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A bst ract : Many different approaches to tac kle the problem of motion plann ing for art icu lated

robots in an env ironment w ith obstacles based on random sampling have been proposed. One

popular approac h is called single-query bi-directional motion planning w ith a lazy co llision

checking probabilistic roadm ap (S BL-PR.\ 1.). However , the performa nce of th is method is

sub -op tima l in terms o f the num ber of configurations ge nerated, length of path, amount of

col lisio n chec king and computatio nal time . To improve the performance, those aspects must

be cons idered further as they are inter-related with eac h other. A novel mo dification o f SBL­

PRM that dec reas es the size of excessive configurations in the roadmap, by incrementa lly

bu ildi ng a one-t ree st ructu re originat ing from the sta rt configurat ion, is presented. This

approach, the single-query unidirectio nal ap proach with lazy co llision chec king (S UL-P R.\1),

has ex perimental ly sho wn to be equal to the SBL· PR.\'!. How ever, there still exists ge nerated

configurations that were exc luded from the success ful path . The generat ion of these

unco nsumed co nfigurations co rres pond ing to the tree structure has poin tless ly utilized the

com putationa l resources and affected the planning time. Hence, a new method of

configurat ion ge nerat ion along w ith a novel searc hing style is devised. An alte rnat ive sea rch

approac h using ant behav iour in a robotics app lication is applied. This paper proposes a novel

searc h technique, the F- Ant algorithm, in orde r to find a reliabl e path betw een the initi al

con figuration and the goal con figuration of the articulated robot. This no ve l algorithm, taking

two input con figu ratio ns, explo res the robot's free space by build ing up a unidirect ional

search beginn ing at the init ial configuration. The planner sam ples the free co nfigurat ion

repeti t ively in the ne ighbourhood within the radius of the current configurat ion, and tests the

edge for a collision-free pat h between the new sampled configuratio ns, until it is con nected to

the goal configuration. Simu latio n and experimenta l co mparisons o f F-Ant and SBL- PRM

have bee n con ducted, sho w ing the performa nce differences betw een these two tec hniques.

Keywo rd s: Articulated robot, motion planning, foragi ng ant.
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I. I NT RODUCTION

Motion planning problems are related [ 0 the computational problems that have bounds on

time and space, or, in other words, is the size of the problem or computational complexity,

The computational complexity of a met ion planning problem grows quickly with the size of

descr iption o f the env ironmen ts; for example, for a polyhedro n robot in a poly hedron

workspace, the size of the problem is the total number of triangles describing the surfaces of

the robot and all obstacles. This shows that solving motion-planning problems clearly takes a

formida ble amou nt of lime if a comple te algorithm is used. Th is has led some studies to

propose alternative heuristic planning methods. Certain of these methods are adequate to

solve difficult problems, but also unintentionally fail to solve easier problems. As a matter of

fact, most heuristic methods offer no performance guarantee.

1.2 Probabilistic Roadma p

Probabilist ic RoadMap planners (PRM) are motion planners that can be categorised between

fully complete and heuristic planners. The work in [his paper focuses on improving the state­

of-the-art in PRM planning, by introducing new techniques and a combination of techniques

to reduce the distance trave lled by a PRM planner.

Over the pas! fifteen years, the famous motion planning technique, PRM , has been

studied by many different researchers [1]{2 J(3][4][5](6] The technique has been shown 10 be

very efficient, easy to implement, and applicable to many different types of motion planning

problems. Therefore, it is the approach adapted in this paper for use in benchmarking against

new algorithms.

The single query bi-directional motion planning with lazy collision-checking (SBL-PRM)

[7] has reduced the amount of unnecessary collision checking and the number of unimportant

configurations in the configuration space, C from the Lazy-PRM (8] in order to find the

solution path. However, there are still excessive numbers of unused configurations in the

roadmap after the solution is found. The greater the number of unusable configurations, the

more unnecessary collision checking has been done to generate them. If the number of the

configurations are becoming re lative ly large, it will be insignificant compared to the Lazy­

PRM in terms of a single-query problem resolver. This is because of the larger size of

roadmap, produced from the SBI.-PRM planner, is almost equivalent to the precomputed

roadmap of Lazy-PRM planner that it can be reused for other queries (multiple queries). The

precomputed roadmap is large so that it can cover almost the entire free space.
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1.3 Nat ural Rehn io ur Approll(~ h

An alternative method is proposed 10 overcome the excessive con figuralion prob lem in order

10 retain the planner as a single-query prob lem server. Recenny, the idea of " learning from

nature" has q uick ly spread through many scientific researches : computer sc ience (art ific ial

inlclligenu). engintering, and robotics The main goal is 10 explou the impressi,'c results

achieved by insects ..... ben foraging f".. focd. The- snJ(h es on soc ia l insects such as ants and

bees have contr ibuted 10 many areas includ ing network rceung, opllmisalion. findIng the

shor test path and navigation,

OM of the spttial manners of the insects like ants IS the organisat ion o f thei r social

societ ies Because of this organ isat ion. am co lonies can accomplish cample- II: tasks thai in

some cases far exceed the ind ividual capab ilities of s ingle ant. Anorher beill ian! capabi lity

exhibited by natural systems is the naviganooal skills of Insects .

