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ABSTRACT 

 

 

 

 

Underbalanced drilling (UBD) has gained popularity during recent years, as it 

provides a procedure to prevent formation damage, minimise lost circulation risks, 

and improve the rate of penetration. However, one of the most crucial steps in UBD 

design is to optimise the drilling hydraulics for the highest performance during the 

drilling operation. This task is extremely difficult because of the complex nature of 

the multiphase flow in the UBD system. To accomplish this task, the bottomhole 

pressure must be calculated. However, the bottomhole pressure, the fluid influx flow 

rates and the fluid properties along the wellbore are interdependent parameters and 

can only be derived through a combination of iterative and finite differential 

methods. It is therefore necessary to use a computer program to carry out the work 

involved. To achieve the goals of this process, a commercial software package called 

WELLFLO 8.1.4 was used to model the underbalanced hydraulics. Field data from 

the Masila Field (Yemen) reservoirs were used as the input parameters for the UBD 

simulator. Software validation showed good agreement between the measured 

standpipe pressure and the simulated standpipe pressure with less than 6% average 

absolute error. The analysis showed that the liquid flow rate is responsible for 

carrying capacity of the fluid mixture, while the gas phase is responsible for 

accelerating the liquid phase. Sensitivity analysis proved that the liquid phase density 

of drilling fluid influences the bottomhole pressure significantly while other drilling 

parameters such as the rate of penetration, the gas injection density and the choke 

pressure cause a minimal impact on the bottomhole pressure which plays a 

significant role in the success of UBD operations. Furthermore, it has been observed 

that bottomhole pressure, the velocity of the liquid phase and the nozzle size have a 

strong influence on bit pressure drop.  
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ABSTRAK 
 

 

 

 

Penggerudian imbang bawah (UBD) telah menarik perhatian ramai sejak 

beberapa tahun kebelakangan ini kerana UBD menyediakan satu prosedur untuk 

mengelakkan daripada berlakunya kerosakan formasi, mengurangkan risiko 

kehilangan edaran, dan meningkatkan kadar penembusan. Walau bagaimanapun, satu 

langkah penting dalam merekabentuk UBD adalah untuk mengoptimumkan hidraulik 

penggerudian bagi menghasilkan prestasi tertinggi ketika operasi penggerudian 

berjalan. Tugasan ini amat sukar kerana sifat kompleks aliran berbilang fasa dalam 

sistem UBD. Untuk menyempurnakan tugasan ini, tekanan lubang bawah mesti 

dikira. Walau bagaimanapun, tekanan lubang bawah, kadar aliran kemasukan cecair, 

dan sifat-sifat cecair sepanjang lubang telaga merupakan parameter yang saling 

bergantung dan hanya boleh diterbitkan menerusi gabungan lelaran dan kaedah 

pembezaan terhingga. Dengan itu, program komputer harus digunakan untuk 

melaksanakan tugasan tersebut. Untuk mencapai matlamat proses ini, pakej perisian 

komersial yang dikenal sebagai WELLFLO 8.1.4 digunakan untuk memodelkan 

hidraulik imbang bawah. Data lapangan dari medan Masila yang terletak di Yemen, 

telah digunakan sebagai input parameter untuk simulator UBD. Pengesahan perisian 

telah memberikan hasil yang setanding antara tekanan terukur paip tegak dengan 

tekanan simulasi paip tegak iaitu purata ralat mutlak kurang daripada 6 %. Hasil 

analisis menunjukkan bahawa kadar aliran cecair mempengaruhi kapasiti cecair 

campuran, manakala fasa gas berupaya memecut fasa cecair. Analisis kepekaan 

membuktikan bahawa ketumpatan fasa cecair dalam bendalir gerudi mempengaruhi 

tekanan bawah lubang secara ketara manakala parameter penggerudian yang lain 

misalnya kadar penembusan, ketumpatan gas suntikan, dan tekanan pencekik 

memberikan kesan yang minimum terhadap tekanan lubang bawah yang menentukan 

kejayaan operasi UBD. Selain itu, tekanan bawah lubang, halaju fasa cecair, dan saiz 

muncung mempunyai pengaruh yang kuat terhadap kejatuhan tekanan bit. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  
 

 

Underbalanced drilling (UBD) is a drilling process where the drilling fluid’s 

pressure in the wellbore is intentionally designed to be lower than the pressure of the 

formation being drilled. This pressure difference causes the fluid in the reservoir to 

flow into the wellbore while drilling thereby preventing formation damage and fluid 

loss. This process requires special procedures and additional equipment before 

commencement, during the drilling, and after a UBD operation. The UBD technique 

is far superior to conventional drilling techniques and has several important 

advantages, such as low probability of pipe sticking, improved formation damage, 

high penetration rate and bit life, and better formation evaluation. 

