
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

4th National Conference on Wind & Earthquake Engineering
IOP Conf. Series: Earth and Environmental Science 682 (2021) 012020

IOP Publishing
doi:10.1088/1755-1315/682/1/012020

1

 
 
 
 
 
 

Multi-Parameter Neural Network for Altimeter Tropical 

Cyclone Wind Speed Estimation 

S Sharoni
1,2

 and M N Md Reba
1,3 

 

1
Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Johor, Malaysia 

2
School of Physics, Universiti Sains Malaysia, Penang, Malaysia 

3
Geoscience and Digital Earth Centre (INSTeG), Research Institute for Sustainability and 

Environment (RISE), Universiti Teknologi Malaysia, Johor, Malaysia 

 

Corresponding author: syarawi92@gmail.com 

 

Abstract. The ability of satellite altimeter to estimate wind speed in tropical cyclone condition 

has been investigated. In the extreme condition with higher spatio-temporal variation, the 

ocean-atmosphere interaction is very complex and makes the existing algorithm become an ill-

posed solution. In such condition, the developed algorithm from single frequency backscatter 

and significant waves height were insufficient. Besides, wind speed estimates become saturated 

at high regimes and the reflected backscatter was contaminated by rain. Therefore, other 

simultaneously observed parameters are needed to comprehensively account for this condition 

and is expected to improve the accuracy of wind speed retrieval. Aside from altimeter 

instrument, the microwave radiometer onboard Jason-2 concurrently records the brightness 

temperature and the rain information. To accommodate related multiple parameters for wind 

speed derivation, the neural network approach is proposed. Its unique advantage is relationship 

among multi-parameters can be easily established without prior knowledge on their physical 

attributes. Therefore, this study intended to determine the multi-parameter neural network 

(MPNN) model in estimating altimeter wind speed during the tropical cyclone condition. The 

results proved that the MPNN technique has potential in reducing the root mean square error 

by 30% in comparison between tropical cyclone wind speed estimate by the existing algorithm. 

1. Introduction 

Measuring near-surface wind speed inside the tropical cyclone is challenging and scientifically 

important. Studies suggest that the intensity of tropical cyclone has potential to become stronger over 

consistent warming climate environment [1]. Along with destructive high wind speed, the confluence 

of storm surges and torrential rain combined had caused severe damage. For instance, Typhoon 

Haiyan in 2013 was one of the most powerful typhoons ever to make landfall in recorded history. This 

gigantic typhoon with the diameter of more than 600 km crossed the Philippine archipelago and was 

responsible for 6300 fatalities, 1061 missing and 28,689 injuries the aftermath [2]. In addition to the 

huge impact on human, tropical cyclone is one of the complex ocean-atmosphere phenomena in which 

always becoming an interesting and active research topic. The primary data measurement typically 

used to monitor this gigantic event is from geostationary operational environmental satellite platforms 

such as Himawari. Although this observation is operationally accepted, it is limited to cloud-top 

pattern and the infrared imagery, which can only observe the aerial view of the structure. The top 

cloud and tropospheric wind information usually used to forecast the tropical cyclone trajectory. In 

contrast, wind at the 10-meter height from the surface is the utmost parameter needed to estimate the 

current tropical cyclone strength and intensity and yet, this parameter was not accounted. Perhaps this 

is one of the main reasons of no significant improvement was established in the forecasted tropical 

cyclone intensity accuracy over several decades [3].  

