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Abstract: Many different approaches to tackle the problem of motion planning for articulated
robots in an environment with obstacles based on random sampling have been proposed. One
popular approach is called single-query bi-directional motion planning with a lazy collision
checking probabilistic roadmap (SBL-PRM). However, the performance of this method is
sub-optimal in terms of the number of configurations generated, length of path, amount of
collision checking and computational time. To improve the performance, those aspects must
be considered further as they are inter-related with each other. A novel modification of SBL-
PRM that decreases the size of excessive configurations in the roadmap, by incrementally
building a one-tree structure originating from the start configuration, is presented. This
approach, the single-query unidirectional approach with lazy collision checking (SUL-PRM),
has experimentally shown to be equal to the SBL-PRM. However, there still exists generated
configurations that were excluded from the successful path. The generation of these
unconsumed configurations corresponding to the tree structure has pointlessly utilized the
computational resources and affected the planning time. Hence, a new method of
configuration generation along with a novel searching style is devised. An alternative search
approach using ant behaviour in a robotics application is applied. This paper proposes a novel
search technique, the F-Ant algorithm, in order to find a reliable path between the initial
configuration and the goal configuration of the articulated robot. This novel algorithm, taking
two input configurations, explores the robot’s free space by building up a unidirectional
search beginning at the initial configuration. The planner samples the free configuration
repetitively in the neighbourhood within the radius of the current configuration, and tests the
edge for a collision-free path between the new sampled configurations, until it is connected to
the goal configuration. Simulation and experimental comparisons of F-Ant and SBL-PRM

have been conducted, showing the performance differences between these two techniques.
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1. INTRODUCTION

Motion planning problems are related to the computational problems that have bounds on
time and space, or, in other words, is the size of the problem or computational complexity.
The computational complexity of a motion planning problem grows quickly with the size of
description of the environments; for example, for a polyhedron robot in a polyhedron
workspace, the size of the problem is the total number of triangles describing the surfaces of
the robot and all obstacles. This shows that solving motion-planning problems clearly takes a
formidable amount of time if a complete algorithm is used. This has led some studies to
propose alternative heuristic planning methods. Certain of these methods are adequate to
solve difficult problems, but also unintentionally fail to solve easier problems. As a matter of

fact, most heuristic methods offer no performance guarantee.
1.2 Probabilistic Roadmap

Probabilistic RoadMap planners (PRM) are motion planners that can be categorised between
fully complete and heuristic planners. The work in this paper focuses on improving the state-
of-the-art in PRM planning, by introducing new techniques and a combination of techniques
to reduce the distance travelled by a PRM planner.

Over the past fifteen years, the famous motion planning technique, PRM, has been
studied by many different researchers [1][2][3][4][5][6] The technique has been shown to be
very efficient, easy to implement, and applicable to many different types of motion planning
problems. Therefore, it is the approach adapted in this paper for use in benchmarking against
new algorithms.

The single query bi-directional motion planning with lazy collision-checking (SBL-PRM)
[7] has reduced the amount of unnecessary collision checking and the number of unimportant
configurations in the configuration space, C from the Lazy-PRM [8] in order to find the
solution path. However, there are still excessive numbers of unused configurations in the
roadmap after the solution is found. The greater the number of unusable configurations, the
more unnecessary collision checking has been done to generate them. If the number of the
configurations are becoming relatively large, it will be insignificant compared to the Lazy-
PRM in terms of a single-query problem resolver. This is because of the larger size of
roadmap, produced from the SBL-PRM planner, is almost equivalent to the precomputed
roadmap of Lazy-PRM planner that it can be reused for other queries (multiple queries). The

precomputed roadmap is large so that it can cover almost the entire free space.
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1.3 Natural Behaviour Approach

An alternative method is proposed 1o overcome the excessive configuration problem in order
to retain the planner as a single-query problem solver. Recently, the idea of “learning from
nature” has quickly spread through many scientific researches: computer science (artificial
intelligence), engineering, and robotics. The main goal is to exploit the impressive results
achieved by insects when foraging for food. The studies on social insects such as ants and
bees have contributed to many areas including network routing, optimisation, finding the
shortest path and navigation.

