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ABSTRACT 

 

 

 

 

Yttria stabilized zirconia (YSZ), the most significant material of electrolytes 

in solid oxide fuel cell (SOFC) requires careful synthesis and thorough 

characterizations with improved properties. Presently, YSZ electrolytes are largely 

manufactured by screen printing or spraying techniques followed with subsequent 

sintering. Despite their low-cost with high throughput, these techniques cannot 

produce dense YSZ electrolytes thin film of thickness with nanometer size. In this 

research, this problem was resolved by depositing dense YSZ electrolyte thin film 

with good electrical properties through radio frequency (RF) magnetron sputtering 

(RFMS) technique. YSZ thin films were successfully deposited on alumina (Al2O3) 

substrate through reactive RFMS technique. The formation of fully dense and highly 

porous films for efficient SOFC fabrication is dependent upon deposition parameters 

of RFMS such as gas pressure, deposition power and rate, substrate temperature and 

sputtering time. Pure nanostructured YSZ thin films were prepared in the atmosphere 

of mixed argon and oxygen gas. To optimize the YSZ film properties, deposition 

parameters such as RF power, substrate and annealing temperature were varied. 

Samples were characterized using X-ray diffraction (XRD), field emission scanning 

electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, atomic 

force microscopy (AFM), surface profiler, and four point probe analysis. XRD 

spectra revealed the growth of Zr-Y-O nanocrystallites along the lattice plane of 

(220) and (111), where the average crystallite size increased from 24.81 nm to 68.56 

nm with the increase of RF power. The FESEM images displayed the homogeneous 

surface morphology of the deposited YSZ thin film. Meanwhile, the AFM 

topological analysis showed an increase in grain size from 26.29 nm to 76.41 nm and 

that surface roughness was reduced from 3.28 nm to 1.67 nm with increasing RF 

power from 50W to 150W. The resistivity of YSZ films was reduced from 745 Ω.cm 

to 1.33 Ω.cm with the increase of substrate temperature from 37°C to 500°C. 

Furthermore, the resistivity of the film was diminished with the decrease of YSZ thin 

film thickness from 66.08 nm to 8.25 nm. RF power of 100W and substrate 

temperature of 300°C was shown as the optimum parameter for depositing 

nanostructured YSZ thin films. The findings have proven that by lowering the 

thickness of nanostructured YSZ thin film deposited with substrate temperature of 

500°C or less, an optimum film can be achieved. Overall, the present findings may 

contribute towards the development of YSZ thin film based electrolytes beneficial 

for SOFC.  
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ABSTRAK 

 

 

 

 

Zirkonia terstabil yttria (YSZ), bahan paling penting sebagai elektrolit di 

dalam sel bahan bakar oksida pepejal (SOFC) memerlukan sintesis yang cermat dan 

pencirian untuk sifat yang lebih baik. Pada masa ini, elektrolit YSZ sebahagian 

besarnya dihasilkan melalui teknik percetakan skrin atau teknik penyemburan diikuti 

dengan pensinteran. Walaupun berkos rendah dengan truput yang tinggi, teknik ini 

tidak boleh menghasilkan saput tipis elektrolit YSZ tumpat dengan ketebalan 

berukuran nanometer. Dalam kajian ini, masalah ini telah diselesaikan dengan 

mengendapkan saput tipis elektrolit YSZ tumpat dengan sifat elektrik yang baik 

melalui teknik percikan magnetron frekuensi radio (RFMS). Saput tipis YSZ telah 

berjaya diendapkan ke atas substrat alumina (Al2O3) melalui teknik RFMS reaktif.  

Pembentukan saput yang berketumpatan penuh dan berkeliangan tinggi untuk 

pembinaan SOFC yang efisen bergantung kepada parameter pertumbuhan RFMS 

seperti tekanan gas, kuasa dan kadar endapan, suhu substrat dan masa percikan. 

Saput tipis YSZ tulen berstruktur nano telah disediakan pada persekitaran atmosfera 

campuran gas argon dan oksigen. Untuk mengoptimumkan sifat saput YSZ, 

parameter pertumbuhan seperti kuasa RF, suhu substrat dan suhu sepuhlindap telah 

diubah. Sampel dicirikan dengan pembelauan sinar-X (XRD), mikroskopi imbasan 

elektron pancaran medan (FESEM), spektroskopi sinar-X serakan tenaga (EDX), 

mikroskopi daya atom (AFM), pembukah permukaan, dan analisis prob empat titik. 