Despite of the fact that the active microwave polar-orbiting altimeter satellite is known to have small 

field of view (FOV) and long revisiting time disadvantages, one cannot simply deny their ability to 

accurately estimate ocean surface wind speed [4],[5]. Unlike scatterometer in which wind speed is not 

the primary parameter that altimeter dedicated to, many studies have developed algorithms to infer 
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wind speed from the reflected altimetric backscatter [6]. The amplitude of the backscatter energy is 

closely related to the sea surface roughness which is significantly modulated by the surface gravity 

waves and the wind force [4],[6],[7]. However, most of the developed algorithm is limited to the 

normal-to-moderate wind speed regime at a neutral atmospheric stability condition in which, is 

certainly not the typical ambience during the tropical cyclone event. As reported by many [8], the 

estimated wind speed is consistently reducing its accuracy and becoming saturated when it reaches 

speed greater than 18 m/s (34-kt). One of the earliest works on adjusting the empirical fitting for high 

wind speed region was conducted by Young [9] and resulted reasonable accuracy when comparing 

with the model. As the studies progress, more scientific explanation about the altimeter signal reacts 

under an extreme condition or during tropical cyclone were investigated [8],[10].  

Although the backscatter signal is the main parameter that shows strong physical and empirical inverse 

relationship with sea surface roughness and wind speed, other surplus parameters are suggested. The 

simultaneously recorded parameters such as significant waves height and brightness temperature can 

be further analysed to improve the accuracy of the estimated wind speed inside the complex ocean-

atmosphere tropical cyclone environment. Although Quilfen et al. [8] proposed a new improved wind 

speed model during high wind condition, they highlighted that one should not ignore the valuable sea 

state information in extreme seas provided by the altimeter data. In fact, the operational Gourrion 2002 

GMF [4] framework exploiting the single frequency Ku-band backscatter and significant wave height 

to derive the altimeter wind speed. Besides, Quilfen [11] also suggested the dual-frequency approach 

for higher measurement accuracy than of the single Ku-band frequency, which is strongly affected by 

rain. However, integrating these multi-parameters into the analytical algorithm is complicated, tedious 

and ill-posed solution. This is not a case for neural network as its machine learning framework allows 

to establish relationship networks among multi-parameters without a prior knowledge on their physical 

attributes. Few researches have implemented the same approach [12], however, limited attention has 

been focusing on estimating wind speed in tropical cyclone condition.  

This paper aims to estimate wind speed inside the tropical cyclone condition using ten parameters 

simultaneously observed by Jason-2 altimeter. The Jason-2 mission is a project of the common interest 

between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and 

Atmospheric Administration), CNES (Centre National d'Etudes Spatiales) and EUMETSAT 

(European Organisation for the Exploitation of Meteorological Satellites). The neural network 

technique established in MATLAB was used to estimate the wind speed from Jason-2 altimeter data 

during the tropical cyclone condition. This study is anticipated to increase the tropical cyclone wind 

speed accuracy with the implementation of multi-parameter neural network when compared to the 

operational geophysical model function.   

2. Data and materials 

2.1. Jason-2 and Metop-A data 

Jason-2 altimeter and Metop-A scatterometer are both active microwave satellites that transmitting 

their own energy pulses to the target and recording the return backscatters. This study used the 

Geophysical Data Record (GDR) products of the Jason-2 mission reprocessed by CNES from 

Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO) database. Whereas 

for scatterometer, Metop-A Ascat Level 2 Ocean Surface Wind Vectors Optimized for Coastal Ocean 

product was provided by the Physical Oceanography Distributed Active Archive Center (PODAAC). 

General specification of both missions is listed in Table 1.  

Both Jason-2 and Metop-A data were temporally and spatially filtered over 115 tropical cyclone 

events recorded in Northwest Pacific, Northeast Pacific and North Atlantic regions throughout the year 

2015 to 2018. These three regions are the most active regions on earth with tropical cyclone 

occurrence [13]. Japan Meteorological Agency (JMA) is responsible to monitor all the tropical 

cyclone activity over Northwest Pacific region while Northwest Pacific and North Atlantic are 

belonged to United States agencies including National Hurricane Center (NHC), Central Pacific 

Hurricane Center (CPHC) and Joint Typhoon Warning Centre (JTWC). All these agencies are 

accountable to report the best track for each tropical cyclone events in their respective regions. Then 
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both Jason-2 and Metop-A data were temporally filtered based on 6-hourly best track report and 

within the spatial radius of 34-kt average geographical quadrant for Northeast Pacific and North 

Atlantic and radius of maximum 30-kt for Northwest Pacific from the tropical cyclone centre. 

