main

functions and acceleration of kernel inside the module. However, in this project,

the effort is only focused on the acceleration through PCA’s main function module

embedded design and internal operation. Since PCA involves a few functions, this

project only focuses on the most intensive function in PCA based on the result of

the investigation stated in the first objective. Besides, work in this project mainly

aims for enhancing the processing speed of PCA without guarantee its area and power

consumption. Performance evaluation of the proposed PCA hardware accelerator is

done through simulation using Vivado, no hardware component is involved.

1.5 Project Report Outline

This report outlines the hardware acceleration of the PCA algorithm. There is

a total of five chapters in this report with the following organization.

Chapter 2 presents literature review for this project. This chapter includes

introduction and background of PCA and brief explanation of its algorithm. This

chapter also discuss some related previous work on methods to design PCA hardware

accelerator.

Chapter 3 describes the research methodology of project implementation in

order to achieve objectives targeted. Proposed methods to hardware accelerate PCA

execution in this project is explained in this chapter.

Chapter 4 presents validation work and results to prove the proposed methods

with analysis. This includes software profiling of PCA algorithm and performance

4



evaluation of hardware accelerator developed using the proposed methods in Chapter

3. A comparison between proposed work and previous works is also presented here.

The last chapter summarizes the work that is done for this project and future

work.
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