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Abstract. Stability analysis of the foundation is closely associated with soil deformations and 

since the stability of the foundation affect the stability of the entire structure, instrumentation 

and monitoring play an important role in monitoring its performances. The usage of Brillouin 

Optical Time Domain Analysis (BOTDA) sensing system is implemented in this study to monitor the 

soil deformation, yet the accuracy of the fiber sensing technology is still a concerned point. Thus, the 

aims of the paper are to evaluate the parameter configuration of the BOTDA interrogator and 
to analyze the fiber optic-soil interaction from the strain distribution data under the influence of 

incremental surcharge loading. The methodology presented are experimental works for  

calibration of fiber optic as for acquiring the coefficients by calibrating the signal difference in 

terms of strain and thermal characteristics. Then, the coefficients use used in a small-scale 

physical model to observe the fiber optic-soil interaction under the influence of surcharge 

loading. From the result of this study, the coefficient over a Brillouin signal for Fujikura optical 

fiber is 20 µε and 1°C for strain and temperature respectively. The fiber-soil interface also 

increases with the implementation of anchorage system. In conclusion, optical fiber sensing is 

a good approach for instrumentations and monitoring for geotechnical structures as fiber optics 

is sensitive to the movement of the soil. 

 
1. Introduction 

The burden exerted on the surface of the ground through foundation caused various ground 

displacement or deformation in shallow foundation situation. This deformation is better determined by 

soil settling measurements. The burden imposed on the soil can be attributed to the soil weight and/or 
added burden while loaded, which is often known as surcharge loading. The research of stress transfer 
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to the soil is necessary to understand the mechanism in the settlement of foundation. Instrumentation 

and monitoring therefore play an important role in the analysis of soil behavior and soil stability. Over 

the last decade, the performance of geotechnical structures was commonly examined using common 

conventional practices. Nevertheless, common instrumentation such as inclinometers, the Global 
Positioning System (GPS) and soil deformation measuring methods have certain drawbacks in terms 

of their measuring distance or accuracy [1]. As natural consequences, optical fiber sensing technology 

has been used in geotechnical engineering as a monitoring method, as optical fiber systems are cheap, 
can thrive under harsh conditions and measurements can be carried out along fiber optics for 

thousands of kilometers [2,3]. 

 

For the past few decades, there are many studies to evaluate the soil deformations by using the application of 
optical fiber sensing by embedding it directly within soil mass [4,5,6,7].  The precision of fiber sensing 

technologies is also a challenge because the precision relies on the fiber optic configuration and the 

contact between the optic fiber and the soil. To get the exact value of strain and temperature, the 
parameter configuration input must be entered correctly as different fiber optic types have different 

strain and temperature coefficient values. Therefore, the efficacy of the fiber optic in calculating the 

strain relies on interaction between the fiber optic and soil where a proper contact will result the 
correct amount of strain [2]. In addition, the poor-quality on the deployment of the sensors and 

temperature adjustment are the risk element of the inconsistencies in fiber optic measurements [8]. 

Thus, this paper introduces the laboratory technique beginning with the calibration phase of Fujikura 

optical fiber accompanied by a small-scale physical simulation test. The implementation of the 
anchorage method in the analysis of the stability of the shallow foundation due to exerted loading will 

help to improve the efficiency of the soil-structure interaction. 

 
So far as the practical approach is concerned, laboratory experiments in small-scale physical 

simulation which reflect the specific conditions of the geotechnical structures are also used as a means 

of stimulating soil behaviour because the research of a full-scale base framework is expensive , time-

consuming and impractical to conduct [9]. In order to analyze the problems of geotechnical 
engineering, the small-scale physical model is chosen for its advantages of sized reductions, 

simplification and simplicity, possible study of too complicated analytical structures and possible use 

of laboratory data as well as testing by theoretical and computational methods [10]. 
 