One of the special manners of the insects like ants is the organisation of their social
societies. Because of this organisation, ant colonies can accomplish complex tasks that in
some cases far exceed the individual capabilities of single ant. Another brilliant capability
exhibited by natural systems is the navigational skills of insects

1.4 Paper Organisation
Section 2 describes how the ant behaviour contributes to the motion planning. Section 3
shows the motivation of pursuing this research. Section 4 describes the foraging ant algorithm

and Section 5 shows the experiments and results.

2. ANT BEHAVIOURS

The specific insects that have gained interest in this study are the ants. In this section, two
main skills of ants will be described: performing tasks as a colony, and performing tasks as an
individual. The ant colony behaviour is exploited mainly in the optimisation problems. On the
other hand, individual ant behaviour is employed to the

greatest possible advantage in searching.

2.1 Ant Colonies
An important research insight into ants’ behaviour was that most communication amongst
individuals, or between individuals and the environment, is based on the use of a chemical
produced by the ants, pheromone. For some ant species such as Lasius niger [9)] or the
Argentine ant Jrdomyrmex humilis [10], the trail pheromone is a specific type of pheromone
that is used for marking paths on the ground, generally, paths from food sources to the nest.
By detecting the pheromone trails, foragers can follow the path to food discovered by
other ants. This collective trail-laying and trail-following behaviour in which an ant is
influenced by a chemical trail left by other ants is the motivation of ant colony optimisation
(ACO) [11][12][13]. The ant can find the shortest path from nest to food source, based on the

e ——————————————————
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above features. This process has been shown by Deneubourg et al. [10] and Goss et al. [14]
where a double bridge is used to connect a nest of Argentine ants /rdomyrmex humilis and a
food source. They varied the ratio between the lengths of the two branches of the double
bridge.

In the first experiment, the bridge had two equal length branches . At the beginning, ants
were left free to move between the nest and the food source. Although in the initial phase
random choices happened, in the end all the ants used the same branch. This is because when
the experiment starts there is no pheromone on the two branches. Therefore, the ants do not
have a preference and they selected at random any of the branches. Because of random
variations, a few more ants select one branch over others. Since ants lay pheromone while
walking, larger amounts of pheromone are deposited on a branch passed by a larger number
of ants. This larger amount of pheromone stimulates more ants to choose that branch again,
until the ants concentrate on one single path. This is a form of positive feedback: the process
that reinforces itself in a way that causes very rapid convergence. The convergence of the
ants’ paths to one branch represents the collective behaviour by the local interactions among
the individuals of the colony. Some other types of ants, for example Lasius niger scout ants
[9] laid pheromone only if they returned to the colony after finding the food source. This will
allow them to recruit worker ants to trace the trails left by the scouts and retrieve the food to
their nest.

Another experiment was performed on the double bridge test in which the length ratio of
the two branches was set to two [14]. This means that one branch is twice as long as the other
branch. After some time all the ants leave the nest to explore and arrive at a decision point
where they have to choose one of the two branches. They choose randomly as the branches
initially appear identical to the ants. The ants choosing the shorter branch are the first to reach
the food and start returning to the nest. Here again they must make a decision between the
short and the longer branch. The higher-level pheromone on the short branch will have greater
influence on their decision. Hence, pheromones start to accumulate faster on the short branch
that will be used by all ants because of the positive feedback process described above.

