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ABSTRACT

Plant diseases are a critical factor that impacts the yield and quality of crops

and economics in the agricultural sector. This can shown in the incident of a fungal

wheat disease in North Texas caused $250 million loss of revenue of the affected

country in the year of 2001. Hence, there is essential in protecting the crops from

diseases to ensure production quality and quantity. Early detection of the plant diseases

is necessary, and it can help to prevent the spreading of the diseases by choosing an

appropriate treatment for the plants. However, the process is often trailed by the lack

of necessary infrastructure that offers simplicity in performing accurate classifications.

Thus, rapid and accurate detection of plant disease throughmachine learning is essential

to minimizing or averting this hardship. On top of that, the existing work does not

segment the progression area of the disease on the leaf. In which, this area giving a

lot of information on the disease. Especially to the pattern of disease symptoms that

are very similar such as in the case of vegetable early and late blight is currently not

given much consideration in the machine learning process. Hence, the objective of

this project is to construct a salient map image that tracks the disease progression right

from inception to manifestation following the pathological disease anatomy. Semantic

segmentation with Convolutional Neural Network (CNN) is used to construct the salient

map image, through transfer learning with SegNet. In this project, 460 images of early

blight and late blight diseases plants from PlantVillage dataset is used for the training

and testing processes of the CNN. Next, the training parameters are fine-tuned in

order to optimize the deep learning model accuracy. At the end of the project, the

deep learning model will be able to segment the leaf image into several regions with

the overall accuracy of 89.567% and overall IOU of 52.5448%. Also, although the

transfer learning on FCN with same data-set and training parameters has slightly better

performance with overall accuracy of 89.91% and IOU of 53.92%, its main drawbacks

of longmodel training duration and consumption of hugememory size hasmade SegNet

more preferable in this project. With the gradient map image generated, the pattern

of each disease manifestation along the leaf surface can be tracked and quantified for

better understanding and characterization based on their anatomy.
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ABSTRAK

Penyakit tumbuhan adalah faktor kritikal yang memberi kesan kepada hasil

dan kualiti tanaman dan ekonomi dalam sektor pertanian. Ini dapat ditunjukkan

dalam kejadian penyakit gandum di North Texas menybabkan $250 juta kerugian

hasil pada tahun 2001. Pengesanan awal penyakit tumbuhan adalah penting

untuk melindungi tanaman daripada penyakit untuk menjamin kualiti dan kuantiti

pengeluaran. Namun begitu, proses ini amatlah rumit disebabkan kekurangan

infrastruktur yang canggih untuk melakukan klasifikasi yang tepat. Oleh itu,

pengesanan penyakit yang cepat dan tepat melalui pembelajaran mesin adalah penting

untuk meminimumkan masalah ini. Tambahan pula, kerja yang sedia ada tidak

mengenalpasti bahagian kawasan perkembangan penyakit pada daun di mana kawasan

ini memberi banyak informasi dan maklumat penyakit. Bukan itu sahaja, corak gejala

penyakit yang hampir serupa terutamanya dalam penyakit "early blight" dan "late

blight" tidak diberikan pertimbangan lebih dalam proses pembelajaran mesin yang

sedia ada. Oleh itu, matlamat projek ini adalah untuk membina imej peta ayata

untuk menjejaki perkembangan penyakit dari awal hingga manifestasi berdasarkan

anatomi penyakit patologi. Segmen Semantik dengan Rangkaian Neural Konvensional

(CNN) digunakan untuk membina imej peta kecerunan, melalui pembelajaran

pemindahan dengan SegNet. Dalam projek ini, 460 imej penyakit "early blight"

dan "late blight" yang diperoleh daripada dataset PlantVillage digunakan untuk

proses latihan dan ujian CNN. Seterusnya, parameter latihan dipertingkatkan untuk

mengoptimumkan ketepatan model pembelajaran. Pada akhir projek ini, model

pembelajaran mendalam dapat mengklasifikasikan imej daun ke beberapa kawasan

mengikut formula kecerunandengan dengan keseluruhan ketepatan sebanyak 89.567%

dan keseluruhan IOU sebanyak 52.5448%. Bukan itu sahaja, walaupun pembelajaran

pemindahan pada FCN dengan menggunakan data dan parameter latihan yang sama

mempunyai prestasi yang lebih baik dan ketepatan keseluruhan sebanyak 89.91% serta

IOU sebanyak 53.92% berbanding dengan keputusan SegNet, tempoh latihan model

yang lama dan keperluan saiz memori yang besar telah menjadi faktor kelemahannya.