Spektrum XRD mendedahkan pertumbuhan hablur nano Zr-Y-O di sepanjang satah 

kekisi (220) dan (111), di mana saiz hablur purata meningkat daripada 24.81 nm 

kepada 68.56 nm dengan peningkatan kuasa RF. Imej FESEM memaparkan 

morfologi permukaan saput tipis YSZ terendap yang homogen. Manakala analisis 

topologi AFM menunjukkan peningkatan saiz butiran daripada 26.29 nm kepada 

76.41 nm dan pengurangan kekasaran permukaan daripada 3.28 nm kepada 1.67 nm 

dengan peningkatan kuasa RF daripada 50W kepada 150W. Kerintangan saput YSZ 

telah berkurang daripada 745 Ω.cm kepada 1.33 Ω.cm dengan peningkatan suhu 

substrat daripada 37°C kepada 500°C. Selain itu, kerintangan saput berkurang 

dengan penurunan ketebalan saput tipis YSZ daripada 66.08 nm kepada 8.25 nm. 

Kuasa RF sebanyak 100W dan suhu substrat 300°C ditunjukkan sebagai parameter 

optimum untuk pengendapan saput tipis YSZ berstruktur nano. Penemuan ini 

menunjukkan saput tipis optimum boleh diperolehi dengan pengurangan ketebalan 

saput tipis YSZ pada suhu substrat di bawah 500°C. Keseluruhan, penemuan ini 

boleh menyumbang ke arah pembangunan elektrolit berasaskan saput tipis YSZ yang 

berfaedah untuk SOFC. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Solid oxide fuel cell (SOFC) innovation offers numerous focal points over 

conventional vitality change frameworks, including low discharge and high 

effectiveness. This has made SOFC turned out to be progressively appealing to the 

utility, car, and guard ventures. SOFC requires high temperature (700-1000°C) to 

work as it is an all strong state vitality transformation gadget. Power is delivered by 

electrochemically joining the fuel and oxidant gasses over an ionically leading oxide 

film.  

 

 

Yttria stabilized zirconia (YSZ) is the most usually utilized material for 

SOFC electrolytes (Shaula et al., 2009) as it is a sufficient ionic conductor, has a low 

electronic conductivity, and is moderately shabby to handle contrasted with other 

electrolyte materials. The ionic conductivity in the stabilized zirconia framework is 

because of the versatility of O
2-

opportunities made when substituting Zr
4+

 by Y
3+

 in 

the cationic system. Be that as it may, the ionic conductivity of cutting edge YSZ 

based electrolytes would just be adequate at raised temperatures (800-1000°C) which 
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then brought about expanded reactivity of cell center parts, radically constrained 

lifetimes and requires the utilization of costly interconnect materials (Sønderby et al., 

2015). Along these lines, diminishment of the operation temperature to an 

intermediate temperature run (200-300°C) is a key goal in SOFC research to deal 

with the specified issue. It is promising to accomplish by reducing operation 

temperatures, the decrease of electrolyte thickness will diminish the general 

resistance (Bernay et al., 2003; De Souza, 1997; Feng et al., 2015). 

 

 

The utilization of SOFC and other solid state ionic gadgets in energy 

applications is restricted by their prerequisite for hoisted working temperatures, 

regularly above 800°C. Thin-film layers permit low-temperature operation by 

diminishing the ohmic resistance of the electrolytes. However,  scaling up remains a 

huge test since large area membrane under ~100 nm thick is helpless to mechanical 

failure (Bernay et al., 2003). This research will look for the execution of YSZ 

nanostructure electrolyte for SOFC application that is equipped for working 

temperature below 400 °C to create electric power for the compact application. 

