Universiti Teknologi Malaysia Institutional Repository

Predictive simulation of single cylinder n-butanol HCCI engine

Roslan, Muhammad Faizullizam and Veza, Ibham and Muhamad Said, Mohd. Farid (2020) Predictive simulation of single cylinder n-butanol HCCI engine. In: 2019 Sustainable and Integrated Engineering International Conference, SIE 2019, 8 - 9 December 2019, Putrajaya, Malaysia.

[img]
Preview
PDF
863kB

Official URL: http://dx.doi.org/10.1088/1757-899X/884/1/012099

Abstract

Homogeneous Charge Compression Ignition (HCCI) is a commonly research new combustion mode due to its advantages over conventional combustion in internal combustion engine such as higher thermal efficiency as well as lower particulate matter (PM) and nitrogen oxides (NOx) emission. However, combustion phasing control difficulty is the main challenge in order to achieve this HCCI combustion due to the absence of direct auto-ignition control. The aim of this study is to investigate the effects of engine load conditions, intake charge temperature and exhaust gas recirculation (EGR) rate numerically on the combustion characteristics of HCCI engine in a single-cylinder and four-stroke engine fuelled with n-butanol. Predictive one-dimensional engine cycle simulation with single-zone model is employed in this study. A chemical kinetic mechanism of n-butanol is used to in this model to capture the chemical reaction process during the combustion. It was found that these parameters play important roles towards the combustion phasing of the HCCI engine as well as the in-cylinder pressure. This HCCI model is able to predict the trend of the combustion characteristics comprehensively with the variation of these critical parameters resulting in a good agreement with previous HCCI studies.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:HCCI engine, Predictive
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:92936
Deposited By: Widya Wahid
Deposited On:07 Nov 2021 05:55
Last Modified:07 Nov 2021 05:55

Repository Staff Only: item control page