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ABSTRACT

Convolutional Neural Network (CNN) are widely used in the field of computer

vision and show its great advantages in image classification, object recognition, video

surveillance. Hence, the performance of CNN playing more important role during

the development of the application which applying CNN algorithm. In this paper,

an accelerator is developed for improving the performance of CNN. The proposed

accelerator targeted the most computation intensive functions in CNN, which are

convolution and max pooling. The developed accelerator is targeting on CNN with

64 × 64 input image size, 5 × 5 filter size and 2 × 2 max pooling. By using

Vivado, the period, clock cycle and resources required to run convolution and max

pooling are measured. Three proposed methodology are combined to enhance the

performance of CNN: (i) unrolling (ii) pipelining (iii) combination of convolution and

max pooling layer. Tradeoff between the performance and hardware cost required to

build the accelerator are simulated and analyzed. The performance of the new proposed

accelerator are proven to be four times better and with limited increase of the hardware

cost, addition of 60% of logic gates compared to the existing work.

vii



ABSTRAK

Rangkaian neural convolutional (CNN) telah digunakan dalam bidang visi

komputer dan menunjukkan kelebihannya dalam klasifikasi imej, pengenalan objek,

pengawasan video. Oleh itu, prestasi CNN memainkan peranan yang amat penting

dalam perkembangan aplikasi yang menggunakan algoritma CNN. Dalam makalah

ini, perkakasan akan dibangunkan untuk meningkatkan prestasi CNN. Perkakasan

yang dicadangkan itu menyasarkan fungsi intensif pengiraan yang paling banyak

di CNN, iaitu pengumpulan dan penggabungan maks. Penderas yang dicadangkan

akan menumpukan CNN dengan 64 kali 64 saiz imej, 5 kali 5 saiz penapis dan

2 kali 2 maks pooling. Dengan menggunakan Vivado, tempoh, kitaran jam dan

sumber yang diperlukan untuk menjalankan pengukuhan dan pengumpulan maksima

diukur. Tiga metodologi yang diajukan digabungkan untuk meningkatkan prestasi

CNN: (i) pembongkaran (ii) perpaduan lapisan (iii) kombinasi lapisan convolusi dan

max. Pembatalan antara prestasi dan kos perkakasan yang diperlukan untuk membina

perkakasan akan disimulasikan dan dianalisis. Prestasi pemecut yang dicadangkan baru

terbukti empat kali lebih baik dan dengan peningkatan kos perkakasan yang terhad, iaitu

penambahan sebanyak 60% daripada pintu logik berbanding dengan kerja yang sedia

ada.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Convolutions Neural Networks (CNN) are widely used in the field of computer

vision and show its great advantages in image classification, object recognition, video

surveillance [1]. The applications of CNN are usually realized by Central Computing

Unit (CPU) and Graphic Processing Unit (GPU). However, general purpose computer

has limited computing resources and parallelism. Although GPU in the computer is

still able to perform CNNwith its special characteristics of parallel computing of large-

scale data, the hardware resource and power comsumption is too high (for example:

33W for Nvidia GTX840M and 235W for NVIDIA Tesla K40) [2][3]. Hence, CNN

accelerators require a trade-off between flexibility and energy efficiency. Application

Specific Integrated Circuit (ASIC) design is one of the good choice to obtain the best

power efficiency but only specialized CNN models are able to be implemented into

ASIC circuits due to its flexibility [1].

In recent years, there are some Fixed-Programmable-Gate-Array (FPGA)-based

CNN accelerators developed [4][5]. The current trends showing more and more FPGA-

based CNN accelerator implemented by using high level synthesis tools [4][5]. By

using FPGA, not only the productivity of the engineers or programmers increased

but also enable them to play around with the FPGA just like CPUs/GPUs [4]. The

specialization of the FPGAs provides a compromise between the flexibility of a general

purpose processor (GPP) and the performance of the ASIC. FPGAs and ASICs are both

designed for specific applications but FPGAs are programmable and its design can be

modified from time to time therefore FPGAs are more flexible compared to ASICs.