From the above analysis, it is found that the behaviour of the ant colony is a kind of
group behaviour incorporated with the aid of the self-organising behaviour of the single
individual. The importance feature of ACO is the positive feedback process shown in the
group of ant colonies. With the help of positive feedback, the whole system can evolve

gradually.
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2.2 Individual Ant

The issue of how an insect finds its way between the nest and distant feeding sites has been
investigated extensively in a species of social insects, the desert ant (genus Cataglyphis)
[15](16][17][18]. Despite their diminutive brains, many insects accomplish impressive
navigation tasks. Cataglyphis, for example, is able to explore its desert habitat for hundreds of
meters while foraging and going back to its nest precisely and on a straight line. Cataglyphis
cannot use pheromones to retrace its trail in order to return to its nest, since the pheromones
evaporate in a few seconds because of the high ground temperatures. Studies have revealed
many details about the behavioural range of skills and the underlying mechanisms that
Cataglyphis employs when homing. So far, the researchers have found that the Cataglyphis
exercise three main strategies: direction-following and path integration, visual piloting, and
systematic search [17][19].

Path integration is based on compass information gained from the polarization pattern of
the sky. It is assumed that the search space of the ant is a 2-D space. The integration of angles
steered and distances travelled is based on approximate computational rules. The
determination of distance travelled is contributed to by the sense of vision. The distance it has
covered is assessed by integrating the self-induced retinal image speed over the time. To
reduce the time needed to locate the goal, Cataglyphis employs a systematic search strategy
[20] rather than a random one and, in addition, uses landmark information whenever

available.

2.3 Ant-inspired Robotics

So far, the ant has shown two main features for its survival either as one colony or as an
individual. These capabilities have inspired many researchers to manipulate the ant
behaviours into many fields of studies, including routing [21][12], assignment [22],
scheduling [23] and especially in robotics: mobile robots [24][18][25], crawling robot [26],
flying robot [27], and mobile robot simulation [28][29][30].

A very close study of integrating ant behaviour with robotics is in the work by Russell
[26] that investigates transferring the pheromone trail tracking capabilities of ants to robotics
systems. A robotic ant has been built and equipped with a pair of odour sensing antennae. The
trail following algorithm is developed following the behaviour of the Lasius fuliginosus ant.
Another related work is by Sugawara and colleagues [25] which is the Virtual Dynamic
Environment for Autonomous Robot (V-DEAR) for real robot experimentation. In this
system, pheromones are replaced with a graphic projected on the ground. Mobile robots

decide their actions following the colour of the projected computer graphic (CG). The
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purpose of their experiments is to examine the performance of the robots to work in a group
through the foraging tasks.

Other practical experimentation, involving integration of the ant behaviour with mobile
robots, is the area coverage problem. Gabriely and Rimon proposed an Ant-like spanning tree
covering algorithm on a mobile robot-covering problem [24]. The mobile robot follows a
spanning tree of the graph induced by the cells, while covering every point only once. The
mobile robot is equipped with position and orientation sensors to recognize locally the 2-D
size cells of the working area, The robots can also leave markers in the sub cells it covers for
identification of covered or uncovered cells, just like the behaviour of ants leaving pheromone
trails.

Instead of the pheromone manipulation in robots in the above examples, a specific
algorithm regarding ant colonies has been implemented which is ACO. The first problem
encountered by ACO was the routing problem, specifically the travelling salesman problem
(TSP) [11][31][12]. The TSP is the problem of a salesman who, starting from his hometown,
wants to find a shortest tour that takes him through a given number of customer cities and
then backs home, visiting each customer city only once. ACO algorithms have shown their
efficiency in solving this problem. One of the practical experiments that involves ACO-TSP
with a real robot is reported in the work by Agarwal et al. [27]. The purpose of their study
was to find the shortest complete coverage flight path that satisfies the non-holonomic
constraints of an unmanned reconnaissance aerial vehicle (URAV). The URAV mounted
sensor has a small square footprint area for assessment of damage to physical assets at an
airbase upon hostile action by an adversary.

instead of practical implementations on a real robot, the ACO has also gained interest in
robot simulation, such as temporal learning skills incorporated with ACO for robot navigation
problems [30] and the implementation of the ACO-TSP to search for the shortest path
between two locations [29]. Both approaches have discretised their 2-D workspace for
specifying the cells of free space and the obstacles. Another work that involves ant behaviour
in computer simulation is the Intensified ACO for continuous function optimisation problems
[28]. The approach is applicable for mobile robots in an environment that changes rapidly.