2. Materials and method 

 

2.1 Calibration of Fiber Optic 
The 12-ribbon Fujikura is used for this analysis as the cable for strain sensing and the cross section of 
the fiber shown in Figure 1. The cable comprises of 12 fibers with protected coatings in varying 

colours. The dimension of 12 ribbon fiber is 3 mm in width and roughly 0.3 mm in thickness. The 

optical fiber is ideal for being the sensing cable for direct embedding in the soil layer, owing to the 
wider surface or area of contact. The primary objective of the test is to determine the relationship 

between Brillouin 's shift frequency and obtained strain value then to correctly enter the value of the 

strain and temperature coefficients at BOTDA Analyzer because various fiber optic forms have 

different strain and temperature coefficient values. 

 

 

Figure 1. Cross section of 12-ribbon Fujikura [5]. 
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2.1.1 Calibration method for the coefficient of strain. As seen in Figure 2, the fiber optic was 

configured using a developed strain rig set-up with a ball-bearing guiding pad on the left side. The 

other end is a fixed clamp and the set-up attached to the load cell with shape 'S 'as seen in Figure 3 and 
can be mounted on the latter end side of the set-up of the strain rig. A 20 m of fiber length was 

planned for the calibration analysis and the strained segment at 8 m and 9 m locations was defined to 

be the length of the sample. Initially, the baseline reading is set and proceeded by pulling per 1 mm 
and the BOTDA interrogator will acquired the calculated strain. 

 

              

Figure 2. Fabricated tensile test for fiber optic.      Figure 3. Load cell to obtain tensile force data. 
 

2.1.2 Calibration method for the coefficient of temperature. The fiber optic was tested to an 8.1 cm 
length, 5.1 cm width and 2.8 cm height Memmert water bath tank where the setup set-up is seen in 

Figure 4. A total of 20 m of fiber length and roughly 5 m of fiber length is inserted in the water bath, 
which was between 8 m and 12 m of overall length. The temperature was used as a reference read at 
23 degrees Celsius (tap water). The temperature value was set with a 10-degree increment and 

increasing temperature reading of the strain data was recorded; beginning from 31, 41, 52, 61 and 72 
degrees Celsius.  
 

 

Figure 4. Memmert Water Bath. 

  

2.2 Experimental Works (Physical Modeling).  
A small 1 G model portraying the real structure, with measurements 1.0 m (Length), 0.3 m (Width) 
and 0.8 m (Height), was prepared and designed. Within the premises of Universiti Teknologi Malaysia 

(UTM), Johor Bahru campus, the soil used for this research was acquired. The soil was compacted 

into four (4) layers and the fiber optic was placed in between the soil layers for the lower, middle and 

top layers strain responses. The fiber optic is horizontally mounted and is opposite to the surcharge 
loading. During the testing period, a small scale 1 G model of a shallow foundation described by a 
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load plate test under gradual overloading was stimulated to assess soil stability. Plate measure with a 

width of 300 mm and a length of 150 mm. The BOTDA analyzer, also known as the Distributed Strain 

and Temperature Sensor (DSTS), attached the optical connectors. Measurements of fiber optic were 

rendered using DSTS when exerting pressure on the load of the plate. The outcome was the response 
of the strain distribution assessed by the fiber optic imbedded in the soil. 

 

3. Results and discussion 

 

3.1 Strain Coefficient (Cɛ) 
Only up to 10 mm elongation was performed in the calibration experiment, and the strained 

section was from 7.7 m to 8.7 m (middle length of fiber). As for measurement data obtained, the 

attention needs to be given to the middle part of the frequency distribution (see Figure 6) for 
accurate frequency reading. The constant frequency distribution was then summed over 10 points 

and graph is plotted as seen in Figure 7. The graph represented the association between the 

tensile force applied and the degree of changes in frequency which it contributed to the 

coefficient of strain. Therefore, the 1 MHz of the frequency signal is equivalent to 20 micro strain 
(µε).  

 

 

3.2 Temperature Coefficient (CT) 
A baseline reading was assigned for the temperature coefficient at a temperature of 23°C. For 

temperature coefficient, the submerged section was from 8.0 m to 12.0 m. The method of 

tabulating the graph will be the same as strain coefficient where attention will be given to the 

middle part of the frequency distribution. The average frequency value (vb) was determined by 
taking the average constant frequency reading describing a submerged portion of the optical fiber 

(see just 2 m of submerged duration as seen in Figure 8). Figure 9 demonstrates the constant 

temperature differential interaction against Brillouin frequency change, Δvb. The temperature 
coefficient obtained is 0.9977, roughly 1 C / MHz. 

