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ABSTRACT   

Acoustic activity detection plays a vital role for automatic wildlife monitoring 

which includes the study of ecology, populations and habitats assessments. Birds are 

one of the few wildlife species to be monitored as their population and distribution are 

expected to change due to climate changes in order to conserve the ecosystem, 

diversity and seasonal population changes. Monitoring animals based on sound 

(bioacoustics) monitoring involves continuous observation to capture rare events. 

Several existing bird sound classification devices records sounds at point reading and 

processed the data off-line that involves complex Convolution Neural Network (CNN) 

architecture which takes longer time in the processing stages as data needs to be 

acquired before being processed. This approach is not applicable on the real-time 

monitoring. Therefore, this project investigates the best architecture that can be 

implemented to lower the complexity of algorithm for a bird sound classification. Data 

training with bird sound from all over the world and non-bird sounds will be done in 

optimizing the algorithm. In precise, this project focuses on a bird sound classification 

with low resource CNN to classify an Eudynamys Scolopaceus bird species. The bird 

sound detection will be assessed on the Xeno-Canto dataset which is a dataset 

containing bird vocalization samples and Urban8k that is shared openly are used for 

training and testing. Data segmentation is done on each of the samples with 16kHz 

sampling frequency of 25% overlapping to avoid data loss. Segmented samples are 

then converted into spectrograms and fed into MobileNet CNN and Bulbul CNN 

Architecture for training and testing. A set of testing samples were used to predict the 

accuracy of each model and prediction results were presented in a confusion matrix. 

Results from both comparisons showed that MobileNet has a higher accuracy of 80% 

than Bulbul CNN with 64%. Further development and optimization of model 

architecture with the use of more training samples can be done in the future towards 

achieving a higher accuracy in classifying the bird sound.  

 

  



vii 

ABSTRAK 

Pengesanan aktiviti akustik memainkan peranan penting dalam pemantauan 

hidupan liar secara automatik yang merangkumi kajian ekologi, populasi dan penilaian 

habitat. Burung adalah salah satu dari spesies hidupan liar yang akan dipantau oleh 

kerana populasi dan taburannya yang dijangkakan akan berubah akibat perubahan 

iklim untuk melestarikan ekosistem, kepelbagaian dan perubahan populasi bermusim. 

Memantau haiwan berdasarkan pemantauan bunyi (bioakustik) melibatkan 

pemerhatian berterusan untuk menangkap kejadian yang jarang berlaku. Beberapa alat 

klasifikasi bunyi burung yang merekodkan suara ketika membaca dan memproses data 

secara luar talian yang melibatkan seni bina Rangkaian Neural Konvolusi (CNN) yang 

kompleks yang memerlukan masa lebih lama dalam pemprosesan kerana data perlu 

diperoleh sebelum diproses. Pendekatan ini tidak sesuai digunakan untuk pemantauan 

masa nyata. Oleh itu, projek ini menyiasat seni bina terbaik yang dapat dilaksanakan 

untuk menurunkan kerumitan algoritma untuk klasifikasi bunyi burung. Latihan data 

dengan suara burung dari seluruh dunia dan suara bukan burung akan dilakukan dalam 

mengoptimumkan algoritma. Tepatnya, projek ini memfokuskan pada klasifikasi suara 

burung dengan CNN sumber rendah untuk mengklasifikasikan spesies burung 

Eudynamys Scolopaceus. Pengesanan bunyi burung akan dinilai pada dataset Xeno-

Canto yang merupakan dataset yang berisi sampel vokalisasi burung dan Urban8k 

yang dikongsi secara terbuka untuk tujuan latihan dan ujian. Segmentasi data 

dilakukan pada setiap sampel dengan 16kHz frekuensi persampelan 25% bertindih 

untuk mengelakkan kehilangan data. Sampel yang tersegmentasi kemudian diubah 

menjadi spektrogram dan dimasukkan ke dalam senibina MobileNet CNN dan Bulbul 

CNN untuk latihan dan ujian. Satu set sampel ujian digunakan untuk meramalkan 

ketepatan setiap model dan hasil ramalan diganbarkan dalam matriks konfusi. Hasil 

dari kedua perbandingan tersebut menunjukkan bahawa MobileNet mempunyai 

ketepatan yang lebih tinggi iaitu 80% daripada Bulbul CNN dengan 64%. 