For the non-pheromone ant navigation, Lambrinos and colleagues [18] developed
mechanisms for path integration and visual piloting that are employed on the mobile robot
Sahabot 2. They implemented a biological model of visual landmark navigation using a
pancramic visual system. The robot follows the behaviour of desert ant Cataglyphis.

The next section gives the motivations upon generating the new algorithm, F-Ant, based

on the ACO and its compatibility.
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3. MOTIVATIONS

It has been shown that the ant behaviours, either as a colony or as an individual, have
contributed to the field of robotics including cooperative robots, and navigation. The ACO
has been implemented in some of the problems of area covering and searching for the shortest
path which are the interest of this study. However, a few problems have arisen regarding
ACO with the robot motion planning problem including the following:

» None of the problems described above is related to the articulated robot.

In order to manipulate the ant capability for the articulated robot type, the
problem should be reconstructed. Even when the robot is represented in C, the
approach in ACO may be applied to the maximum of the 2-degrees of freedom
articulated robot. The implementation will be rather trivial as less practical
applications can be contributed for the 2-degrees of freedom articulated robot. Most
of the industrial robots have at least 6-degrees of freedom, such as PUMA 560 and
IRB 2400 robots.

* Additional constraints should be added to the ACO which include avoiding obstacles
and the other robots (if they exist in the same environment for multiple robots)
instead of distance constraints.

ACO specifically stated that the inter-cities distances are computed on the fly
distance between them [13]. This is clearly shown when the paths are straight. In the
articulated robot case, the straight path can be defined in two terms; in cartesian
space, the tip of the robot (mostly referred to as the wrist of the arm) moves in a
straight line from one position to another position, while the other joints (the joints
between shoulder and wrist) have to to change accordingly through the inverse
kinematics; in configuration space, all the joints move from one configuration to
another configuration at the designated angle at once (each joint may not necessarily
move in the same direction), These, however, are applicable to the robot in an
obstacle-free environment. If there are obstacles between two positions or
configurations, the obstacles must be avoided along the path. This will result in the
robot having to move to intermediate positions or configurations before reaching the
goal configuration.

s ACO needs pre-computations before performing the actual tasks, such as finding the
shortest tour in TSP,

The ACO algorithms need four matrices of dimension of n % n (n is the number
of cities) for representing: the intercity distance matrix, pheromone trails matrix,

heuristic information matrix, and combination of pheromone and heuristic
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information matrix. Furthermore, in addition to intercity distance matrix, the nearest-
neighbour lists matrix is needed with a size of n * n. For each of the ants, two arrays
are needed of size n + 1 and n to store, respectively, the tour and the cities visited, as
well as the tour’s length. The ACO may use m number of ants up to n. This is
practical for the problems that deal with a finite set of cities which are the set of the
coordinates (x,y) in 2-D space. Pre-computations are necessary for TSP problems as
they have more than one goal (usually it takes in order of ten to a hundred cities).
Moreover, as mentioned in the preceding problem, the path between cities is free of
obstacles and can be accessed in a straight line. To apply the same strategy to
articulated robot problems, the pre-computations in ACO will have the same
characteristic as PRM, in which the motion planner pre-computes the roadmap before
the queries were answered.

» Furthermore, for a mobile robot type, whether it is a real robot implementation or
simulations, and either using ACO or other techniques to approach the problem, the
representation of the ants is in the 2-D search space which is concerned with the
positioning of the robot in a x, y coordinate system and with configurations of x, y, for
a non-holonomic robot (mobile robot, e.g. car-like robot). The workspace is
discretised beforehand so that the free space area and obstacles can be identified. This
means that the algorithms must be specific to a certain condition which is having
advance information about the environment before starting the navigation. Even
though there is a crawling robot and a2 flying robot (e.g. URAV), the search space for
either tracking pheromones or area covering is in a 2-D zone.

