
FIELD PROGRAMMABLE GATE ARRAY BASED CONVOLUTION NEURAL 

NETWORK HARDWARE ACCELERATOR WITH OPTIMIZED MEMORY

CONTROLLER

MOHAMMED ISAM ELDIN HASSAN MOHAMMED

A project report submitted in partial fulfilment of the 

requirements for the award of the degree of 

Master of Engineering (Computer and Microelectronic System)

School of Electrical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia

JULY 2020



This project report is dedicated to my parents, who have given me a lifetime of love, 

and care. It is also dedicated to my sister and two brothers for their unlimited support

and for keeping my spirit up.



ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my supervisor, Doctor Mohd 

Shahrizal Bin Rusli, who has the substance of a genius: he convincingly guided and 

encouraged me to be professional and do the right thing even when the road got tough. 

Without his persistent help, the goal of this project would not have been realized.

Also, I would like to acknowledge the support and great love of my family, my 

father, Isam Eldin; my mother, Magda Abdelrahem; my sister, Alya; and my two 

brothers, Wadah and Hassan. They kept me going on and this work would not have 

been possible without their input.



Convolution Neural Network (CNN) is a special kind of neural network that is 

inspired by the behaviour of optic nerves in living creatures. CNN is gaining more and 

more attention nowadays because of the increased demand for high speed and low- 

cost synthetic vision systems. However, CNN can be both compute- and memory­

intensive. For that reason, implementation in a general-purpose processor will be slow 

and inefficient. Therefore, this project proposes a flexible CNN hardware accelerator 

that targets the Field Programmable Gate Array (FPGA) platform and features an 

optimized memory controller to reduce redundancy memory access. The main 

advantage of this project is that the accelerator is flexible - meaning that the user of 

the accelerator has the capability of modifying the architecture using parameterization 

to optimize for execution speed, resource utilization, and power consumption. The 

accelerator employs various hardware design techniques like loop unrolling, 

pipelining, optimized memory controller, and others to achieve the targeted 

performance. The accelerator is written in System Verilog language using Xilinx’s 

Vivado software and is tested using a single convolution layer from several selected 

CNN architectures. Then, it is compared against the same convolution layer 

implemented in Matlab. The proposed accelerator shows a huge speedup compared to 

the software counterpart of up to 4251X speed up with reasonable resource utilization 

and consumes only 0.27 W per layer.



Convolution Neural Network (CNN) adalah sejenis rangkaian saraf khas yang 

diilhamkan oleh tingkah laku saraf optik pada makhluk hidup. CNN semakin mendapat 

perhatian sekarang kerana permintaan yang tinggi untuk sistem penglihatan sintetik 

berkelajuan tinggi dan kos rendah. Walau bagaimanapun, CNN boleh memerlukan 

banyak komputasi dan memori. Untuk itu, pelaksanaan pada pemproses serba guna 

akan menjadi lambat dan tidak cekap. Oleh itu, projek ini mencadangkan pemecut 

perkakasan CNN fleksibel yang mensasarkan platform Field Programmable Gate 

Array (FPGA) dan dilengkapi pengawal memori yang dioptimumkan untuk 

mengurangkan akses memori berlebihan. Kelebihan utama projek ini adalah bahawa 

pemecut yang fleksibel - bermaksud bahawa pengguna pemecut memiliki kemampuan 

mengubah seni bina menggunakan pemparameteran untuk mengoptimumkan 

kecepatan pelaksanaan, penggunaan sumber daya dan penggunaan daya. Pemecut 

menggunakan pelbagai teknik reka bentuk perkakasan seperti membuka gelung, 

penalian paip, pengendali memori yang dioptimumkan dan lain-lain untuk mencapai 

prestasi yang disasarkan. Pemecut ditulis dalam bahasa Sistem Verilog menggunakan 

perisian Vivado Xilinx dan diuji menggunakan lapisan perlingkaran tunggal dari 

sebilangan seni bina CNN terpilih. Kemudian, ia dibandingkan dengan perlingkaran 

yang sama lapisan dalam Matlab. Pemecut yang dicadangkan menunjukkan kelajuan 

yang besar berbanding dengan perisian yang sehingga 4251X dengan penggunaan 

sumber yang wajar dan hanya menggunakan 0.27 W per lapisan.