Pengembangan lebih lanjut dan pengoptimuman seni bina model dengan penggunaan 

lebih banyak sampel latihan dapat dilakukan di masa depan untuk mencapai ketepatan 

yang lebih tinggi dalam mengklasifikasikan suara burung. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Birds are a vital part of the ecosystems as they perform important tasks in 

balancing such as controlling crop pest, pollinate and disperse seed of many plants 

including many crops important to human and some birds like vultures also helps with 

the decomposition of organic materials [1]. Eudynamys Scolopaceus, commonly 

known as Asian Koel, is one of the bird species that contributes to seed dispersion 

around Asia as they inhabit many parts in Asia. This species migrates due to climate 

changes where it spends the summer in plains of Pakistan and migrates towards India 

during winter [2].  

The number of birds all around the world is becoming to worrying as a hundred 

bird species have vanished even since 1600. This is due to the loss of habitat resulting 

from over exploitation by human beings and overhunting. Other factors contributing 

to the decreasing number of bird species also includes introduced predators in their 

surroundings. As a result, highly threatened species is reaching extinction and bird 

species and groups is declining fast [3][4]. Conservation of bird population has been 

done by monitoring the bird’s population [5]. This can help to quantify the impact of 

a certain land use, study of ecology and the biodiversity of the bird’s habitat. 

Nowadays, many methods have been introduced from the most traditional method to 

the current conventional method. One of the methods for bird monitoring bird is by 

point count, where an expert tallies the birds by sight and sound from a fixed position 

for a set period of time.  This method is quite tedious and cannot be done during night-

time [6][7].  
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As technology advances, autonomous recording units (ARU) was introduced 

to counter the drawback of manual birdwatching. In this method, bird sounds are 

recorded round-the-clock and data is collected and brought back to the laboratory to 

be analysed by experts [8]. Today, a species recognition by point count has also been 

enhanced where bird sounds were recorded, and deep learning is used to automate the 

recognition process [9].  

1.2 Problem Statement 

Many methods to automate bird sound detection has been introduced. The most 

widely used today is autonomous recording units. In this method, bird sounds were 

recorded at a reading point and deep learning is used to do the detection without having 

manual expertise help [10]. However, this method typically requires convolutional 

neural network (CNN), a deep learning algorithm in data analysis which is very 

complex and takes longer time in the processing stages as data needs to be acquired 

before being processed [9].  

In addition, data recorded at point reading produces large volumes of data for 

online processing. This technique requires additional setup to solve the storage and 

data processing timing issues. Therefore, this project investigates the best architecture 

that can be implemented to lower the complexity of algorithm for the detection of 

Asian Koel (Eudynamys Scolopaceus) bird species. This species is chosen in this 

project as the species is quite common and produces loud and distinguishable 

vocalization calls. Data training with bird sound from all over the world and non-bird 

sounds will be done in optimizing the algorithm. In precise, this project focuses on a 

bird sound detection with low resource CNN to detect Eudynamys Scolopaceus 

vocalizations. 
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1.3 Research Objective 

The objectives of this project are listed as below: 

(a) To investigate the best architecture for a lightweight CNN algorithm in 

detecting Eudynamys Scolopaceus bird species 

(b) To implement the low-complexity CNN model in a bird detection algorithm 

using Bulbul CNN. 

(c) To evaluate and analyze the performance algorithm in detecting Eudynamys 

Scolopaceus bird species 

 

1.4 Scope of Project 

The scope of this study includes the investigation on the best and less complex 

CNN algorithm that is suitable for a bird sound detection. In order to achieve the 

objectives of the project, few scopes are included in this project. The scopes are listed 

as below: 

(a) Bird sound data collection from Xeno-Canto website using Rstudio 

(b)  Data segmentation and augmentation using Matlab 

(c) Data training and testing using GoogleColab platform 

 

1.5 Thesis Outline 

This thesis consists of five chapters. Chapter 1 discusses the project 

introduction, problem statement, objectives and scopes of this project. The main 

objective of this project is to investigate the best architecture for a lightweight CNN 
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algorithm in detecting Eudynamys Scolopaceus bird species by comparing MobileNet 

CNN with Bulbul CNN.  

In Chapter 2, discussion on the acoustic scene classification and literature 

review along with the previous work studies on the bird sound detection particularly 

the different approaches used in classifying the sound. A review on CNN architectures 

are also discussed in this chapter.  

In Chapter 3, the techniques and methodology throughout the project is 

discussed. Methods in dataset preparation that include data segmentation is explained 

in detail. MobileNet CNN and Bulbul were built, and prepared dataset was trained on 

built models. Lastly, the benchmarking of investigated algorithm is also discussed in 

this chapter.  

All results and discussion for this project will be presented in the next chapter, 

Chapter 4. Problems faced solutions to overcome the problems will also be discussed 

in this chapter. The novelty of the results and findings will be mentioned in this chapter 

as well. Lastly, Chapter 5 will brief on the expected outcome of this project within the 

time allocated.  
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