I." Paper Organisalion

Sect ion 2 descr ibes how the ant beha viour contr ibutes 10 the mot ion planning. Sect ion j

shows the mot iva tion o f pursuing this rese arch. Section 4 descr ibes the foraging ant algOri thm

and Sect ion 5 shows the experimen ts and results.

2. ANT REIIA VIO UI{S

The spec ific insects that have gained interest in th is study are the ants. In this section, two

main skills of ants will be desc ribed: performing tasks as a colony, and performing tasks as an

individual. T he ant co lon y behaviour is ex ploited main ly in the optimisation problems. On the

other hand. ind iv idual ant behaviou r is emp loyed to the

greatest possible advantage in searc hing.

2.1 Ani Colonies

An important research inslght into ants ' behaviour was that most commcmcanon amongst

individual s. or between individua ls and the environment, is based on the use of OJ chemical

produced by the ants, pheromone. For some ani species such as Lasms " igf!r (9) or the

Argentine anl /rdomy, mf!x hwmi/is [101. the trail pheromone is a speci fic type of phero mone

thai is used for marking paths on the ground , gene rally, paths from food sources to Ihe nest .

By detectin g the pher omone tra ils, rceages can follo w the path to food discovered by

other ants . This ccllecnve tra il-laying and tniJ-fo llov.-'ing bdla viour in whk h an ani is

influenced by a chemjcel tra il left by OIhe r ants is the rnOfival ion o f ani colony optimisalion

(ACO) (11)(12)[ 13) The ani can find the shortest path from nest 10 food source. based on the
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above featu res. This proces s has been shown by Dencubourg et at. [J O] and Goss ct aL [ 141

where a doub le bridge is used to connect a nest of Arge ntine ants irdomyrmex humilis and a

food so urce. They varied the ratio between the lengths of the two branches of the double

br idge.

In the fi rst ex per iment, the bridge had two equal length branc hes. At the begi nning, ants

were left free to mov e between thc nest and the food source. Although in the initia l phase

random choices happened, in thc end all the ants used the same branch. This is because when

the experiment starts there is no pheromone on the two branches. Therefore, the ants do not

have a preference and they selected at random any of the branches . Because of random

varia tion s. a few more ants selec t one branch over ot hers Since ants lay pheromone while

walking, large r amount s of pherom one arc deposited on a branch passed by a larger number

of an ts. T his larger amount of pheromone stimulates more ants to choose that branch again ,

unti l the an ts concentrate on one single path . This is a for m of positive fee dback: the process

that reinforces itse lf in a way that causes very rapid co nvergen ce. The convergence of the

ants' paths to one branch represents the collect ive beha viour by the local interactions among

the individuals of the co lony. Some other types of ants, for example Lasius niger sco ut ants

[9] laid pheromone only if they returned to the colo ny after findin g the food source. This will

allow them to recruit worke r ants to trace the tra ils left by the scouts and retrieve the food to

their nes t.

Another experiment was performed on the dou ble bridge test in which the length ratio of

the two branches was set to two [14]. This means that one branch is twic e as long as the other

branch. Afte r so me time all the ants leave the nest to explore and arrive at a dec ision point

where they have to choose one of the two branches. They choose randomly as the branch es

initially appear identical to the ants. The ants choos ing the shorter branch are the first to reach

the food and start retu rning to the nest. Here again they must make a decision between the

short and the longer branch. The higher- level pheromone on the short branch will have greater

influence on their decision. Hence, pherom ones start to accum ula te faster on the short branch

that will be used by all ants because of the positive feed back process described above.