DECLARATION iiii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Research Objectives 3

1.4 Research Scope 4

1.5 Contribution 4

1.6 Chapters Organization 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Convolution Neural Network 6

2.1.1 Convolutional Layer 7

2.1.2 Pooling Layer 7

2.1.3 Fully Connected Layer 8

2.1.4 Activation Function in CNN 8

2.2 Popular CNN Architectures 10

2.2.1 LeNet-5 Architecture 10

2.2.2 AlexNet Architecture 10



11

12

13

14

16

19

22

23

24

24

24

26

30

30

31

32

32

33

34

36

37

37

37

37

39

44

46

48

50

52

54

2.2.3 GoogleNet Architecture

2.2.4 ResNet Architecture

State of the Art CNN Hardware Accelerators

2.3.1 CNN Accelerator for Synthetic Vision Systems

2.3.2 Memory Centric Accelerator for CNN

2.3.3 nn-X Co-processor for CNN

Summary of Related Works of CNN accelerators 

Chapter Summary

RESEARCH METHODOLOGY

Introduction 

Project Flow

Proposed Accelerator design 

Hardware Design Techniques

3.4.1 Loop Unrolling

3.4.2 Memory Array Partitioning

3.4.3 Pipelining

3.4.4 Parameterized Design

3.4.5 Add Saturation Support

3.4.6 Optimized Memory Controller

Chapter Summary

RESULTS AND DISCUSSION

Introduction

Accelerator Circuits/RTL Diagrams

4.2.1 Parameter Register Bank

4.2.2 Memory Controller

4.2.3 Accelerator Processing Section

4.2.4 Restructure Section

4.2.5 Relu Section

4.2.6 Pooling Section

4.2.7 Saving Output Images Section 

Accelerator Results



4.3.1 Memory Controller Results 54

4.3.2 Accelerator Speed up Result 56

4.3.3 Resource Utilization Comparision 58

4.3.4 Power Consumption Comparision 59

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 61

5.1 Conclusion 61

5.2 Future Works 62

REFERENCES 63

Appendices A - L 66-109



Table 2.1 

Table 2.2

Table 2.3

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.4

Table 4.5 

Table 4.6

Table 4.7

TITLE

Common activation functions in CNN

Test setup and the achieved performance of the nn-X 
accelerator

Summary review of previous work in CNN hardware 
accelerators

Parameter registers description

Layer accelerator setup time

Optimize memory controller results

Comparison between convolution layer in software vs the 
hardware

Speed up of the hardware compared to the software

Resource utilization for various layer accelerator 
architectures

Power consumption for various layer accelerator 
architectures

9

21

22

38

54

54

56

56

58

59



Figure 2.1 CNN for generic object recognition of N classes 7

Figure 2.2 Architecture of LeNet-5 10

Figure 2.3 Architecture of AlexNet 11

Figure 2.4 GoogleNet inception architecture 11

Figure 2.5 Example architecture of ResNet 12

Figure 2.6 Difference between a regular CNN and a residual CNN 12

Figure 2.7 Hardware architecture of the synthetic vision systems
Accelerator 14

Figure 2.8 Result the synthetic vision systems Accelerator 16

Figure 2.9 High-level architecture of the memory-centric accelerator 16

Figure 2.10 Memory centric accelerator internal architecture 18

Figure 2.11 Modified memory-centric accelerator that computes more
than one feature map using the same data 18

Figure 2.12 Result of the memory-centric accelerator 19

Figure 2.13 Memory centric accelerator internal architecture 19

Figure 3.1 Summary of the project flow 25

Figure 3.2 Top-level system architecture 26

Figure 3.3 Internals of the layer accelerator block (4PE and 2 parallel
images) 28