 

Table 1. General satellite specifications of Jason-2 altimeter and Metop-A scatterometer. 

 

Specifications Jason-2 Metop-A 

Global Coverage (day) 10 1.5 

Spatial Resolution (km) 25 <5 

Swath (km) 30 1100 

 

2.2. Jason-2 Parameters  

 

This study tends to exploit the simultaneously observed surplus parameter in improving the accuracy 

of the wind speed estimate during the tropical cyclone condition. There are several payloads attached 

on the Jason-2 platform such as Poseidon-3 altimeter and Advance Microwave Radiometer (AMR). 

Poseidon-3 altimeter operates in two frequencies - 5.3 GHz C-band and 13.58 GHz Ku-band. The 

unbiased backscatter coefficient of C-band (sig0c) and Ku-band (sig0ku) were corrected using 

atmospheric correction of each respective frequency. Besides the backscatter, significant waves height 

at C-band (swhc) and Ku-band (swhku) were used as the parameters to estimate wind speed. The last 

parameter of Poseidon-3 is the sea surface height anomaly (ssha) which was derived from higher 

accuracy of Ku-band measurement. On the other hand, the AMR provides the brightness temperature 

at 18.7 GHz (tb18), 23.8 GHz (tb23) and 34.0 GHz (tb34). Water vapour content (wvc) and liquid 

water content (lwc) are other parameters derived from AMR payload. This study takes into account all 

ten parameters from Jason-2 because of either one can affect the measurements from altimeter through 

atmospheric attenuation or affected by the wind speed itself as suggested by others [4],[11],[12]. 

3. Methodology 

3.1. Spatial and temporal match-up data 

 

Much attention has been focusing on improving scatterometer ocean wind field estimation especially 

at speed above 15 m/s [5],[14]. Scatterometer product is widely accepted wind speed information for 

JMA and NHC operationally, and the altimeter points collocated to scatterometer pixel is considered 

adequately match-up at time and space. This study chooses to find the collocated Jason-2 to Metop-A 

to yield correlated match-up inside the tropical cyclone. Fig. 1a shows the example of match-up during 

a crossing Jason-2 track with Metop-A within the radius of 30-kt wind speed over mature and stable 

typhoon in the Northwest Pacific region. 

When both satellites are crossing, the distance between observations must be within the spatial 

distance of less than 0.25° as further illustrated in Fig. 1(b) for a single altimeter point. The spatial is 

in agreement with [4],[8]. However, this study tends to impose a harsher temporal interval which is ± 

30 minutes. Despite spatially averaging the whole match-up point-based scatterometer parameters, this 

study only accepts scatterometer points with the closest distance to altimeter point. The goal of having 

a shorter time gap and closest distance criteria is to preserve higher spatial and temporal resolution of 

both data points inside the tropical cyclone structure. Match-up of 7553 points was found throughout 

the whole 115 tropical cyclone events. To ensure only quality is used, this study only accepts quality 

backscatters, significant wave height and brightness temperature data flags. Also, the match-up was 

screening for open-ocean state and non-contiminated rain state only. Finally, high quality data of 5791 

match-up points were extracted. 
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Figure 1. Data match-up between Jason-2 and Metop-A observation as both satellites crossing tropical 

cyclone event in (a). A closer look of 1x1° grid into a single Jason-2 point in blue cross with multiple 

Metop-A points at centre of pixels in red dots depicted in (b). 