From the above analysis , it is found that the behavi ou r of the ant colony is a kind of

gro up behav iour incor porated with the aid of the se lf-organising behaviou r of the single

individual. The importance feature of ACO is the positive feedback process shown in the

gro up of ant colonies. With the help of positive feedb ac k, the whole sys tem can evolve

gradually .
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2.2 In d ivid ual Ani

The issue of how an ins ect finds its way betwee n the nest and distant feed ing sites has been

inves tiga ted extens ive ly in a spec ies of social insects, the desert ani (ge nus Cotaglyphis)

(15)[16][1 7J[ 18]. Despite thei r diminutive brains, man y insects acco mpl ish impress ive

nav igation tasks. Cataglyphis, for example, is ab le to explo re its desert habit at for hundreds of

mete rs while forag ing and go ing back to its nest precisely and on a stra ight line. Cataglyphis

cannot use pheromones to retrace its trail in order to return to its nest, since the pheromones

eva porate in a few seconds because of the high ground tempera tures. Studies have revea led

many details about the behavioural range of skills and the underlyin g mec hanisms that

Cafaglyphis em ploys when homin g. So far, the researchers have found that the Catagiyphis

exercise three main strategies: direction-following and path integrat ion, visual piloting, and

sys te matic sea rch [17][ 19).

Path integ ratio n is based on co mpass information gained from the pol arization pattern of

the sky . It is assumed that the search space of the ant is a 2-D space. T he integration of angles

steered and distances trave lled is based on approximate co mputat ional rules. The

determinat ion of distance trave lled is co ntributed 10 by the sense of vis ion. The d istance it has

covered is assessed by integ rating the sel f- induced retinal image speed ove r the time. To

reduce the time need ed to locate the goal, Cataglyphls empl oys a systematic search strateg y

[201 rather tha n a rand om one and, in addition, uses landma rk information whenever

avai lab le.

2.3 Ant-insp ired Robotics

So far, the ant has shown two main features for its surviva l either as one colony or as an

individual. These capab ilit ies have insp ired many researchers 10 man ipulate the ant

behaviou rs into many fields of studies, includ ing routing (2 1)[12), assignment [22],

sched uling [23J and especia lly in robotics : mobile robots [24J[18lf25], crawling robot [26J,

flying robot [27], and mobi le robot simulation [28J(29}[30] .

A very close study of integrating ant beha viou r with ro botics is in the work by Russell

[26J that inves tigat es tra nsferr ing the pheromone trail tracking capab ilities of ants to robotics

syste ms. A robotic ant has been built and equipped with a pair o f odour sens ing antennae . The

trail following algorithm is develo ped follow ing the behaviour of the Lasius fuliginosus ant.

Another related work is by Sugawara and colleagues [25] which is the Virtual Dynami c

Environm ent for Autonomous Robot (V-DEAR) for rea l robot experi mentation. 1n this

system , pheromones are replaced with a grap hic projected on the ground. Mobile robots

decide their actions fo llowing the colour of the projected computer graphic (CO). The
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purpose of their experiments is to examine the performance of the robots to work in a group

through the foraging tasks.

Other pract ica l ex peri mentation, involving integration o f the ant behaviour with mobile

robots, is the area co verage probl em . Gabr icly and Rimon proposed an Ant -like spanning tree

co vering algo rithm on a mob ile robot-co veri ng problem [241. The mobil e robot follows a

spanning tree of the graph induced by the cell s, wh ile covering every point onl y once. The

mob ile rob ot is equipped wit h posi t ion and orienta tion senso rs to recogn ize locally the 2-D

s ize cells of the workin g area. T he robots can also leave markers in the sub cel ls it co vers for

iden tification of covered or uncovered ce lls, j ust like the behaviour of ants leaving phe rom one

trai ls .

Instead of the pherom on e manipulation in robots in the ab ove ex amp les , a specific

alg orithm regard ing ant colo nies has been implemented which is A CO . The fi rst problem

encoun tere d by ACO was the rout ing problem, speci fically the travellin g sa lesman prob lem

(TSP) [ 111[3 1)[12J. Th e T SP is the problem of a sales man who, sta rting from his ho meto wn,

wants to find a sho rtes t tour that takes him throug h a given numb er o f customer c ities and

then backs hom e, vis iting each customer city only once. ACO algorit hms have shown thei r

effici ency in so lving this problem . One of the pract ica l experi ment s that invo lves ACO-TSP

with a real robot is report ed in the work by Agarwal et at. [27]. The pur pose of the ir study

was to find the shortes t com plete coverage ni ght path that sat isfies the non-holonomic

constra ints of an unma nned reconn aissan ce aerial vehicle (URA V ). Th e URA V mounted

senso r has a sma ll square footprint area for ass ess ment o f dama ge to phys ica l assets at an

airbase upon hosti le action by an ad ver sary .