In the widely used embedded systems and SoC world, FPGAs are the great choice to

be implemented. The evaluation of GPP, ASIC and FPGA in different perspective are

shown in Table 1.1
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Table 1.1: Evaluation GPP, ASIC and FPGA in different perspective

GPP ASIC FPGA
Performance Low Very High High

Power Large Small Moderate
Flexibility Excellent Poor Excellent

Hardware Design Not Available Large Moderate
Software Design Large Not Available Large

Reuse Excellent Poor Excellent
Market Very Large Small Very Large

From Table 1.1, the strengths and weaknesses of GPP, ASIC,and FPGA can

be determined easily. FPGA is the best choice for developing a dedicated application

accelerator for performance and flexibility.

1.2 Problem Statement

CNN can be divided into two sections which are training and processing. Once

the CNN models completed its training, users will only run the CNN processing part

to work on the specific application. In processing parts, there are 3 main layers exist in

CNN algorithm. Convolution, pooling and full connected layers contribute up to 90%

of execution time [6].

To improve the performance of CNN algorithm to overcome the bottleneck of

software programming in GPP, there are several hardware solution proposed by other

researchers. Different kind of approaches are introduced by them to utilize the hardware

for running the algorithm with optimized solution. Besides that, there are also some

approaches introduced to combine the different layer in CNN to minimize the data

loading or storing to the main memory to achieve better memory organization.

Although there are some studies had done for developing accelerators, there are

some limitation exist in the proposed accelerators. On the other hand, the proposed

accelerators also have their own strength and advantages. As an example, the unrolling

methodology introduced by [7][8] enable the convolution layer run in parallel but it

might be limited by the resources of the processors.
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By combining the methodology of unrolling, pipe-lining, and good memory

organization, a new basic model accelerator are introduced. By profiling the CNN

algorithm in the new basic accelerator, an accurate profiling result can be obtained.

With the new profiled results, we can always fine tune the methodologies implemented

in the processor to obtain the optimized result. In the end of the project, a new dedicated

accelerator is developed for CNN algorithm.

1.3 Project Objective

The aim of this project is to develop an accelerator for CNN application. To

achieve the target, the objective of this projects can be divided as below:

• To perform software profiling to investigate time-consuming CNN internal

function.

• To propose hardware accelerator architecture for improving convolution and

max pooling layer performance.

• To evaluate the performance-area trade-off of proposed CNN hardware

accelerator against the conventional CNN implementation.

1.4 Project Scope

The CNN algorithms plays an important role on several fields and it is able to

be applied in various types of platform. Hence, there are some scopes set for ensuring

the developing of the new enhancing accelerator can be done efficiently. The CNN

algorithm is able to applied in GPP, ASIC, and FPGA processor. In this project, we

will focus on the development of FPGA-based accelerator. In this project, the most

intensive function of CNN algorithm are analysed and we only focusing on improving

convolution and max pooling layer in CNN algorithm.

Vivado High Level Synthesis (HLS) is used to compile the c-code of CNN

algorithm for calculating the resources needed. Besides that, the performance of the

3



CNN algorithm run in conventional accelerator and proposed accelerator are simulated

and evaluated by calculating the maximum frequency allowed and number of cycles

needed to complete CNN algorithm.

1.5 Chapter Organization

The report consists of five chapters. Chapter 1 is the introduction of the project

background, problem statement, project objectives, and scopes of this project.

Chapter 2 will focus on the literature review. The theory of the CNN algorithms

and the most computing intensive arithmetic function in CNN are reviewed and studied.

Besides that, the proposed conventional accelerators for CNN are analyzed. The

strength and the weakness of those conventional accelerators are investigated. The

factors that contribute to advantages and weaknesses of those accelerators are reviewed

as well.

Chapter 3 presents the steps to develop the proposed algorithms. The details of

their implementation are presented in this chapter. This chapter also shows the planning

of the whole research and also the execution work have done in Project 1. Chapter 4

is the chapter to show the profiled result in current work and also tabulate the expected

outcome for the new accelerator developed. Chapter 5 summarize the content the paper

and also presenting the future work can be done to improve the project.
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