For articulated robot problems, the robot and the environment cannot be simply
represented in 2-D space. For some cases, if the robot has 2 rotating joints and both
Jjoint axes are parallel, it can be shown to be similar to a 2-D representation. The
dimensions of the robot depend on the number of joints of the robot (n-joints robot
have n dimensions). However, when the robot has more than 2 joints or the joint axes
are not parallel, the representation cannot be shown in a 2-D representation. This will

change the approach of tackling the problem if using the ACO.

For all the reasons above, it can be concluded that for articulated robot problems in a 3-D
environment, the ACO is not practically suitable. The planner is supposed to generate a
collision-free path from start to goal configuration. Nevertheless, one aspect of the general
ACO algorithm that is close to the approach of articulated robot motion planning is improving
the ants’ tour. Even though this is only part is of the whole solution of TSP (decision to
choose which point to visit from the current point in order to complete touring all the points in

the problem environment), it is a crucial element of the robot maotion planning problem.
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However, some characteristics of the ant are applicable in solving the problem in planning the

motion of the articulated robot. This will be described in the following section.

4. FORAGING ANT ALGORITHM

The strategy of the implemented ant is a combination of the behaviours of the Argentine ant
forager which lays a trail while searching for food [10], and the desert ant which using a
direction-following based on external reference sources for homing trajectories [20]. In this
approach, the foraging ant already knows the location of the food source (external reference),
which the ant has a reference point for its objective. However, this information is for the
purpose of checking whether the ant can move, from its current location, straight to the food
without any intermediate stopping. The ant has a vision for a specific range, p, to see the spot
where it can stand before it makes any moves.

First, the ant is released from the nest and observes whether it can make it straight away
from the nest to the food source. If it is not possible because of obstacles obstructing the path,
or the vision is clear but the path cannot be constructed because it needs intermediate points
in between, the ant will identify a random spot (sampling the space around) to make a next
step. The ant will see to the furthest range of and make sure the path along the current spot to
the candidate spot is free from obstacles and can be made without any intermediate stops
(collision-free local path). The path between the current spot to the new spot is the local path
for the ant. If it happens that the ant vision is on the obstacles, the ant will sample another
random candidate spot and reduces its vision range by a factor of two. The sampling is
repeated until the candidate spot is obstacle-free and is a collision-free local path, or the
vision reduction has reached the limit (a number of reduction times will be specified). The
process is repeated again until the ant can find the obstacle-free and collision-free local path.
When the ant has found one, the ant will leave a trail on its current position and record it in its
memory before moving to the new selected spot. At the new spot, the ant will look for the
food location and check whether it can reach there, similar to the process when it was first
released from the nest. If it still does not succeed, the ant will repeat the foraging process
above until it reaches the objective or until the ant has reached its number of steps limit. The

cumulative local paths between the nest and the food source will form a final path for the ant,

4.1 Overall Algorithm

The problem is formulated as follows. Given an n-dimensional configuration space C, let F' be
the subset of free configurations of C. Let g, in F and let g,..; be a target, contained in F. Let
Oy be the set of configurations that lies in F and can be connected straight to g,,.. The task

is to find a path connecting g,m with Q... that is, a continuous function f: [0,1]—=F such that
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f0) = giue and f(1)=Q,.or. Assume that the values for each robot’s degrees of freedom has been
normalised to lie in the interval [0,1]. The planner is given a distance threshold parameter, p.
The L. vector norm metric is used over the robot configuration C which is defined as the
maximum of the absolute value of the overall components a vector. Let ¢o= (Gus, o2, - s Gon)
and ¢»= (gss, @s2, .- , Gan). The absolute distance value between g, and g is |d(g., g)l = 1o g
sl 19 o7 gsaly -, |@an= Gsal. SO L. distance is max (ld(g., gs)|). In other words, the distance
between the two configurations g, and g, is denoted by d.:q, , gs € C > d.(q., q») € R. The
local path (g., gs) is the segment connecting g, and g,. Here, p is typically set between 0.15
and 0.95.
The Foraging Ant (F-Ant) algorithm is as follows:

Algorithm 1 F-Ant(g,., Ggoor)