Inste ad of pract ica l implementations 011 a real robot, the ACO has also gained inte res t in

rob ot s imula tion, suc h as tempora l learning sk ills incorporated w ith ACO for rob ot navigat ion

prob lem s [301 and the im plementat ion of the ACO-TSP to searc h for the shortest pat h

between two locations [29]. Both approaches have discrct ised the ir 2-D workspace for

specifying the ce lls of free spa ce and the obstacles. Anot her work that invo lves ant behaviour

in co mp uter s imulation is the Inten sified ACO for continuous function opt imis at ion problems

[28J. T he approach is appli cable for mob ile robots in an environment that changes rapidly.

For the non -phe rom one ant nav igation, Lamb rinos and coll eagues [18J developed

mech anisms for pat h integrat ion and visual pilo ting that are employe d on the mobile robot

Sahabot 2. They implemented a biolog ical model of visua l landmark navi gation using a

panoramic visual system. Th e robot follows the behaviour of desert an t Catagfyphis.

The next sect ion gives the motivations upon generat ing the new algo rithm, F-Ant, based

on the ACO and its com patib ili ty.
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}. MO TI VAT ION S

It has bee n shown that the ant beha viours. either as a colo ny or as an individua l, have

contributed to the field of robot ics including coo perat ive robots, and navi gation. The ACQ

has been implemented in some of the problems of area cove ring and sea rching for the shortest

path wh ich are the inte rest of this study . Howe ver, a few problems hav e arisen regarding

ACO with the robot motion planning prob lem including the follow ing :

• None o f the problems desc ribed above is re lated to the articulated robot.

In order to manipulate the ant ca pability for the artic ulated robot type, the

problem sh ou ld be recons tructed. Even when the robot is represent ed in C, the

appr oach in ACO may be applied to the maximu m of the 2-degrees of freedom

articul ated robot. The implementatio n will be rather trivial as less practica l

applicat ions can be co ntributed for the 2-degrees of freedom articulated robot. Most

of the industrial robots have at least 6-deg rces of freedo m, such as PUMA 560 and

IRB 2400 robo ts.

• Add itional constra ints should be added to the ACe which include avoid ing obstacles

and the other robots ( if they exist in the same environment for mu ltiple robots)

instead of dista nce cons traints.

ACe specifi ca lly stated that the inter-cities distanc es are co mputed on the f1 y

distance betwee n them [ 13]. This is clearly shown when the paths are straig ht. In the

articulated robot case, the straight path can be defined in two term s; in can es ian

space, the tip o f the robot (most ly refe rred to as the wrist of the arm) move s in a

stra ight line from one position to another position, wh ile the ot her joints ( the jo ints

between sho ulder and wrist) have to to change accordingly through the inverse

kinematics; in config uration space , all the joints move from one configur ation to

another confi gu ration at the designated angle at once (each joint may not necessarily

move in the same direc tion). These, however, are appli cab le to the robot in an

obstacle-free environment. If there are obstacles between two positions or

confi gu rations, the obstacles must be avoided along the path . This will result in the

robot having to move to intermediate positions or confi gurations before reaching the

goal config uration.

• ACe needs pre-compu tations before perform ing the actual tasks, such as finding the

shortes t tour in TSP.

The ACe algor ithms need four matr ices of dimension of n x II ( II is the numbe r

of cit ies) for repr esenting: the intercity distance matri x, pherom one trail s matrix,

heuristic information matri x, and combination of pher omone and heuristic
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information matrix. Furthermore, in addition to intercity distance matrix, the nearest­

ne ighbou r lists ma trix is needed with a siz e of 11 >( n. For each of the ants, two arrays

are need ed of size 11'" I and n to sto re, respectively , the tour and the cit ies vis ited, as

well as the tour 's length . The ACO may usc m number of ants up to n. This is

practical for the problems that deal with a finite set of cities w hich are the set of the

coo rdinates (xJ' ) in 2-D space . Pre-com putations arc necessary for TSP problems as

they have more than one goal (usually it takes in order of len to a hundred cities).

Moreover, as menti oned in the preced ing problem, the path between cities is free of

obstacles and can be accessed in a straigh t line. To apply the same strategy to

art iculated robot problems, the pre-computations in ACO wi ll have the same

characteristic as PRM, in which the motion planner pre-com putes the road map before

the queries were answered.