 

 

This chapter introduced the underbalanced drilling technology, comparing the 

underbalanced and overbalanced operations, UBD’s beneficial and limiting factors, 

gasified liquid drilling operations, and UBD challenges in the Masila oilfield. The 

problem statement, objectives, scopes of the study, significance of the research work, 

and thesis organization are also presented. 

 

 

 

 

1.2 Underbalanced Drilling Technology 
 

 

Comparing overbalanced drilling and underbalanced drilling allows us to 

establish the main differences between the two drilling techniques.  
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Overbalanced operation (OBO), when drilling fluid invasion and the 

hydrostatic pressure in a wellbore can mask potentially productive zones. Formation 

damage, especially in horizontal wells, is often difficult to clean up once the wells 

are released to production. Tight zones may have never been cleaned up, resulting in 

large sections of a well (especially the horizontal segment) being unproductive. Lost 

circulation and differential sticking can often result in severe drilling problems and 

many wells in depleted reservoirs never get to their planned total depth (TD) (Figure 

1.1). 

 

 

Underbalanced operation (UBO) can improve the detection of productive 

hydrocarbon zones even identifying zones that have been bypassed if the well was 

drilled conventionally. The use of UBO minimizes or completely eradicates damage 

to the reservoir rocks, including the tighter sections of a well, resulting in better 

production. There are no fluid losses and no differential sticking may be experienced 

as the drilling fluid pressure is below the reservoir pressure (Figure 1.1). 

 

 

Figure 1.1   Overbalanced operations versus underbalanced operations (Nas, 2006a) 
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1.2.1 UBD – Beneficial and Limiting Factors   

 

 

Underbalanced drilling has numerous important advantages over 

conventional drilling techniques. Table 1.1 shows the beneficial and limiting factors 

of UBD.  

 

 

Table 1.1   UBD – beneficial and limiting factors (Bennion et al., 1996; Baker 

Hughes, 1999; Mathes et al., 1999) 

 

Beneficial factors 

 

Limiting factors 

 

(1) Reduced formation 

damage/increased 

productivity/reduced stimulation 

requirements. 

(2)  Improved formation 

evaluation/identification of 

fractures. 

(3)  Minimised loss of circulation. 

(4)  Elimination of differential sticking. 

(5)  Increased penetration rate. 

(6)  Increased bit life. 

(7)  Reduction/elimination of expensive 

drilling fluid programmes. 

(8)  Improved safety and reduced 

environmental impact. 

(9)  Early production. 

 

(1) Additional engineering and 

operational complexity. 

(2)  Increased operational risks such 

as higher surface pressures and 

continually flowing well during 

drilling. 

(3)  New methods of cutting 

transportation and disposal. 

(4)  Utilization of specialized 

equipment. 

(5)  Potentially higher daily 

operational costs. 
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1.3 UBD Techniques 

 

 

Various UBD drilling techniques applied in the oil and gas industry employ 

air, gas, foam, mist, and gasified liquid (aerated liquid). Figure 1.2 shows the UBD 

compressible fluid classifications. However, for the purpose of this research, only the 

gasified liquid drilling techniques were considered. Some of the benefits of drilling 

with aerated fluids include the avoidance of lost circulation, reduced formation 

damage, prevention of differential sticking, and increased rate of penetration. The 

objectives are to achieve a planned total depth when drilling wells and to minimize 

and/or eliminate circulation losses in these wells, thereby preventing a reoccurrence 

of past experience recorded from drilling similar wells in the Masila field. Other 

objectives are to improve the penetration rate, bit life, and reduce the possibilities of 

encountering drilling problems such as differential sticking and inefficient hole 

cleaning by utilizing an aerated drilling system. 