SegNet telah menjadi pilihan utama dalam projek ini. Dengan peta kecerunan ini, corak

setiap manifestasi penyakit di permukaan daun dijejaki untuk pemahaman yang lebih

baik berdasarkan anatomi mereka.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Over the years, the agriculture sector has been rapidly grown, and it has become

the primary source of food supply for the population. Moreover, it plays an important

role in promoting economic development in many countries, such as China, India,

and the United States (US) [9] [10]. For instance, the economic contribution of the

agriculture sector in US is more than $300 billion every year [10]. According to the

report from David and Marcel, the production of food needs to be increased by around

70% in 2050 in order to support the predicted population size of over 9 billion people

[11]. However, there are numerous diseases that impact the plant’s quality and yield

[12]. On top of that, the yield of the crops is averagely decreased by 40% and as worst

as 100% of yield losses due to the infectious diseases.

Also, there was a case of fungal wheat disease in North Texas in 2001, which

caused about $250million loss of revenue from the four affected countries [13]. Besides,

the yield of crops is affected by the plant diseases, causing insufficient food, which will

lead to famine and death in the worst cases. This is shown in the case where lots of

potato plants were destroyed in Ireland during 1845 - 1850 due to late blight disease that

attacked potato plants. As a result, famine cost about one million peoples’ lives, and

millions of other peoples were forced to emigrate to USA, Canada, and other countries

[14]. Hence, it is important to protect the crops from diseases to ensure production

quality and quantity. Early detection of the plant diseases is necessary, and it can help

to prevent the spreading of the plant diseases by choosing an appropriate treatment for

the plants at the early stage.
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1.2 Problem Statement

An effective way to protect the plant in order to ensure the quality and quantity

of crops production is to detect the plant diseases in the early stage. This is because

a proper treatment can be applied to the infected plants at the correct time to refrain

the disease from spreading and cause a greater loss [15]. Generally, the detection of

plant diseases is based on visual examination methodologies in which pathologists will

classify the leaf into several segments, and the illness of the leaf is identified according to

the criteria on each of the segments. This process requires human expertise and labour-

intensive to continually monitor the leaf of the plants which is very time-consuming

and challenging for a human being [16] [17]. Hence, a system or machine that is able to

identify the plant diseases automatically is crucial in order to prevent the disease from

spreading to other parts of the plants [18].

In the research of plant analysis, the area and colour of the leaf are the main

parameters that reflect the healthfulness and physiological processes of the plants [19]

[20] [21]. The progression area on the leaf provides a lot of useful information about

the physiological processes and diseases information of the plant. In the existing work,

most of the automatic disease identification approaches do not segment the progression

area on the leaf but instead uses the whole image to extract features and identify the

diseases. This results in low accuracy for diseases with almost similar symptoms, such

as in the case of early and late blight.

1.3 Objective

The goal of this project is to construct a gradient map image that tracks the plant

disease by using deep learning technique. The gradient map image is a way to segment

the leaf image into meaningful regions. The reliance on handcrafted topographies can

be removed by applying the deep learning approach. Figure 1.1 shows the sample of

gradient map image that shows the disease progression area in light green color region.
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Figure 1.1: Example of gradient map image that shows the disease progression area.

1.4 Scope of Work

This project is concentrated on the segmentation of leaf images into two regions

on leaf images. The name of region is labelled as "foreground" for the progression

area or salient area and "background" for the non-progression area respectively. The

plant leaf images used in this project is obtained from a well known public database–

PlantVillage as PlantVillage has released over fifty thousand proficiently curated

images on diseases and healthy leaves of different crop plants through online platform.

Throughout this project, total number of 460 segmented potato and tomato plant leaf

images from PlantVillage with early and late blight diseases are used for transfer

learning with SegNet.

3



1.5 Thesis Outline

This project report is divided into five chapters, which are: 1.) introduction,

2.) literature review, 3.) research methodology, 4.) results and discussion, and 5.)

conclusion respectively.

In Chapter 1, an introduction of this project is discussed, followed by the

problem background, problem statement, objective, and scope of this project. The

early part of this chapter is discussed about the motivation of this project and followed

by the challenges or problems that are existed in the current plant disease identification

approaches. Next, the objective and the scope of this project are discussed in detail.

In Chapter 2, the background of research materials that are related to this project

is studied thoroughly. A background of deep learning (DL) and convolutional neural

network (CNN) are discussed in the early part of chapter 2. Related works that were

done by other researches are presented in chapter 2 as well.

Chapter 3 covers the details of the methodology of the project development.

This chapter describes the flow, algorithm, and tools that are used in this project.

In Chapter 4, detail discussions and analysis of the results obtained from this

work are presented. The results obtained from this work are illustrated in table and

graph forms for analysis and discussion purposes.

In Chapter 5, the summary of this project is reviewed. Besides, the further

development of this work is discussed in this chapter as well.
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