• Furthermore, for a mobile robot type, whether it is a real robo t implementation or

simulatio ns, and e ither using ACe or other techniqu es to approach the problem. the

rep resentat ion of the ants is in the 2-D search space which is co ncerned with the

position ing of the robot in a x,y coordinate system and with configurations of .r,Y. for

a ncn-holonomic rob ot (mobile robot, e.g. car- like robot). The workspace is

discretised beforehand so that the free space area and obs tacles ca n be identified . Th is

mean s that the algor ithm s must be specific to a certa in condition whi ch is having

ad vance information abou t the en vironment before starting the navigat ion . Even

though there is a craw ling robot and a flying robot (e.g. URA V), the search space for

either tracking phe romones or area covering is in a 2-D zone,

For art iculated robot problems, the robot and the environm en t can not be simply

repres ented in 2-D space. For some cases, if the robot has 2 rotating joints and both

jo int axes are pa rallel . it can be shown to be similar to a 2-D representation. The

dimensions of the robot depend on the number of joints of the robot (a-joints robot

have n dimensions). However , when the robot has more than 2 j oints or the joint axes

are not parallel , the representation cannot be shown in a 2-D rep resentat ion. This will

change the approach of tackling the problem if using the ACe ,

For all the reasons above, it can be concluded that for articulated rob ot problems in a 3-D

env ironment, the ACO is not practically suitable. The planner is supposed to generate a

co llision-free path fro m start to goal co nfig uration. Neverthele ss, one aspec t of the general

ACe algorithm that is close to the app roach of articulated robot mot ion plann ing is improving

the ant s ' tour . Even th ough this is only part is of the whole so lutio n of T SP (dec ision to

choose whic h point to vis it from the current point in order to comple te touring all the points in

the problem environment) , it is a crucial element of the robot motion planning problem.
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However, some characte ristics of the ant arc applicable in solving the problem in planning the

motion of the articulated robot. This will be descr ibed in the follo wing section."

4. FORA G Il\ G A]\"T ALGORITH!\1

The strategy of the implemented ant is a combinatio n of the behaviours of the Argent ine ant

forager wh ich lays a trail while sea rching for food [ IO}, and the desert alit wh ich using a

direction-follow ing based on external reference sources for homing traj ectories [20]. In this

approach , the foraging ant already knows the location of the food source (extern al refe rence) ,

which the ant has a reference point for its objective. However, this information is for the

purpose of checking whether the ani can move, from its current location, straight to the food

without any intermediate stopping, The ant has a vision for a specific range, p, to see the spot

where it can stand before it makes any moves.

First, the ant is released from the nest and observes whether it can make it straight away

from the nest to the food source. If it is not possible because of obstacles obstructing the path,

or the vision is clear but the path cannot be constructed because it needs intermediate points

in between, the ant will identify a random spot (sampling the space around) to make a next

step. The ant will see to the furthest range of and make sure the path along the current spot to

the candidate spot is free from obstacles and can be made without any intermediate stops

(collision-free local path). The path between the current spot to the new spot is the local path

for the ant. If it happens that the ant vision is on the obstacles, the ant will sample another

random candidate spot and reduces its vision range by a factor of two. The sampling is

repeated until the candidate spot is obstacle-free and is a collision-free local path, or the

vision reduction has reached the limit (a number of reduction times will be specified). The

process is repeated again until the ant can find the obstacle-free and collision-free local path.

When the ant has found one, the ant will leave a trail on its current position and record it in its

memory before moving to the new selected spot At the new spot, the ant will look for the

food location and check whether it can reach there, similar to the process when it was first

released from the nest. If it st ill does not succeed, the ant will repeat the foraging process

above until it reaches the objective or until the ant has reached its number of steps limit. The

cumulative local paths between the nest and the food source will form a final path for the ant.

4. 1 Overall Algorithm

The problem is formulated as follows. Given an »dimensional configuration space C, let f- be

the subset of free configurations of C. Let qmll in F and let qt<.m be a target, contained in F. Let

Q"",I be the set of configurations that lies in F and can be connected straight to qt<"'/. The task

is to find a path connecting q-« with Q,.,nl, that is, a continuous function! [O,I ]-tF such that
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0) = q"", and f( 1 =QI""'" Assume that the alues for each robot's d grees of freedom has been

normalised to lie in the interval [0,1]. The planner is oi en a distance threshold parameter, p.

The L vector norm met ic is used over the ro ot configuration C \ hich is defined as the

maximum of the absolu e value of the 0 erall componen a vector. Let qll= (q"I, q a!, ... , q",,)

and q/>:. (q I . q.1• ... , q ). The absolute distance alue between qll and q is Id(qll. q. )1= q IIr q

II. [q IIr q 11, .,. • Iqll"- q "I. So L~ distance is max ( qll. q ). In other words. the distance

betv een the vo configurations qa and q is denoted b d 'qll , q E C d., (q•• q« E R. The

local path (qll. q is the segment connecting qa and q". Here. p is pically set between 0.15

and 0.95.

