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Abstract. Photocatalytic activity of ZnO-NPs was tested by degradation of Malachite Green 

dye under UV light irradiation. The ZnO-NPs were biosynthesized using Punica granatum 

(pomegranate) fruit peels extract as the stabilizing agent. Simple sol-gel method and 

calcination in different temperatures (400, 500, 600 and 700°C) were carried out to obtain pure 

ZnO-NPs with high photocatalytic properties. In the degradation studies, 20 mg ZnO-NPs were 

used to degrade Malachite Green dye of 10 ppm initial concentration for a total period of 50 

minutes in a 100 ml reaction volume. Results obtained shown that ZnO-NPs calcined in 700°C 

had the highest removal efficiency at about 99% in 40 minutes. This proves that biosynthesized 

ZnO-NPs have a high potential to be used as a photocatalyst to degrade textile dyes in a short 

time for wastewater treatments.  

1. Introduction  

In the field of catalysis and water treatment, nanomaterials have been gaining much interest because of 

their unique physico-chemical properties, high surface area to volume ratio, and strong interaction 

with other materials [1]. Several types of nanomaterials such as copper oxide [2], titanium dioxide [3], 

magnesium doped zinc oxide [4], silver doped titanium dioxide [5] and iron [6] have been reviewed 

for their potential in wastewater treatments. Zinc oxide (ZnO) is one of the most extensively studied 

semiconductors with a large band gap of about 3.3 eV. At room temperature, ZnO is known to have a 

high excitation binding energy of about 60 meV with stable hexagonal wurtzite structure [7]. Upon 

irradiation of ZnO-NPs semiconductor with UV light, electrons from its valence band travels to the 

conduction band and generate hole-electron (h/e) pair which in turn causes the production of hydroxyl 

radicals and reactive oxygen species (ROS) [8]. These hydroxyl radicals and ROS will oxidize 

pollutant molecules from dye compounds in the photocatalytic process.  

A major pollutant in our water resource comes from the textile industry which discharges large 

amounts of dye effluents into the water streams daily [9]. These dye effluents have been proven toxic 

to the environment and human health thus proper treatments to reduce and degrade them has to be 

developed. Degradation and removal of various types of dyes such as Gentian Violet dye [7], Methyl 

Orange [10], Basic Violet 3 dye [11] and Methylene Blue [12] by numerous nanomaterials have been 

studied and reported before. Extensive studies have also been done to investigate the efficiency of 

ZnO-NPs as catalysts to degrade various textile dyes thanks to their high surface area, non-toxicity, 

photosensitivity and cost-effectiveness [9]. Malachite Green is one of the most commonly used dyes in 

the industrial field. Degradation of Malachite Green dye in particular is more difficult due to the 
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presence of complex aromatic ring in their triphenylmethane structure [13]. Malachite Green dye has 

also been reported to be highly resistant to light and oxidizing agents, and previous studies to remove 

them using biological treatment and chemical precipitation were not that efficient [13].  

This present study reports the successful production of ZnO-NPs mediated using Punica granatum 

(P. granatum) fruit (F.) peels extract as reducing and stabilizing agents for the sol-gel and combustion 

methods. We will investigate the effect of different calcination temperature on the morphology of 

ZnO-NPs as well as their effectiveness to degrade Malachite Green dye under UV light irradiation.  

 

2. Experimental 

2.1 Plant collection and materials 

Fruit peels of P. granatum were collected from “Green Farm” in Fars province, city of Neyriz, Iran. 

Zinc nitrate hexahydrate (Zn(NO3)2.6H2O, 98 %) of analytical grade was purchased from R&M 

Chemicals, United Kingdom and used as metal salt precursor. Deionized (DI) water was used to 

prepare all aqueous solutions. Glassware used in this study were thoroughly cleaned with DI water and 

dried before use.  

 

2.2 Fruit peel extract preparation  

Fresh P. granatum F. peels were cleaned using tap water and DI water consequently to remove visible 

dirt before dried in the oven at 45 °C. The dried peels were ground into fine powder and stored at 

room temperature for further use. P. granatum F. peel extract was produced by extracting the peel 

powder in DI water at 65 °C for 1 hour in the ratio of 1:10. The extract were then filtered and further 

centrifuged at 10,000 rpm for 10 min to completely remove any leftover particles. The P. granatum F. 

peel extract was kept at 4 °C for future experiments.  