I:ke0

2: if SegmentCheck(gjns, Ggur)= TRUE then
3: return SUCCESS

4:end if

5: n.top < G and r.bottom <« guuu
6: while k <= maxstep do

E while SegmentCheck(gs, g.) FALSE, discard g, and do

8: GenerateNode g,
9: end while

10: k=k+1

L1 Gr g

12 T gy

13: if gi € Qyoar then

14: SUCCESS

15: end if

16: end while

The step, k, is reset to zero at line 1. On lines 2 to 4, the connection is checked for
collision between g, and gg.o.. If the test returns not TRUE, the search begins. A list of
vectors, 7, is used for accumulating all the successful configurations in the form of q. At the
beginning (line 5), g, is inserted into r at the top of the list and the g, at the bottom. For
any new configuration, g, it will be inserted between g, and g ... The loop in lines goal 7
to 9 is for generating the candidate node, g.. & is increased when the g. is found and the

—_—-s M M mhmM oo 1 o o
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segment connecting g. and g lies entirely in F. Then g, is assigned as updated g, and added to
the configurations list 7 in lines |1 and 12. g, is tested whether it lies in Oy, and the
algorithm will return SUCCESS if q¢ € Oy The loop of line 6 to 16 is repeated until the

path is found or when it reaches the maximum step, maxstep.

5. EXPERIMENTAL RESULT

F-Ant is written in ANSI C++ using the Standard Template Library (STL) in Microsoft
Visual Basic 6.0. It was compiled on a PC running Windows XP. All experimental results
reported in this paper were obtained on a Pentium- 4 PC with a 2.60-GHz processor and 512-

Mb of memory. The following sub-sections describe the techniques that were designed as in

Algorithm | to implement some of the key steps of the planner.

Figure | Motion planning environment.

The scenarios in Figure 1 are those which have been used to test the F-Ant planner. In each
scenario, let n, and n, denote the numbers of triangles in the geometric models of the robot
and the obstacles respectively. One scenario is corresponding to a mobile articulated robot,
whereas the rest is the floor attached articulated robot for each scenario.

e The mobile robot in Figure 1(a) is a 6 degrees of freedom PUMAS60 robot arm
mounted on a 3 degrees of freedom platform. The obstacles are a car body that
contains both thin and narrow components and a long wall beside the car with a space
that allows the robot to move in between. The robot has much maneuvering space. In
this scenario, 1, = 868 and », = 4, 040.

» The scenario of Figure I(b) consists of a floor-attached PUMAS60 robot arm
equipped with a torch. The obstacles are the high wall with a window, two floating
cuboids and two other cuboids on the floor. Here, n. = 868 and n, = 96.

e The robot in scenario of Figure 1(c) is another 6 degrees of freedom fixed to the floor
robot arm, IRB2400, equipped with an arc welding gun. The obstacle is a drilling
machine. In this case, n,= 3,791 and n,=34,171.

Figure 1(d) is a fixed PUMAS60 robot arm, equipped with a torch. The obstacle is a drilling
machine. n.= 868 and n, = 34,171.
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5.1 Impact On The Configurations Generated

Table 1 shows results of number of configurations generated. The first column shows the
scenes and the second column shows the value of. The third and fourth columns show the
percentage of successful planning for the F-Ant and the SBL-PRM respectively. The fifth,
sixth, and seventh columns show the total of configurations generated for F-Ant (in path) and
the SBL-RM (in path and in roadmap, RM) respectively. Finally, the eighth, ninth, and tenth
columns show the average of configuration generated in all successful paths for F-Ant (in

path) and the SBL-RM (in path and in roadmap, RM) respectively.