 

 

Such microstructures are unfavorable as they may result in internal leakage in 

the cell leading to decreased open cell potential. Therefore, an undesirable extra 

manufacturing step in the form of post-deposition annealing is often required to 

eliminate pores in such films and solve the issue (Lin et al., 2014). Reports on cell 

tests performed on SOFCs containing magnetron sputtered electrolytes with a 

columnar structure have shown an electrochemical performance comparable to or 

inferior to cells containing tape cast electrolytes. This is not a significant 

improvement as it would have expected from the reduced electrolyte thickness (Aijaz 

et al., 2014). Leaks in the electrolyte due to the columnar morphology are 

responsible for the poor performance. This has been proved by Nedelec et al.(2000) 

because, in contrast, their study has shown deposited electrolytes without visible 

continuous columnar structure has achieved significant improved electrochemical 

performance at low temperatures (Smeacetto et al., 2010) . 
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The latter can be achieved by synthesizing YSZ thin films employing a 

variety of chemical and physical methods (Hidalgo et al., 2011) such as pulsed laser 

ablation (PLD),  chemical vapor deposition (CVD) (Feng, Chen et al., 2015), atomic 

layer deposition (ALD) (Bernay, Ringuedé et al., 2003), spin coating (K. Chen et al., 

2006) and magnetron sputtering (Rezugina et al., 2010; Shaula et al., 2009; 

Sønderby et al., 2015). However, depositing YSZ thin films by physical vapor 

deposition (PVD) techniques for example; magnetron sputtering at relatively low 

synthesis temperatures will cause the formation of denser and columnar 

microstructures. RF magnetron sputtering is the suitable technique for the generation 

of the thin film to form highly dense and packed thin film with high porosity of 

films. 

 

 

Radio frequency magnetron sputtering is a PVD-based technique for thin film 

deposition. Inherent to this technique is a relatively large fraction of ionization of the 

sputtered material with energies up to several 10s of eV that have been shown to 

provide added means for controlling the microstructural evolution during film 

growth (Depla et al., 2016). This has shown to favor the growth of dense films at 

relatively low growth temperatures and to suppress columnar microstructure giving 

rise to globular film morphology (Wang et al., 2013) which are desired in the 

production of thin film electrolytes for SOFC. Films were also synthesized by pulsed 

direct current magnetron sputtering (DCMS), for reference. As previous studies have 

shown that the substrate bias is a crucial parameter in order to obtain dense films 

suitable for SOFC application (Rezugina et al., 2010), the bias voltage has been 

varied between depositions. Figure 1.1 shows the example of SOFC prototype which 

is used by industries for transportation application. 
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Figure 1.1 Example of prototype Solid Oxide Fuel Cell (Salam et al., 2008) 

 

 

 

 

1.2  Problem Statement 

 

 

Presently, SOFCs with high operating temperature in the range of 500°C-

1000°C can incorporate internal fuel reformation by allowing multiple fuel options 

including natural gas. However, the high operating temperature of SOFC is 

disadvantageous in terms of long start-up time as well as mechanical and chemical 

compatibility. To overcome such drawbacks efforts are made to lower the operating 

temperatures of SOFCs below 600
o
C which in turn gave the birth of so called 

intermediate temperature SOFCs (IT-SOFCs). Thus, creation of SOFCs with lower 

operating temperatures and high energy conversion efficiency will be prospective for 

transportation and portable power generation. Furthermore, such IT-SOFCs will 

lower the cost metallic interconnects, reduce the thermal stress, and shorten the start-

up times. To achieve such goal good quality nanostructured YSZ electrolytes with 

lower ohmic losses that originate from the thermally activated ionic transport need to 

be synthesized using accurate yet cost-effective and easy method. 

 

 

Recent research revealed that by reducing the thickness of YSZ thin film 

electrolyte it is possible to reduce the ohmic losses that arise from internal resistance 
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of the electrolyte. Nanostructured thin film of YSZ can enhance the electronic 

conductivity of the thin film electrolyte and thereby the performance of SOFC. 