3.2. Multi-Parameter Neural Network 

 

Many studies consistently show that conventional geophysical model function (GMF) algorithms are 

not straighforward in deriving tropical cyclone wind speed [8],[15]. This caused by the lack of 

physical understanding when the air-sea interactions are fierce and the general physical relation of the 

wind-driven ocean GMF is becoming an ill-posed solution. However, to develop a multi-parameter 

regression method is tedious and demands a comprehensive understanding on physical relationship 

among parameters. It has been demonstrated in some studies that artificial neural network (ANN)-

based estimation gives better accuracy and is more practical than those estimated using multiple 

regression techniques [16],[17]. The multi-parameter neural network (MPNN) was chosen to estimate 

the wind speed in extreme condition considering that this technique can overlook the complex physical 

interaction inside the tropical cyclone. 

Among those 5791 high quality match-up points, 60% of the samples were chosen for a training 

dataset, while the rest of 40% were used for validation. As illustrates in Fig. 2, 10 selected parameters 

(namely as sig0c, sig0ku, swhc, swhku, ssha, tb18, tb23, tb34, wvc, and lwc) were assigned at input 

layers and connected to the desigated networks. During the forward phase, input parameters were 

connecting to the hidden layers that contain 15 neurons. It was then propagated to the output layers for 

estimating altimeter wind speed. Metop-A scatterometer wind speed act as a targeted output was used 

to calculate the error of the estimated altimeter wind speed. The error was reused to propagate back in 

backward phase and adjusting the sequential weight and bias for each connecting neurons. Bayesian 

regularization technique was chosen as the training algorithm due to its capability in handling complex 

relationship among ten parameters at the robust fashion [18]. One epoch defines complete estimation 

cycle in both forward and backward phases. The final epoch terminates the processing when the error 

has reached the minimum to determine the estimated altimeter wind speed. All corresponding 

deliverable statistics and numerical were reported and later used for the analysis. 
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Figure 2. The processing architecture of the neural network of forward- and backward-phase. The i1 to 

in is the number of match-up data used in training (in this case, 60% of the samples) which resulted in 

the o1 to on output of the wind speed estimate. The n1 to nn is the number of processing neurons 

assigned to the corresponding hidden layers. 

4. Results and discussions 

4.1. Validation 

 

To test the accuracy of the MPNN, the established network should be tested with data which were not 

used during the training and thus, the remaining 40% of the data was used. Figure 3(a) and (b) presents 

the scatter plot of wind speed estimate from the raw altimeter Jason-2 using operational GMF 

Gourrion 2002 and the derived MPNN to the scatterometer Metop-A wind speed product respectively. 

The point density between GMF- and the scatterometer-derived wind speed is more sparsely 

distributed than of the MPNN. Wind speed of MPNN shows excellent agreement to the best linear 

fitting and there is slight deviation in the case of GMF derived data. Estimation improvement can be 

seen starting at the ranges of 10 m/s and become significant as it levels to 15 m/s and above. The result 

shows that the GMF has begun to be saturated at the speed of 18 m/s and above that slightly deviates 

the fitting line away from its best fit one. Unlike GMF, the wind speed estimate of MPNN can be 

derived at this range.  Although the R-square improvement is just around 4% (Gourrion 2002=0.9424, 

MPNN=0.9749), but the RMSE is significantly improve for more than 30% (Gourrion 2002=0.947 

ms-1, MPNN=0.644 ms-1). 

To refine such result, the box-whisker plot was used to quantitatively demonstrate the numerical 

deviation between GMF- and MPNN-derived wind speed which is shown in Figure 4. The overall 

median line position of the box-whisker plot has indicated that Gourrion 2002 (Fig. 4a) underestimates 

wind speed in tropical cyclone condition as low as 5 ms-1. In fact, their data distribution has more 

expension beyond the 95% confidence threshold which is evident by the red cross marker distribution. 

Although the median line of MPNN (Fig. 4b) has a closer agreement with the Metop-A wind speed, 

both data have underestimated high wind speed starting at the range of 17 ms-1. The short interquartile 

range of MPNN data presents that the neural network technique provided more consistent estimation 

(with lower quartile deviation) with Metop-A wind speed in tropical cyclone condition. 
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Figure 3. The scatter plot of the wind speed 

estimates using the raw Jason-2 as a function of 

Gourrion 2002 model (a) and the MPNN (b). 

