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Convolution Neural Network (CNN) is a special kind of neural network that is 

inspired by the behaviour of optic nerves in living creatures. CNN is gaining more and 

more attention nowadays because of the increased demand for high speed and low- 

cost synthetic vision systems. However, CNN can be both compute- and memory­

intensive. For that reason, implementation in a general-purpose processor will be slow 

and inefficient. Therefore, this project proposes a flexible CNN hardware accelerator 

that targets the Field Programmable Gate Array (FPGA) platform and features an 

optimized memory controller to reduce redundancy memory access. The main 

advantage of this project is that the accelerator is flexible - meaning that the user of 

the accelerator has the capability of modifying the architecture using parameterization 

to optimize for execution speed, resource utilization, and power consumption. The 

accelerator employs various hardware design techniques like loop unrolling, 

pipelining, optimized memory controller, and others to achieve the targeted 

performance. The accelerator is written in System Verilog language using Xilinx’s 

Vivado software and is tested using a single convolution layer from several selected 

CNN architectures. Then, it is compared against the same convolution layer 

implemented in Matlab. The proposed accelerator shows a huge speedup compared to 

the software counterpart of up to 4251X speed up with reasonable resource utilization 

and consumes only 0.27 W per layer.



Convolution Neural Network (CNN) adalah sejenis rangkaian saraf khas yang 

diilhamkan oleh tingkah laku saraf optik pada makhluk hidup. CNN semakin mendapat 

perhatian sekarang kerana permintaan yang tinggi untuk sistem penglihatan sintetik 

berkelajuan tinggi dan kos rendah. Walau bagaimanapun, CNN boleh memerlukan 

banyak komputasi dan memori. Untuk itu, pelaksanaan pada pemproses serba guna 

akan menjadi lambat dan tidak cekap. Oleh itu, projek ini mencadangkan pemecut 

perkakasan CNN fleksibel yang mensasarkan platform Field Programmable Gate 

Array (FPGA) dan dilengkapi pengawal memori yang dioptimumkan untuk 

mengurangkan akses memori berlebihan. Kelebihan utama projek ini adalah bahawa 

pemecut yang fleksibel - bermaksud bahawa pengguna pemecut memiliki kemampuan 

mengubah seni bina menggunakan pemparameteran untuk mengoptimumkan 

kecepatan pelaksanaan, penggunaan sumber daya dan penggunaan daya. Pemecut 

menggunakan pelbagai teknik reka bentuk perkakasan seperti membuka gelung, 

penalian paip, pengendali memori yang dioptimumkan dan lain-lain untuk mencapai 

prestasi yang disasarkan. Pemecut ditulis dalam bahasa Sistem Verilog menggunakan 

perisian Vivado Xilinx dan diuji menggunakan lapisan perlingkaran tunggal dari 

sebilangan seni bina CNN terpilih. Kemudian, ia dibandingkan dengan perlingkaran 

yang sama lapisan dalam Matlab. Pemecut yang dicadangkan menunjukkan kelajuan 

yang besar berbanding dengan perisian yang sehingga 4251X dengan penggunaan 

sumber yang wajar dan hanya menggunakan 0.27 W per lapisan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Convolution neural network (CNN) is a subset of neural networks which is a 

deep learning artificial intelligence technique that is inspired by the architecture of the 

human brain, a neural network consists of multi-layer neuron connections that function 

together to achieve high accuracy in classification and recognition tasks. The 

difference between ordinary neural networks and CNNs is that the latter feature 

multiple layers of convolution operation that is used to take advantage of data locality 

in images to reduce the number of parameters needed to execute large images in a 

conventional neural network [1].

CNN is very popular and widely used in synthetic vision systems compared to 

other artificial intelligence techniques/algorithms. The reasons for that are firstly in 

many machine learning methods the feature extraction step and classification step are 

separate, both needed to be implemented differently. Meanwhile, in CNN feature 

extraction and classification is done in one step. Secondly, the success of the vision 

system heavily depends on a successful feature extraction process which is usually 

done manually and needs a lot of tweaks to achieve the required performance in a non- 

CNN method which is a very time-consuming task [2, 3]. The last reason is that CNN 

is fast scaling-up networks which make it easier and faster to take an existing network 

architecture and scale it up to the desired system [4].

CNN is gaining more attention nowadays because of the increased demand of 

high-speed low-cost synthetic vision systems that are used to identify and categorize 

different objects in an image, examples of such application are smartphones, imaging 

sensor network, unmanned air vehicles (UAVs), and other embedded vision 

applications [1].