Table 1: Statistics For The Number Of Configurations Generated For The Difierent Scenarios
Using F-Ant And SBL-PRM

Total Averape
EAn SHL 1-Ant SBL

soccess mle in in in in in in

| Scene F F-Ant SHL path path RM path pah M
T [ a1sT %00 100.0 3%,167 43,914 TOR.940 499 M 799
Ia) ass 100.0 100.0 165340 28,730 LO70,971 165 29 1,071
.95 100.0 100N 131974 33,856 3,658,660 132 34 3,659

s 90s IDon | 243357  21.667 150,920 245 ) 151

1(b) ass 100.0 1000 oo 26535 1090316 sa 27 1,00
.95 1000 1000 37040 30,416 2. 798433 37 U 2.79R

- wis 1000 1000 TR 065 1R 442 R15479 8 18 ]75
I(c) ass 100.0 998 12,547 18264 6,370,950 13 18 6384
95 1000 978 103 20,581 7,533.279 11 21 7,703

ais 1000 1000 43 648 18,490 623,299 7] [E] 623

1(d) .55 1.0 9R7 BS54 20438 7.761.434 9 21 7864
0195 100.0 2.0 7383 2454 10,606,333 7 24 11,529

Table 2: Percentage Of Configurations That Are Applied To The Actual Path From The Total
Of Configuration Generated In Roadmap, RM, By Using The Algorithm SBL-PRM

2
Scenes 0.15 0.55 0.95
1(a) 550 2.68 093
1(b) 14.36 243 1.09
I(c) 2.11 0.29 0.27
I(d) 2.97 0.26 0.21

The overall results showed that ten out of twelve scenes with a different values of o
gave 100% success with the F-Ant algorithm while the SBL-PRM just managed to get eight
scenes successfully, The result has shown that the F-Ant managed to reduce a relatively large
amount of configurations that it needs to apply in the actual path. For the value of p= 0.15,
the number of configurations produced from the F-Ant algorithm is greater than the other
values of p of the same algorithm. However, when p is increased to 0.55 and 0.95, the number
of configurations is also reduced to about five times smaller. The F-Ant algorithm uses all of

the configurations it has produced in the actual path. On the contrary, the SBL-PRM uses
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between 0.21% to 14.36% configurations only in the actual path (Table 2). This has shown
that more than 80% of the generated configurations in the roadmap of SBL-PRM are useless.
The result of F-Ant in scenario 1(a) is significant compared with the other scenarios because
the number of degrees of freedom used was 12 degrees of freedom: nonetheless the others

were 6 degrees of freedom.

5.2 Impact On The Length of Path

Table 3 gives the length of the path for each successful planning. The first and second
columns show the scenes and the value of respectively. The third and the fourth show the total
length produced from planning for F-Ant and SBL-PRM correspondingly. The fifth column
shows the average length in a path produced by F-Ant and the sixth column is for the SBL-
PRM. Lastly, the seventh column is the standard deviation length (Std. Dev.) of F-Ant and
SBL-PRM in the eighth column.

Table 3: Statistics For The Length Of Path For The Different Values Of Using The F-Ant And

SBL-PRM

Total .I Average [ Std. Devw.
| Scene [ _ FAm = SBL F-Ant SBL F-Aat  SBL
015 7338547 10,285.00 816 1029 1433 763
1(a) 055 89,121.72 15.500.33 89.12 15.50 78.63 5.46
|| o9 109.,965.39 23 972.59 109.97 23.97 107.47 300
015 37.93750 4,464.69 3821 446 28.41 137
1(b) 055 21,785.72 11,500.86 21.79 11.50 21.40 451
; 0.95 23210.14  15,588.34 2321 1559 | 2054 6.98
| e15| 1530236 431898 1530 432 | 16.08 164
1(c) 055 7,040.44 10,625.08 T4 10.65 5, 4.46
.95 §,15223 14,469.28 R.15 14.79 T2R 6.09
015 692606 3,856.78 6.93 386 888 159
1) Q.55 381825 10,903.96 3R 11.05 305 s.6l
095 404188 14,289.79 404 15.53 389 829

The length of the successful paths produced by the F-Ant algorithm are rather large in
scenarios 1(b), 1(c), and 1(d) when the value p of is 0.15. However, in scenario 1(a), the
length is almost smaller at the same value of p. It can be assumed that the larger degrees of
freedom of a robot (12 degrees of freedom in this case), the less path distance the planner will
achieve. This is because of more manoeuvring capability by the robot in scenario 1(a), and it
has more chance to sample a free space at a closer neigbourhood (with small p), while in the 6
degrees of freedom robot scenes, the middle value of p gives the shortest length of the
successful path on average for F-Ant.