I : k 0

2: if egmentCheck(q,..." q~.",/)= TRUE then

3: return SU CESS

' : end if

5: r.top q..." and t .bottom q~"'1I1

6: \ hile k <= maxstep do

7: \ hil SegmentCheck(q... qJ FALSE, discard q, and do

8: GenerateNode q<

9: end \ hile

10: k =k + 1

I I : q.. q~

12: r ql

13: if q.. E Q~.,al t hen

14: SUCCESS

15: end if

16: end while

The step, k, is reset to zero at line I. On lines 2 to , the connection is checked for

collision between q."" and qgaal' If the test returns not TR E. the search begins. A list of

ectors, r, is u ed for accumulating all the successful configura ions in the form of q. t the

beginning (line 5). q is inserted into r at the top of the Ii t and the q a the bottom. For

any nev configuration, q'W'. it will be inserted between q.""and q ...,J. The loop in lines goal 7

to 9 is for genera ting the candidate node. qr- k is increased when the qc i found and the
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segment connecting q, and qk lies entirely in F. Then q, is assigned as updated q»and added to

the configurations list r in lines I I and 12. q,. is tested whether it lies in Ql:ool, and the

algorithm will return SUCCESS if qk E QI!"al' The loop of line 6 to 16 is repeated until the

path is found or when it reaches the maximum step, maxstep.

5. EXPE R IMENTA L R ESULT

F-Ant is written in ANSI C++ using the Standard Template Library (STL) in Microsoft

Visual Basic 6.0. It was compiled on a PC running Windows XP. All experimental results

reported in this paper were obtained on a Pentium- 4 PC with a 2.60-GHz processor and 512­

Mb of memory. The following sub-sections describe the techniques that were designed as in

AIgorithm I to implement some of the key steps of the planner.

(a ) (c)

Figure I Motion planning environment.

The scenarios in Figure I are those which have been used to test the F-Ant planner. In each

scenario. let n, and n; denote the numbers of triangles in the geometric models of the robot

and the obstacles respectively. One scenario is corresponding to a mobile articulated robot,

whereas the rest is the floor attached articulated robot for each scenario.

• The mobile robot in Figure I(a) is a 6 degrees of freedom PUMA560 robot arm

mounted on a 3 degrees of freedom platform. The obstacles are a car body that

contains both thin and narrow components and a long wall beside the car with a space

that allows the robot to move in between. The robot has much maneuvering space. In

this scenario, n; =868 and n., = 4, 040.

• The scenario of Figure I(b) consists of a floor-attached PUMA560 robot ann

equipped with a torch. The obstacles are the high wall with a window, two floating

cuboids and two other cuboids on the floor. Here, n, =868 and nu = 96.

• The robot in scenario of Figure I(c) is another 6 degrees of freedom fixed to the floor

robot arm, IRB2400, equipped with an arc welding gun. The obstacle is a drilling

machine. In this case, n, = 3,791 and 11" =34,171.

Figure I(d) is a fixed PUMA560 robot arm, equipped with a torch. The obstacle is a drilling

machine. 11, =868 and 11" = 34,171.
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5. l l rnpact O n T he Co nfigurations Generated

Ta ble 1 she ws results of number of configurations generated. The first column shows the

scenes and the second colu mn shows the value of. The third and fourth columns show the

percentage of successful planning for the F-Ant and the SBL· PRM respectively. The fifth,

sixth, and sev enth co lumns show the total of configurations generated for F-Ant (in path) and

the SBL-RM (in path and in roadma p, RM) respectively . Finally, the eighth, ninth, and tenth

columns show the average of configuration generated in all success ful paths for F-Ant (in

path) and the SBL-RM (in path and in rcadmap. RM) respect ively.

,
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..."" SHL I'-hnl sm.
~~ ln i . ie .. .. ..

""'" P ...Am SUL ,.. ... RM ,.. ... 1<>1
~1S 90n loon 19l1.l67 43.914 79R.940 .'" 41 ".