Figure 3.4 Flow of data in the layer block 29

Figure 3.5 Processing stage of a layer accelerator 31

Figure 3.6 Memory partitioning 31

Figure 3.7 Pipeline stages in the proposed design 32

Figure 3.8 Illustrate parameterization in the proposed design 33

Figure 3.9 Example for illustration optimized memory controller 34

Figure 3.10 Demonstration of the optimized memory controller 35

Figure 4.1 Parameter register bank circuit diagram 38



39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Bias and kernel buffering RTL ASM chart

Memory controller bias and kernel buffering section 
hardware implementation

Input image buffering RTL ASM chart (1-2)

Input image buffering RTL ASM chart (2-2)

Memory controller input image buffering section hardware 
implementation

Accelerator processing section RTL chart

Accelerator processing section hardware implementation

Restructure block RTL chart

Restructure block hardware implementation

Relu block RTL chart

Relu block hardware implementation

Pooling block RTL chart

Pooling block hardware implementation

Saving block RTL chart

Saving block hardware implementation



CNN - Convolution Neural Network

RELU - Rectified Linear Units

HDL - Hardware Description Language

FPGA - Field Programmable Gate Array

GPU - Graphical Processing Unit

MLP - Multi-Layer Perceptron

PE - Processing Elements

BRAM - Block Random Access Memory

MAC - Multiply Accumulate Unit

LUT - Look-Up Table

RTL - Register Transfer Level

UAV - Unmanned Aerial Vehicle

ILSVRC - ImageNet Large Scale Visual Recognition Competition

DSP - Digital Signal Processing



Appendix A Matlab Convolution Code 66

Appendix B Parameter Register Bank System Verilog Code 68

Appendix C Kernel and Bias Memory Bank System Verilog Code 70

Appendix D Memory Management Unit System Verilog Code 72

Appendix E Image Memory and FIFO Bank System Verilog Code 83

Appendix F Accelerator Processing Section System Verilog Code 85

Appendix G Restructure Section System Verilog Code 92

Appendix H Relu Section System Verilog Code 96

Appendix I Pooling Section System Verilog Code 98

Appendix J Saving Section System Verilog Code 103

Appendix K Layer Accelerator System Verilog Code 107

Appendix L Layer Accelerator Test Bench System Verilog Code 109



CHAPTER 1

INTRODUCTION

1.1 Background

Convolution neural network (CNN) is a subset of neural networks which is a 

deep learning artificial intelligence technique that is inspired by the architecture of the 

human brain, a neural network consists of multi-layer neuron connections that function 

together to achieve high accuracy in classification and recognition tasks. The 

difference between ordinary neural networks and CNNs is that the latter feature 

multiple layers of convolution operation that is used to take advantage of data locality 

in images to reduce the number of parameters needed to execute large images in a 

conventional neural network [1].

CNN is very popular and widely used in synthetic vision systems compared to 

other artificial intelligence techniques/algorithms. The reasons for that are firstly in 

many machine learning methods the feature extraction step and classification step are 

separate, both needed to be implemented differently. Meanwhile, in CNN feature 

extraction and classification is done in one step. Secondly, the success of the vision 

system heavily depends on a successful feature extraction process which is usually 

done manually and needs a lot of tweaks to achieve the required performance in a non- 

CNN method which is a very time-consuming task [2, 3]. The last reason is that CNN 

is fast scaling-up networks which make it easier and faster to take an existing network 

architecture and scale it up to the desired system [4].

CNN is gaining more attention nowadays because of the increased demand of 

high-speed low-cost synthetic vision systems that are used to identify and categorize 

different objects in an image, examples of such application are smartphones, imaging 

sensor network, unmanned air vehicles (UAVs), and other embedded vision 

applications [1].



The deployment of big CNN models can be both compute-intensive and 

memory-intensive [4]. For these reasons implementation on general processors will be 

slow and inefficient. To counter these problems designers usually implement CNN in 

graphical processing units (GPU), application specific integrated circuit (ASIC), and 

field programmable gate array (FPGA). GPU implementation has the disadvantages of 

high power consumption, bulk size, and high price while ASIC implementation is very 

expensive and hard to customize this lift FPGA as the only reasonable and viable 

implementation of CNN for embedded systems.