 

 

Figure 1.2      Compressible fluid classifications: (a) air or gas, (b) mist, (c) aerated 

liquid, (d) foam. (Weatherford, 2007) 
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1.4 Gasified Liquid Drilling Operations 

 

 

When the liquid and gas phases are mixed on purpose in order to reduce the 

fluid density, we have what is called gasified or aerated fluid. Usually, the mixture 

occurs at the surface where the gas is injected into the fluid before pumping through 

the drill pipe. 

 

 

The benefits that can be reached from a gasified UBD are the avoidance of 

lost circulation, reduction of formation damage, avoidance of differential sticking, 

and increased rates of penetration. However, the biggest challenge faced by a 

gasified system is the intermittent nature of the operation as the gasified fluid starts 

to separate, especially in the annulus, once there is an interruption in the operation 

either as a result of technical issues or otherwise. This causes a hydrostatic pressure 

to be exerted downhole in the formation and may lead to an overstepping of the pore 

pressures of the reservoir anytime circulation is re-established as a result of the slug 

of pure liquid formed during the interruption period (Alajmi, 2003). 

 

 

Gasified design often requires computer programs because of the complex 

nature of the fluid mixture in drilling systems where water, gas, drilled cuttings and 

fluid influxes from the penetrated formations are present. It can be seen from a 

computer simulation how an air injection rate causes the lowest flow annulus 

pressure for a given well geometry and mud flow rate. Investigations enhanced by 

computer simulation reveal the effect of different mud flow rates on their carrying 

capacity. It reveals that a low mud flow rate has poor carrying capacity of the 

gasified mud. Past research findings reveal that an optimum mix of air rates and 

drilling mud can be achieved for gasified liquid drilling if the annulus pressure flow 

and carrying capacity are taken into consideration (Guo and Rajtar, 1995; Gou et al., 

1996).  
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1.5 UBD Challenges in the Masila Oilfield 
 

 

Masila oilfield, which is located in the south eastern part of Yemen, provides 

a good opportunity for the implementation of the UBD technology so as to address 

some of the challenges encountered in field operations. The Masila oilfield has a 

drilling history characterised by pressure loss and a highly fractured basement 

formation. Their low pressured reservoir has posed a serious challenge for the 

traditional overbalanced drilling techniques. Recently, there have been no 

publications discussing the potential of UBD for the Masila oilfield. Despite its 

several advantages and its increasing role in drilling technology, UBD has not been 

given the attention it deserves as very little research has been conducted in this field. 

This research work investigates the main UBD challenges in the Masila oilfield and 

summarises the solutions for dealing with them. UBD hydraulics has been identified 

as a problem in this study.   

 

 

Considering UBD as a solution for overcoming all drilling and production 

problems or looking only on the bright side of this technology seems to be dogmatic. 

Despite playing an important role globally, even this method of drilling includes 

some challenges during its implementation. The main goal in most of the UBD 

operations that have been implemented in Yemen since 2006 was to deal with severe 

losses to get to Total Depth (TD). Some of the advantages of UBD have gained while 

others need to be more thoroughly investigated in future research in the Masila 

oilfields. 

 

 

 

 

1.6 Problem Statement 

 

 

The use of gasified drilling fluids for drilling highly fractured formations and 

depleted reservoirs have been on the increase. Gasification of the fluid is achieved by 

injecting gas and liquid through the drill string resulting in a compressible two-phase 

flow in the drill string. Due to the technical complexity of UBD operations, the 

success of such operations depends on the accuracy of a detailed engineering study 
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that is typically carried out both before and during the actual drilling. Accurate 

computer modelling of the hydraulics of bottomhole pressure, hole cleaning, and 

pressure drop through bit nozzles is a critical component of this design and 

performance evaluation process. 

 

 

Cuttings transport is a key factor militating against the time, cost, and quality 

of UBD. When holes are not adequately cleaned, drilling becomes expensive due to 

resultant effects like premature bit wear, pipe sticking, high torque and drag, 

formation fracture, and slow drilling. Cuttings transport is influenced by many 

variables which include the penetration rate, the rotational speed of the drill pipe, the 

diameter of the hole and drill pipe, the cutting size, the fluid velocity, and the flow 

rate of gas and liquid fluid.  