 

 

Figure 6. Averaging of frequency for the relationship of frequency against strain. 
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Figure 7. The graph of strain coefficient (Cɛ). 

 

Figure 8. Averaging of frequency for the relationship of frequency against temperature. 

 

 

Figure 9. The graph of strain coefficient (CT). 
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3.3 Strain Distribution due to Surcharge Loading 
Throughout the plate load experiment, the surcharge load applied was 1 kN, 3 kN, 5 kN, 7 kN, 9 kN, 
12 kN, 13 kN, 14 kN and 15 kN. The research was carried out in phase loading where the pressure 

stopped as the data were taken at each of the loads specified. At each load, the frequency was 

measured. The surcharge loading was stopped at 15kN because the frequency distribution in the 

BODTA Analyzer shows odd trend as the soil begins to fail at 15kN load. Just before the study, 
baseline reading was taken where the initial Brillouin frequency distribution would be used as a 

reference for other readings. Therefore, the calculated data were correlated with the baseline and the 

discrepancy between the two data frequencies was translated into strain by multiplying the findings 
with the strain coefficient obtained previously [20 µε/MHz].  

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

Figure 10. Strain vs Fiber length. 
 

For each load, a graph for strain distribution was tabulated against optical fiber length as shown in 

Figure 10. The overall fiber optic range was 21 m. It illustrates that from Figure 10 that 15kN 

surcharge load has given higher strain distribution compared with the rest of the load. The greater the 
surcharge load mounted to the soil mass, the greater the stress values because the higher loads mean 

higher stresses working on the soil resulting in higher deformations within the soil mass and resulting 

in higher strain values. Figure 10 also displays the strain graph for the lower, center, and top layers of 
soil while performing the load test. Every soil layer consists of two graphs where one graph represents 

anchor fiber, while the other represents anchor-free fiber optic. The location of the fiber optic for both 

anchors and no anchors has been alternated from the bottom layer to the topsoil layer owing to the 
fiber deployment strategies inside the chamber and the relation of the strain measurements between 

them will be addressed in the next sub-chapter. 

 

3.4 Interaction between Fiber optic and Soil 
Figure 11, Figure 12 and Figure 13 display the effects of an anchor fiber optic and non-anchor fiber 

for the top, middle and bottom layers respectively. In this study, two fiber optic approaches have been 

applied to evaluate the relationship between fiber optic and soil.  
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Figure 11. Top layer (a) anchor and (b) non-anchor fiber optic strain distribution. 

 

 

 

Figure 12. Middle layer (a) anchor and (b) non-anchor fiber optic strain distribution. 
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Figure 13. Bottom layer (a) anchor and (b) non-anchor fiber optic strain distribution. 

 
From an overall standpoint, all experimental tests for anchor and non-anchor connection 

approaches indicate that fiber optics are prone to nearby ground changes where it can scale up to 

micro strains (μb). In addition, the anchorage method provides better outcomes since the strain values 

are marginally higher than non-anchor fiber optic values. Thus, anchor fiber optic is more reactive and 
effective because it has higher strain values resulting in improved contact with optical fiber and soil. 

 

 

Conclusion 

As far as the conclusion is concerned, profound understanding in the characteristics of the BOTDA 

device and the optical fiber sensor before any test is start is important to minimize the errors during 

experimental works and analyzing the slope structure. The findings of the plotted graph demonstrate 
that the strain and temperature coefficient for the optical fiber of 12 ribbon Fujikura is 20 µε and 1°C 

over a Megahertz of Brillouin signal, respectively. The plotted graph has resulted in improved strain 

distribution of the anchorage where measurement up to micro strain (μɛ) can be taken. Furthermore, fiber 
optics are extremely sensitive to slight soil movement, cheap and capable of measuring strain through the fiber rather 

than isolated points which makes it suitable as the geotechnical sensors. 
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