Ifl ) a.ss UJJ.O lau> 165"'" "'PO 1,010,911 1<.5 29 J.OTI
~9S rcon llllJl 13l.914 """ ).65 R.66CI 132 '" l,6S9

lI b) I
~ 1S .., 100.0 243357 21.661 ISO"," ,,, Z2 lSI
Q..1:'> 100.0 10'" SO"," "'''' I .UOO31C'i so 27 1,090
~9S loon I"'" ,n "", :lO,416 2,7'.lM." 13 37 .. .""~ 1S 100.0

IIIlJl I ''.!>is Ut,oM2 1l75..419 " " '"1(,") a.ss IlIln ... 12.J41 II,2M ..,,'-'SO 13 " ..".
~9S un a ". limo """I 7,5 33.21'9 II 21 1.103
~ 1S roao loon 41.641l 11,4911 623.299 " " '"ICd) a.ss loon ,u B.S14 2!l.411l 7,7fi1A14 • 21 ,...
~9S IlIln 92J> 7.183 ZU '" I~wr.;m 7 24 Il .W

Table I: Statistics For The Number or Configurat ions Generated For The Different Scenarios
usme F-Ant And SBL· PRM

Table 2: Percentage Of Co nfigurations That Are Applied To The Actual Path From The Total
Of Co nfiguration Generated In Roadmap, RM, By Using The Algorithm SBL· PRM

Iscene5 1 o.rs :55 0.95 I1(8[1 S.50 2.68 0,93
l(b) 14.36 2.43 1.09
l(c) 2.11 0.29 0.27
1(<1) 2.97 0.26 0.21

The overa ll results showed that ten out of twelve scenes with a different values of p

gave 100% success with the F-Ant algorithm while Ihe SBL· PRM just managed to get eight

scenes success fully . The result has shown that the F-Ant managed 10 reduce a relatively large

amount of configurations that it needs to apply in the actual path. For the va lue of o » 0.15,

the number of configurations produced from the F· Ant a lgorithm is greater than the other

values of p of the same algorit hm. However, when p is increased to 0.55 and 0.95, the number

of configuratio ns is a lso reduced to about five times smaller. The F· Anl algorithm uses all of

the configurations it has produced in the actual path. On the contrary, the SBL· PRM uses

1i1id 20, Bil. 4 (Disernber 2008) Jurnal Teknolcgi Maklurnat



175

between 0.21% to 14.36% configurations only in the actual path (T a ble 2 ). This has shown

that more than 80% of the generated configura tions in the roadmap of SBL-PRM are useless .

T he result of F-Ant in scenario I(a) is significant compared with the othe r scenarios because

the number of degrees of freedom used was 12 degrees of freedom : nonethel ess the others

were 6 deg rees of freedom.

5.2 Impact O n T he Len gth of Pa th

T able 3 gives the length of the path for each success ful planning. The first and second

columns show the scenes and the value of respectively . The third and the fourth show the total

length produced from planning for F-A nt and SBL-PRM correspondingly. The fifth column

shows the average lengt h in a path produced by F-Ant and the sixth co lumn is for the Sil L­

PR..'vl . Lastly, the seventh column is the standard dev iat ion length (Std. Dev.) of F· Ant and

SBL·PRM in the eighth column.

Table) ; Sta tistics For The Length Of Path For The Different Values Of Us ing T he F·An l And
SBL-PRM

r.::J p I Un al A""",
,

Std. De y. 1.."" SBL " AM SBL F-Am SBL
~ ~ ~ ~

0.15 73.385.47 10.285.00 .1 1i:l 10.29 44.33 2.63
1(0) (U5 89,121.72 15,500.33 89.12 15.50 181i:l , .ss

uss 109,96539 23,972.59 109.97 23.97 107041 • .00
O.IS 37.93190 4,464.69 382 1 4~" 28.41 137

1(b) 055 21,785.72 11..soo.86 21.79 IUO 21.40 451
0.., 21.210.14 15,.588.:W. 23.21 15.59 2l1.S4 '.'J.
O.-JS~ --15,302.36--4,318.98 15.36- - ';'::32 r---l Ei:08 1.64

I(e) 0 .55 7,040.44 10,625.08 7114 In.6S 5.93 4.46
0.95 8,152.23 14,469.28 11.15 14.79 7.2' 6m
0.15 6,928116 3,856.71\ 6.93 3,86 U. \ 59

I(d) 0.55 3,8 11t25 10,903.96 3K2 11.05 3115 5.611
0.95 4.041.88 14,239.79 4114 IS5J 2.89 '.29

The length of the successful paths produced by the F· Ant algorithm are rathe r large in

scenarios I(b), I(c), and I(d) whe n the value p of is 0. 15. However, in scenario I(a), the

length is almost smaller at the same value of p. It can be assumed that the larger degrees o f

freedom of a robot ( 12 degrees of freedom in this case), the less path distance the planner will

achieve. Thi s is because of more manoe uvring capability by the robot in scenario l(a), and it

has more chance to sample a free space at a closer neigb ourh ood (w ith small pl, whi lc in the 6

degrees o f freedom robot scenes, the middle value of p gives the shortest length of the

successful path on average for F·Ant.