 

 

It is worth mentioning that bit efficiency can be enhanced if hydraulic power 

is increased. This increases penetration rate and causes the cuttings to be quickly 

removed as soon as they are generated. Thus, the major focus of this research is on 

the pressure drop at the bit since the hydraulic power is dependent on the pressure 

drop across the bit. 

 

 

 

 

1.7 Objectives 
 

 

The objectives of this study are: 

 

(1) To investigate the effect of different drilling parameters such as choke 

pressure, rate of penetration, mud density and gas density on bottomhole 

pressure. 

 

(2) To investigate the effect of bottomhole temperature and pressure, liquid flow 

rate, gas injection rate, nozzle size, and bit size on bit pressure drop. 
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(3) To investigate the effective variables in cutting transport performance of 

aerated drilling fluid, which include drilling fluid rate, gas injection rate and 

rate of penetration. 

 

 

 

 

1.8 Scopes of the Study  
 

 

To accomplish the objectives of this study, the scopes of this study are 

divided into three sections as follows: 

 

 

(1) Simulation work to determine the best combination of drilling hydraulics 

parameters, such as prediction of bottomhole pressure, hole cleaning and 

pressure drop on the bit. Works were accomplished to determine optimum 

selection of hydraulics parameters during UBD operations.  

 

(2) The modelling software known as WELLFLO 8.1.4 was used for the 

simulation of all the UBD hydraulics parameters in this research work. The 

UBD simulator was validated using field case study. 

 

(3) The simulation results were validated by comparing the predicted injection 

pressures against field data obtained from the Masila oilfield. Three sets of 

measured field data which were obtained from three wells in the Masila 

oilfield: X #1, X #2, and X #3. All of these wells were drilled vertically using 

aerated mud and air through drill string injection. 

 

 

 

 

1.9 Significance of the Research Work 
 

 

This research work is very significant to the oil and gas industry, especially to 

Masila oilfield in the south east of Yemen, for a number of reasons as shown below: 
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(1) The study would produce an accurate computer modelling of the hydraulics 

of bottomhole pressure, hole cleaning, and pressure drop through bit nozzles 

which could serve as a critical component for the design and performance 

evaluation process of UBD. 

 

(2) The findings of the study would reveal the effective variables to be used in 

cuttings transport which could reduce the cost and time used on UBD.  

 

(3) The theoretical and practical contributions of this research would provide 

areas for researchers who may wish to further the advancement of UBD since 

there are very few academic publications in this field at the moment. 

Practically, it could offer a solution to the challenges faced at the Masila 

oilfield, which is characterized by low pressured reservoirs that has until now 

proved difficult for traditional overbalanced approaches. The simulation 

results obtained from this research were expected to make positive 

contributions in understanding the behavior and performance of UBD 

hydraulics that is very much needed in designing the UBD program.  

 

 

 

 

1.10 Thesis Organization 
 

 

This thesis is structured into five chapters, the references, and appendices. 

 

 

Chapter 1 presents an overview of the thesis, made up of: a brief induction 

and background on underbalanced drilling technology, comparing the underbalanced 

and overbalanced operations, UBD benefits and limiting factors. The problem 

statement, objectives and scopes of the study are also presented. 

 

 

Chapter 2 reviews literature related to the present study. Topics reviewed 

include modelling multiphase flow in UBD which explains how several techniques 

are used in order to achieve the optimum result while performing UBD operations. 

Next, the optimisation hydraulics of underbalanced drilling were presented in detail, 
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including bottomhole pressure prediction, pressure drop across bit nozzles and hole 

cleaning in underbalanced drilling. Finally, the UBD Simulator used in this study 

was reviewed.   

 

 

Chapter 3 explains the method employed in conducting the research. The 

techniques used to obtain and analyse field data for the study was reported. This 

segment also highlighted the actions taken to achieve the objectives of this study. 

 

 

Chapter 4 discuses and summarizes the simulation results obtained. 

 

 

Chapter 5 presents the conclusions and recommendations for further research.  
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