 

2.3 Biosynthesis of ZnO-NPs 

The ZnO-NPs were synthesized using a simple sol-gel and combustion method consequently. In the 

ratio of 1:10, zinc nitrate hexahydrate (Zn(NO3)2.6H2O) was added to P. granatum F. peel extract 

under vigorous stirring. The solution was stirred at 90 °C until the aqueous solvent is completely 

removed, leaving a gel-like product. The product was then calcined at different temperatures (400, 

500, 600, and 700 °C) for 1 hour until it turned into fine white powder form. All ZnO-NPs powder 

were kept in room temperature and used in the experiments.  

 

2.4 Characterization methods and instrumentation 

To evaluate the purity and crystallinity of ZnO-NPs, X-ray diffraction (XRD, Philips, X'pert, Cu Ka) 

at the small angle range of 2Q (10°- 90°) was used. High Resolution Transmission electron 

microscopy (HRTEM) (model JEM-2100F) was used to observe and capture images of all 

biosynthesized ZnO-NPs. The shapes and sizes of ZnO-NPs were then analysed in this study. 

Information on surface area, pore volume and pore radius were obtained using BET surface analyzer 

(NovaTouch) by measuring nitrogen adsorption-desorption isotherm at 77 K. All ZnO-NPs were 

degassed for 2 hours at 150 °C. For photocatalytic experiments, Ultraviolet-visible (UV-vis) 

spectroscopy (UV-2600, SHIMADZU) was used to measure absorbance values in the wavelength 

range of 220 to 900 nm.  

 

2.5 Photocatalytic studies 

The efficiency of all biosynthesized ZnO-NPs was evaluated by its ability to degrade Malachite Green 

dye. 20 mg of ZnO-NPs photocatalyst was mixed with Malachite Green dye solution of 10 ppm 

concentration in a 100 ml reaction volume. The mixture was stirred in dark for 30 minutes to obtain 

adsorption and desorption equilibrium. After that, the mixture was exposed to UV light irradiation and 

small amount of samples were taken every 10 minutes for absorbance reading using UV-vis 

spectrophotometer. The photocatalytic studies were carried out for 50 minutes until complete 
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degradation of the dye. Results were analyzed to investigate the effectiveness of all ZnO-NPs as a 

photocatalyst.  

 

3. Results and discussion 

To confirm the successful production of ZnO-NPs, XRD analysis was carried out for all samples. 

Figure 1 shows the Miller indices peaks of all four samples of ZnO-NPs, which can be indexed to 

hexagonal wurtzite phase structure as supported by JCDPS Cardno. 89-1397 data [14]. As no other 

foreign peaks can be seen, it is confirmed that the biosynthesized ZnO-NPs are highly pure and 

crystalline. Calcinating in higher temperatures produce ZnO-NPs with increasing crystallinity as the 

diffraction peaks become more intense and narrower.  

 

 
Figure 1. XRD patterns of (a) ZnO-NPs 400, (b) ZnO-NPs 500, (c) ZnO-NPs 600 and (d) ZnO-NPs 

700 respectively.  

 

 The morphology of all biosynthesized ZnO-NPs was observed using TEM imaging.  

Figure 2 shows the shapes and sizes of all ZnO-NPs samples. Irregular shapes of ZnO-NPs with slight 

agglomeration were produced for all calcination temperatures. In lower calcination temperature, 

mostly spherical particles were synthesized but as calcination temperature increases, more irregular 

shapes of ZnO-NPs can be observed. This might be due to aggregation of small primary particles to 

form secondary or even tertiary particles [15]. Therefore, in higher calcination temperature, larger and 

irregularly shaped ZnO-NPs were produced as can be seen in Figure 2(c,d) as compared to Figure 

2(a,b). Particle sizes of ZnO-NPs 400 and ZnO-NPs 500 were measured to less than 50 nm while 

ZnO-NPs 600 and ZnO-NPs 700 were in the range of 40-70 nm.  
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Figure 2. HRTEM images of (a) ZnO-NPs 400, (b) ZnO-NPs 500, (c) ZnO-NPs 600 and (d) ZnO-NPs 

700 respectively. 

 

 Table 1 lists the surface area, pore volume as well as pore radius of all biosynthesized ZnO-NPs 

based on BET and BJH analysis. Specific surface area for the biosynthesized ZnO-NPs decreases 

progressively with increasing calcination temperature. The main factor leading to the reduction of 

surface area is the increased particle sizes of ZnO-NPs when calcined in higher temperatures, as 

observed from the HRTEM images in Figure 2. As sizes of ZnO-NPs become larger, pore volume and 

pore radius also decrease inevitably.  

 
Table 1: Surface area, pore volume and pore radius of all biosynthesized ZnO-NPs. 