The deployment of big CNN models can be both compute-intensive and 

memory-intensive [4]. For these reasons implementation on general processors will be 

slow and inefficient. To counter these problems designers usually implement CNN in 

graphical processing units (GPU), application specific integrated circuit (ASIC), and 

field programmable gate array (FPGA). GPU implementation has the disadvantages of 

high power consumption, bulk size, and high price while ASIC implementation is very 

expensive and hard to customize this lift FPGA as the only reasonable and viable 

implementation of CNN for embedded systems.

FPGAs have been extensively studied as an important hardware platform for 

CNN computations. Different from general-purpose architectures, FPGA allows users 

to customize the functions and organization of the designed hardware in order to adapt 

various resource needs and data usage patterns [4]. Although current FPGA 

accelerators have demonstrated better performance over generic processors, the 

accelerator design space has not been well exploited. One critical problem is that the 

computation throughput may not well match the memory bandwidth provided by the 

FPGA platform [5].

According to previous studies [6, 7] convolutional layer account for over 90% 

of the computation of the total CNN execution time. Another issue highlighted by the 

study [8] is the challenging problem of memory bottleneck and the need to use a 

flexible memory hierarchy that supports the complex data access patterns on CNN. 

This work addresses these two problems by introducing a hardware accelerator that 

supports the convolution operation and features a memory controller that reduces the 

redundancy memory accesses, the accelerator will be designed using system Verilog 

hardware descriptive language (HDL) targeting FPGA implementation.

1.2 Problem Statement

Many solutions have been proposed to overcome the software implementation 

limitations of CNN in general processors. Among the solutions are GPUs and ASICs. 

Indeed, systems that utilize these platforms can achieve better performance in terms of



execution time. However, the GPU implementation is energy-intensive (having high 

power consumption) and the ASIC initial cost is very high and also it is inflexible.

As said earlier according to previous studies [6,7] convolutional layer account 

for over 90% computation of the total CNN execution time. This increases the demand 

for dedicated hardware acceleration for this convolution operation.

While the software implementation of CNN in GPUs gives high accuracy, it 

cannot meet real-time embedded systems constraints, such as power consumption, and 

cost. In addition to that, in the software implementation, there are unnecessary 

redundant memory accesses which slow down the overall execution time.

FPGA allows the designer to customize the functions and organization of the 

designed hardware logic in order to adapt various resource needs and data usage 

patterns. It also allows the designer to optimize for either execution time, power 

consumption, or design area.

1.3 Research Objectives

The objectives of this project are:

(a) To design a parameterized hardware accelerator for CNN using system Verilog

language that is capable of:

1. Accelerating the convolution operation.

2. Supporting Relu as a nonlinear activation function.

3. Supporting Max pooling for the pooling layer.

(b) To design a memory controller that decreases the redundancy in data accessing

to improve execution time.

(c) To compare the performance of the convolution operation in the hardware

accelerator against its software equivalence in terms of execution time.

(d) To synthesize different architectures of the accelerator and compare them in

terms of execution time, resource utilization, and power consumption.



1.4 Research Scope

To explore the hardware optimization techniques and design a hardware 

accelerator that supports and accelerates the common function required in modern 

CNN such as convolution operation, nonlinear activation function, and pooling 

operation using system Verilog HDL. The accelerator support only Relu activation 

function as it is the most popular nonlinearity function in today’s CNN, other 

activation function such as sigmoid, tanh are not supported. For the pooling layer, 

only max pooling is supported.

For testing and validating the design, a single convolution layer from several 

selected CNN architectures is implemented and is compared against the same 

convolution layer implemented in Matlab. For the testing data, random data is used for 

the input image, bias data, and kernel data. the same random data is fed to the hardware 

accelerator and the software and the results are compared to validate the design.

1.5 Contribution

Deep neural networks are used in synthetic vision systems because of their 

versatility and as such, are suitable for a variety of vision tasks. A low power 

consumption FPGA based accelerator give a low powered embedded system such as 

UAVs, security monitoring, smartphones and other synthesis vision application the 

capability of achieving high performance and accuracy in term of image classification 

and recognition.

1.6 Chapters Organization

Chapter 2 presents the literature reviews. It contains the introduction of CNN, 

discussion about some of the popular CNN architectures, and various state of the art 

CNN hardware accelerators are discussed, compared and reviewed.



Chapter 3 describes the methodology. The overall project flow is presented. 

And the general architecture of the accelerator is discussed. This chapter also presents 

various hardware optimization technique that is used to achieve the final design such 

as loop unrolling, pipeline, parameterization, and others.

Chapter 4 presents a detailed view of the accelerator building blocks which 

include register transfer level (RTL) flow charts and circuit diagrams. The results of 

the optimized memory controller and the complete hardware accelerator are also 

included in this chapter. Finally, Chapter 5 concludes the project and future works are 

discussed.
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