The SBL·PRM produced the shortest length in the success ful path for the smallest p

value in all scenarios. Th us, the SBL-PRM gave a greatest length when p is the biggest. 11 can

be assum ed that the length of path is proportional to p for SBL-PRM implemented scenarios.
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The F-Ant ma naged to produce a shorter length for scenarios I(e) and I{d) when p are 0.55

and0.95.

Ta ble .. sho ws the tota l coll ision check ing performed by the F-Anl while the next

col umn to it is the local collision checking by the SBLrPRM. . The average of co llision

check ing performed by F·A nt and SBL- PRM is sheMn in the fifth column and the sixth

columns respec tively .

Table 4 Statistics For The Amount Of Col lision Checking for The' Different Values Of Using
The F·Anl Aoo SBL·PRM...., A....".,

""'" • r-ho< SIlL r-.... SBL
nu 1,67S,JlSO ),lffi,&JQ 1,16..\ 3.261

U.tl .." S,9')6, 49j 1'-110,11£1 ',- 15.1I1l

'- Q.9" 1L\764,69S 59,&59.411 16,76S 'US')
D.l5 t J,DI I.4 SJ 'S6.12ll ImA SS6

l(b ) D.:'iS 1,S41.1OJ -SJJSl.rn9 ',>49 ' ,OSI
I n9> 2,854_ 11.08K.914 2,1oSS "....nu 1U7~'" 1. 1~ 7l1Il 1,117

lie ) ns, S.J69...1·U 1.111.191 I ,.369 7,125
Q.9' 4.7JO.m 1,ZS7,lSl 4.731 11.4-43-- ---nu 740.613

. - ,,,,," "74f 1,26S1,.261.9lD
I(d) ns, .5,9711,175 9.]59,144 ',m 9,483

nos 7.762,Q45 12,414.."\94 1,7til 13,.494

The overall result has shown that the amount of collision checking is proportional to

the valu e o f o. For all scenarios and all values of P. the F-Anl algorithm has performed less

co llision checking than the SBL-PRM either in total or on a\lerage. The main reason for this

situation is that the SBL-PRM has restricted its collision checking upon generating its

milestones (configuration s) in the roadmap: for example up to 30,000 tests were performed in

these experiments to generate a collision-free configuration, On the contrary, F-Am allows an

infinite number of collision-checking (exhaustive) in order to produce a collision-free

con figuration, but it restricted the number of steps to build up a success ful path; in this article

for example 1,000 steps is the maximum number of configurations allowed for each

success ful path. The other reason is that the F-Ant tests only the collision for the cand idate

configuration to be included in the path, while SBL-PRM tests for every single milestone ,

whether it is to be included in the path or not.

The results shown on Figure 2 and Figun J are referring to the experiment on

Figun I(d). Figu re 2 has shown that at the value of o » O. IS, the S BL-PRM generales less

numbe r of con figurations in the successful path. However. when the value of p has increased

10 0.55 and above, [he F-Ant produced lesser number of config urations than SBl-PRM_

While in Figun I (d) , computalional time of f -Anl is lesser than SBL-PRM for every tested

value of p.
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In terms of se lecting of which algorithm should be applicable in practice

corresponding to p value and the number of configurations, one possible solution is to

consider the robot's manoeuvrability. If the robot is mobile manipulator, SBL-PRM with

lower value of p is the better selection. However, if the robot is attached on the floor, F-Ant is

the promising selection with setting the high value of p . One should also consider the time

calculation factor because, even though F-Ant produced more configurations in greater

manoeuvrability scenario, the calculation times were much quicker when the p are bigger.

- - .. '.'. . Tfl • • •. • •

~, .

"

--_.~~._ -

(a) p =0. 15

• I

./ I
;; -- _ . i - : ' )

r:» . _- - -~ -_ . - -' - - ..

_. - " - ~.

'--o---'--~~~

."_'J

(b) P =0.55

,,,- ----==--- - - - - - - - -
- ......

- - - "1'" ..... . ,·C)- - ---'-='.=--

(c)p =0.95

Figure 2 Comparisons of number of configurations in successful path between F-Ant and
SBL-PRM
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Figure 3 Comparisons of computation time between F-Ant and S8 L-PRM

6,0 CONCLUSIO

A foraging ant motion planner has been introduced. A simple but effective technique has been

devised by letting the ant act as a planner where it moves randomly and always checks the

free path to the goal region. It can be concluded that the longer the free-obstacle range that the

planner could sample towards the goal from its current configuration, the fewer number of

steps it takes to build the path. And also F-Ant contributed to a faster computation to find the

solution path.
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