The SBL-PRM produced the shortest length in the successful path for the smallest p
value in all scenarios. Thus, the SBL-PRM gave a greatest length when p is the biggest. It can

be assumed that the length of path is proportional to p for SBL-PRM implemented scenarios.
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The F-Ant managed to produce a shorter length for scenarios 1(c) and I(d) when p are 0.55
and 0.95.

Table 4 shows the total collision checking performed by the F-Ant while the next
column to it i1s the total collision checking by the SBL-PRM. The average of collision
checking performed by F-Ant and SBL-PRM is shown in the fifth column and the sixth

columns respectively.

Table 4: Statistics For The Amount Of Collision Checking For The Different Values Of Using
The F-Ant And SBL-PRM

Total Average
Scene P F-Ant SBL F-Ant SBL |
015 1,675,050 3,260,830 L&Y 3,261 |
1(a) ass 5,996,495 15,183,182 5.996 15,183
| o5 16,764 695 $9859421 | 16765  S9859
I a1s | 1018453 5§56.120 1.024 556
1(b) 0ss 1548703 5,057,929 1,549 5.058
095 2854626 13.088.914 2.855 13,089
T oS 07590 1,186,598 TR Lig7
Ife) 055 5369341 7,111,191 5369 7125
| os|  4mon 2 aman, e 8443
0.15 740,613 1,264,930 741 1,265
1(d) 055 5,978,875 9,359,844 5919 9,483
| 0.95 7,762,945 12,414,394 7,763 13,494

The overall result has shown that the amount of collision checking is proportional to
the value of p. For all scenarios and all values of p, the F-Ant algorithm has performed less
collision checking than the SBL-PRM either in total or on average. The main reason for this
situation is that the SBL-PRM has restricted its collision checking upon generating its
milestones (configurations) in the roadmap: for example up to 30,000 tests were performed in
these experiments to generate a collision-free configuration. On the contrary, F-Ant allows an
infinite number of collision-checking (exhaustive) in order to produce a collision-free
configuration, but it restricted the number of steps to build up a successful path; in this article
for example 1,000 steps is the maximum number of configurations allowed for each
successful path. The other reason is that the F-Ant tests only the collision for the candidate
configuration to be included in the path, while SBL-PRM tests for every single milestone,
whether it is to be included in the path or not.

The results shown on Figure 2 and Figure 3 are referring to the experiment on
Figure 1(d). Figure 2 has shown that at the value of o = 0.15, the SBL-PRM generates less
number of configurations in the successful path. However, when the value of g has increased
to 0.55 and above, the F-Ant produced lesser number of configurations than SBL-PRM.
While in Figure 1 (d), computational time of F-Ant is lesser than SBL-PRM for every tested

value of p.
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In terms of selecting of which algorithm should be applicable in practice
corresponding to p value and the number of configurations, one possible solution is to
consider the robot’s manoeuvrability, If the robot is mobile manipulator, SBL-PRM with
lower value of p is the better selection. However, if the robot is attached on the floor, F-Ant is
the promising selection with setting the high value of p. One should also consider the time
calculation factor because, even though F-Ant produced more configurations in greater

manoeuvrability scenario, the calculation times were much quicker when the p are bigger.

2%

(c) p=0.95

Figure 2 Comparisons of number of configurations in successful path between F-Ant and
SBL-PRM
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Figure 3 Comparisons of computation time between F-Ant and SBL-PRM

6.0 CONCLUSION

A foraging ant motion planner has been introduced. A simple but effective technique has been
devised by letting the ant act as a planner where it moves randomly and always checks the
free path to the goal region. It can be concluded that the longer the free-obstacle range that the
planner could sample towards the goal from its current configuration, the fewer number of
steps it takes to build the path. And also F-Ant contributed to a faster computation to find the

solution path.
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