FPGAs have been extensively studied as an important hardware platform for 

CNN computations. Different from general-purpose architectures, FPGA allows users 

to customize the functions and organization of the designed hardware in order to adapt 

various resource needs and data usage patterns [4]. Although current FPGA 

accelerators have demonstrated better performance over generic processors, the 

accelerator design space has not been well exploited. One critical problem is that the 

computation throughput may not well match the memory bandwidth provided by the 

FPGA platform [5].

According to previous studies [6, 7] convolutional layer account for over 90% 

of the computation of the total CNN execution time. Another issue highlighted by the 

study [8] is the challenging problem of memory bottleneck and the need to use a 

flexible memory hierarchy that supports the complex data access patterns on CNN. 

This work addresses these two problems by introducing a hardware accelerator that 

supports the convolution operation and features a memory controller that reduces the 

redundancy memory accesses, the accelerator will be designed using system Verilog 

hardware descriptive language (HDL) targeting FPGA implementation.

1.2 Problem Statement

Many solutions have been proposed to overcome the software implementation 

limitations of CNN in general processors. Among the solutions are GPUs and ASICs. 

Indeed, systems that utilize these platforms can achieve better performance in terms of



execution time. However, the GPU implementation is energy-intensive (having high 

power consumption) and the ASIC initial cost is very high and also it is inflexible.

As said earlier according to previous studies [6,7] convolutional layer account 

for over 90% computation of the total CNN execution time. This increases the demand 

for dedicated hardware acceleration for this convolution operation.

While the software implementation of CNN in GPUs gives high accuracy, it 

cannot meet real-time embedded systems constraints, such as power consumption, and 

cost. In addition to that, in the software implementation, there are unnecessary 

redundant memory accesses which slow down the overall execution time.

FPGA allows the designer to customize the functions and organization of the 

designed hardware logic in order to adapt various resource needs and data usage 

patterns. It also allows the designer to optimize for either execution time, power 

consumption, or design area.

1.3 Research Objectives

The objectives of this project are:

(a) To design a parameterized hardware accelerator for CNN using system Verilog

language that is capable of:

1. Accelerating the convolution operation.

2. Supporting Relu as a nonlinear activation function.

3. Supporting Max pooling for the pooling layer.

(b) To design a memory controller that decreases the redundancy in data accessing

to improve execution time.

(c) To compare the performance of the convolution operation in the hardware

accelerator against its software equivalence in terms of execution time.

(d) To synthesize different architectures of the accelerator and compare them in

terms of execution time, resource utilization, and power consumption.



1.4 Research Scope

To explore the hardware optimization techniques and design a hardware 

accelerator that supports and accelerates the common function required in modern 

CNN such as convolution operation, nonlinear activation function, and pooling 

operation using system Verilog HDL. The accelerator support only Relu activation 

function as it is the most popular nonlinearity function in today’s CNN, other 

activation function such as sigmoid, tanh are not supported. For the pooling layer, 

only max pooling is supported.

For testing and validating the design, a single convolution layer from several 

selected CNN architectures is implemented and is compared against the same 

convolution layer implemented in Matlab. For the testing data, random data is used for 

the input image, bias data, and kernel data. the same random data is fed to the hardware 

accelerator and the software and the results are compared to validate the design.

1.5 Contribution

Deep neural networks are used in synthetic vision systems because of their 

versatility and as such, are suitable for a variety of vision tasks. A low power 

consumption FPGA based accelerator give a low powered embedded system such as 

UAVs, security monitoring, smartphones and other synthesis vision application the 

capability of achieving high performance and accuracy in term of image classification 

and recognition.

1.6 Chapters Organization

Chapter 2 presents the literature reviews. It contains the introduction of CNN, 

discussion about some of the popular CNN architectures, and various state of the art 

CNN hardware accelerators are discussed, compared and reviewed.