Black asterisk shows the match-up points, red 

solid-line is the estimated linear fitting, and red 

dashed-line is the best fit. 

 Figure 4. Box-whisker plot of the Gourrion 

2002 (a) and MPNN (b) estimated wind speed 

against Metop-A. 

 

4.2. Tropical cyclone event 

 

Further validation beyond the use of scatterometer throughout the altimeter track is very difficult and 

visual comparison is exclusive for any specific tropical cyclone event. For visual comparison, 

validation during a Typhoon Jebi on 29 August 2018 over the Northwest Pacific Ocean is exclusively 

presented. Typhoon Jebi match-up was intentionally excluded from the training and validation dataset 

previously mentioned. This is to assess the agreement achieved by MPNN in real tropical cyclone 

event. Jason-2 at 10:36 a.m. local time, while Metop-A crossing the same typhoon four minutes later 

in the northwest direction as shown in Fig. 5a. 

The Fig. 5b shows that Jason-2 MPNN and Metop-A wind speed are in good resemblance despite 

there is very little time different. A remarkable result is the agreement of the maximum wind speed 

estimation of both sensors at the region of very high wind speed close to the tropical cyclone's eye, 

marked in blue arterisk. The MPNN has successfully estimates wind speed at the region of more than 

25 ms-1 which is comparable to the Metop-A estimates. The shape of the MPNN tropical cyclone 

wind structure is almost identical in calm condition with low wind speed regime (below 15 ms-1) and 

has fairly similar pattern with the Metop-A in the extreme regime. This information can be vital for 

tropical cyclone warning centres such as JMA and NHC, especially when scatterometer observation is 

absent. For instance, JMA practice the standard of 50-kt and a 30-kt threshold for tropical cyclone 

strength (where 1-kt = 0.5144 m/s) in which it can be identified from 17° latitude crossing Typhoon 

Jebi stretch out to 19° in a northeast direction. 



4th National Conference on Wind & Earthquake Engineering
IOP Conf. Series: Earth and Environmental Science 682 (2021) 012020

IOP Publishing
doi:10.1088/1755-1315/682/1/012020

7

 
 
 
 
 
 

 
 

Figure 5. Typhoon Jebi wind radius from the JMA best track report on 29 August 2018 at 12:00 with 

Metop-A wind speed map and Jason-2 crossing track are shown in (a). The profile of wind speed 

derived from MPNN and Metop-A match-up is shown in (b) represents the tropical cyclone wind 

structure. 

5. Conclusion and recommendation 

 

This preliminary study reaffirms the ability of satellite altimeter in estimating tropical cyclone wind 

speed by exploiting simultaneously observed multi-parameters with the implementation of neural 

network technique. The proposed neural network technique can overlook the complex multi-parameter 

relationships in the tropical cyclone complex environment by providing relatively more accurate wind 

speed such as from scatterometer data. All the input used to train the network is either can affect the 

altimeter measurement through atmospheric attenuation or having a direct impact on wind speed over 

the ocean surface. By exploiting the unique advantage of neural network technique, further study can 

enhance the target output with higher accuracy tropical cyclone wind speed data. A comprehensive 

study on parameter analysis in estimating altimeter wind speed should be conducted.  Fully aware that 

the Gourrion 2002 GMF is operationally recognised in calm and normal condition, the proposed 

MPNN technique is suggested to have more advantage in the tropical cyclone condition and able to 

resolve its wind speed threshold strength. Such good agreement measurement with the scatterometer, 

despite its narrow swath coverage, can be a vital complement to the sea surface wind speed 

observation in monitoring tropical cyclone event. The advantage of having greater along-track spatial 

resolution can be further examined for their ability to resolve the finer detail structure of tropical 

cyclone. 
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