Sample Surface area (m2/g) Pore volume (cc/g) Pore radius (nm) 

ZnO-NPs 400 52.001 0.158 8.765 

ZnO-NPs 500 42.854 0.117 1.245 

ZnO-NPs 600 30.444 0.073 1.336 

ZnO-NPs 700 17.160 0.021 0.820 

 

 The dye degradation activity of all biosynthesized ZnO-NPs samples was carried out against 

Malachite Green dye under UV light irradiation. The maximum absorbance peak wavelength of 

malachite green was observed at 617 nm. Figure 3 shows the gradual decrease in maximum absorption 

peak of Malachite Green with time for all ZnO-NPs samples and a control experiment (without ZnO-

NPs photocatalyst). The control experiment as shown in Figure 3(a) shows slow reduction in 

Malachite Green absorption peak with time. Meanwhile in the presence of ZnO-NPs photocatalyst, 

upon exposure with UV light, the intensity of absorption decreases until almost zero in about 50 

minutes of reaction time signifying a complete degradation of Malachite Green dye for all experiments 

as plotted in Figure 3(b-e). 
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 Based on Figure 3(d), ZnO-NPs 700 showed the most rapid reduction of Malachite Green dye as 

the absorption peak reaches almost zero at only 30 minutes of time. Similarly, ZnO-NPs 600 showed 

high degradation performance as well as the Malachite Green dye is almost completely degraded at 

around 40 minutes. Despite having larger particles sizes, ZnO-NPs calcined in higher temperatures of 

600 and 700°C showed excellent performance in degrading Malachite Green dye compared to ZnO-

NPs with smaller particles sizes.  

 

 
Figure 3. Decrease in absorption peak of Malachite Green dye with time for (a) control (without ZnO-

NPs photocatalyst), (b) ZnO-NPs 400, (c) ZnO-NPs 500, (d) ZnO-NPs 600 and (e) ZnO-NPs 700 

respectively. 
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 From the absorbance data obtained, a degradation study was carried out and a comparative graph 

shown in Figure 4 was plotted to analyze the different removal efficiency of all ZnO-NPs 

photocatalysts. When compared to the control experiment, all four samples of ZnO-NPs photocatalysts 

showed excellent performance as they successfully degraded Malachite Green dye to almost a 100% 

rate. The percentage degradations Malachite Green dye by ZnO-NPs calcined at 400°C and 500°C are 

96%. For ZnO-NPs calcined at 600°C and 700°C, highest removal efficiency of 99% were achieved in 

a short time of about 40 minutes. ZnO-NPs 700 performed the best as 10 ppm initial concentration of 

Malachite Green was degraded in only 30 minutes time. This corresponds to the previous analysis and 

characterization where ZnO-NPs 700 showed highest removal rate compared to those calcined in 

lower temperatures despite having larger particle sizes and lower surface area value. 

 Plausible reasons for this analysis have been discussed in previous studies mentioning the effect of 

surface defects and charge transfer on dye adsorption abilities of ZnO photocatalysts. When 

calcination temperature of ZnO-NPs increases, more surface defects such as oxygen vacancies are 

formed on their surface due to crystal structure disorder. This in turn stimulated greater dye 

adsorptions which influence their photocatalytic performance [16][17]. Crystallinity enhancement of 

ZnO-700 compared to other ZnO-NPs also plays an important role in decreasing charge transfer 

resistance. As charge transfer resistance decreases, electron transfer rate increases thus more hydroxyl 

radicals and ROS can be generated to oxidize the dye compounds [18].   

 

 
Figure 4. Comparative degradation study of Malachite Green dye with and without the presence of 

ZnO-NPs photocatalysts. 

 
4. Conclusion 

In the present work, plant-mediated biosynthesized ZnO-NPs were successfully produced using a 

simple sol-gel and combustion method in four different temperatures of 400, 500, 600, and 700°C. The 

effects of different calcinating temperatures towards the purity, crystallinity, surface area and particle 

sizes of ZnO-NPs were analysed. Comparative study of degradation efficiency for all biosynthesized 

ZnO-NPs was also carried out to determine which photocatalyst performed the best. HRTEM imaging 

showed smaller sized ZnO-NPs when calcined in lower temperatures of 400°C and 500°C with mainly 
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spherical shapes. Higher calcination temperatures at 600°C and 700°C synthesized larger ZnO-NPs 

with more irregular shapes. As larger particles are produced in higher calcination temperatures, 

surface area, pore volume and pore radius of ZnO-NPs also decrease progressively. Photocatalytic 

experiments proved that ZnO-700 has the highest removal efficiency of Malachite Green dye 

compared to the other ZnO photocatalysts. This might be due to the increase of oxygen vacancies and 

electron transfer rate in ZnO-NPs calcined in higher temperatures.   
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