Chapter 3 describes the methodology. The overall project flow is presented. 

And the general architecture of the accelerator is discussed. This chapter also presents 

various hardware optimization technique that is used to achieve the final design such 

as loop unrolling, pipeline, parameterization, and others.

Chapter 4 presents a detailed view of the accelerator building blocks which 

include register transfer level (RTL) flow charts and circuit diagrams. The results of 

the optimized memory controller and the complete hardware accelerator are also 

included in this chapter. Finally, Chapter 5 concludes the project and future works are 

discussed.



REFERENCES

1. C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello, 

"Hardware accelerated convolutional neural networks for synthetic vision 

systems," in ISCAS, 2010, vol. 2010, pp. 257-260.

2. Z. Liu, Y. Dou, J. Jiang, Q. Wang, and P. Chow, "An FPGA-based processor 

for training convolutional neural networks," in 2017 International Conference 

on Field Programmable Technology (ICFPT), 2017, pp. 207-210: IEEE.

3. N. Aloysius and M. Geetha, "A review on deep convolutional neural 

networks," in 2017 International Conference on Communication and Signal 

Processing (ICCSP), 2017, pp. 0588-0592: IEEE.

4. S. Li, W. Wen, Y. Wang, S. Han, Y. Chen, and H. Li, "An FPGA design 

framework for CNN sparsification and acceleration," in 2017 IEEE 25th 

Annual International Symposium on Field-Programmable Custom Computing 

Machines (FCCM), 2017, pp. 28-28: IEEE.

5. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing fpga- 

based accelerator design for deep convolutional neural networks," in 

Proceedings of the 2015 ACM/SIGDA International Symposium on Field- 

Programmable Gate Arrays, 2015, pp. 161-170: ACM.

6. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with 

deep convolutional neural networks," in Advances in neural information 

processing systems, 2012, pp. 1097-1105.

7. J. Cong and B. Xiao, "Minimizing computation in convolutional neural 

networks," in International conference on artificial neural networks, 2014, pp. 

281-290: Springer.



8. M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, "Memory-centric 

accelerator design for convolutional neural networks," in 2013 IEEE 31st 

International Conference on Computer Design (ICCD), 2013, pp. 13-19: IEEE.

9. S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, "A dynamically 

configurable coprocessor for convolutional neural networks," in Proceedings 

of the 37th annual international symposium on Computer architecture, 2010, 

pp. 247-257.

10. T. Chen et al., "Diannao: A small-footprint high-throughput accelerator for 

ubiquitous machine-learning," ACM SIGARCH Computer Architecture News, 

vol. 42, no. 1, pp. 269-284, 2014.

11. V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, "A 240 g-ops/s 

mobile coprocessor for deep neural networks," in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition Workshops, 2014, 

pp. 682-687.

12. T. Y. chin, "TONGUE COLOR DIAGNOSIS USING DEEP LEARNING 

TECHNIQUE," Master thesis, 2019.

13. K. Hornik, "Approximation capabilities of multilayer feedforward networks," 

Neural networks, vol. 4, no. 2, pp. 251-257, 1991.

14. S. S. Liew, M. Khalil-Hani, and R. Bakhteri, "Bounded activation functions for 

enhanced training stability of deep neural networks on visual pattern 

recognition problems," Neurocomputing, vol. 216, pp. 718-734, 2016.

15. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning 

applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 

2278-2324, 1998.

16. C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the 

IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.



17. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image 

recognition," in Proceedings of the IEEE conference on computer vision and 

pattern recognition, 2016, pp. 770-778.

18. S. Han, J. Pool, J. Tran, and W. Dally, "Learning both weights and connections 

for efficient neural network," in Advances in neural information processing 

systems, 2015, pp. 1135-1143.

19. J. L. Holi and J.-N. Hwang, "Finite precision error analysis of neural network 

hardware implementations," IEEE Transactions on Computers, vol. 42, no. 3, 

p p .281-290, 1993.