Currently, YSZ electrolytes are largely manufactured by screen printing or spraying 

techniques followed via subsequent sintering (Chen et al., 2004). Despite their low-

cost with high throughput, these techniques cannot produce dense YSZ electrolytes 

thin film of thickness few μm. This problem can be resolved by depositing dense 

YSZ electrolyte thin film with good electrical properties via RF magnetron sputtering 

technique. Moreover, by adjusting the growth conditions of the YSZ thin film in 

sputtering method, enhanced cell performance can be attained. Optimization of the 

deposition parameters of the RF sputtering method and subsequent systematic 

characterizations of the YSZ film are prerequisite for attaining efficient IT-SOFC. In 

this view, present study deposited YSZ nanostructured thin films using RF sputtering 

method to achieve good quality dense electrolyte useful for SOFC. Such YSZ thin 

films were thoroughly characterized to evaluate their morphology, structural and 

electrical properties under optimum deposition condition.  

 

 

 

 

1.3 Objectives of the Study 

 

 

The primary aim of the study was to investigate the optimum RF parameter in 

deposition of YSZ thin film. This aim was achieved through the following research 

objectives: 

i. To deposit Yttria Stabilized Zirconia (YSZ) nanostructured thin films using 

radio frequency magnetron sputtering method. 

ii. To determine the optimum growth parameters of YSZ nanostructured thin 

films in terms of radio frequency power, substrate temperature and annealing 

temperature. 

iii. To evaluate the structural, morphological and electrical properties of 

deposited YSZ nanostructured thin films. 
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1.4 Scope of the Study 

 

 

This research focused on the deposition of YSZ nanostructure onto an Al2O3 

glass substrate using 99.99% pure YSZ ceramic as a target. The deposition process 

for the thin film by using RF magnetron sputtering method. Deposition of YSZ 

nanostructure with three different parameters; deposition RF power sputtering, 

substrate temperature deposition and post-annealing temperature have been 

conducted. For the deposition power parameter, optimization was focused on 

increasing temperature with three condition ranges from 50watt to 150watt. 

Meanwhile, for the deposition substrate temperature, the optimization were focused 

on 6 different temperature within 28°C to 500°C. For the flow rate of gas pressure, 

the optimization was focus on Argon gas flow with 5mTorr per hour. The post-

annealing temperature were observed at 600°C and 700°C. The annealing 

temperature used were higher than deposition temperature because of no changes 

observed if the annealing temperature same as deposition temperature. 

 

 

The characterization properties of YSZ nanostructure was measured by XRD, 

AFM, FESEM, surface profile and 4 point probe. The XRD was conducted to 

determine the orientation of single crystal or grain, to define the crystal structure and 

to measure the size and shape of small crystalline regions. AFM was used to explore 

the surface topology on YSZ nanostructure, and surface profiler measurement is 

done to measure the thickness of the thin film. The surface morphology and cross-

section of YSZ nanostructure was observed using FESEM. The thickness of every 

sample was measured to study the resistivity in 4 point probe measurement. 

Electrical properties of YSZ nanostructure were assessed by the I-V measurement 

type 4-point probe machine which resulted the conductivity and resistivity data of the 

deposited films. 
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1.5 Significance of the Study 

 

 

This study may help other researchers to study the effect of YSZ 

nanostructure by using RF magnetron sputtering method on electrical, structural and 

topology characteristics when deposited on aluminium oxide (Al2O3) substrate for 

SOFC application. In addition, this study is fundamentally important to explain the 

optimum growth parameter for deposition of YSZ thin film using RF Magnetron 

sputtering in terms of RF power, substrate temperature and annealing temperature. 

For real application in SOFC devices, a major goal is to produce SOFC that can 

operate with working temperature below 400°C. An interesting alternative strategy 

has recently been developed in which reducing the thickness of YSZ nanostructure as 

electrolyte to enhance the conductivity of the thin film.  Hence, this research will 

help to improve understanding, gain new information and identify the changes of 

resistivity, conductivity, crystallographic texture, surface morphology, thickness and 

the porosity of YSZ nanostructure. 

 

 

 

 

1.6 Outline 

 

 

The general background of the study and brief introduction of YSZ 

nanostructure and solid oxide fuel cell are discussed in Chapter 1. This is followed 

by problem statement, objectives, and scope of the study. In Chapter 2, the literature 

review of the solid oxide fuel cell, YSZ nanostructure as an electrolyte of SOFC and 

theory of RF magnetron sputtering are presented. Chapter 3 focused on deposition 

method and characterization technique of YSZ nanostructure by RF magnetron 

sputtering method. Results and analysis on the structural properties, morphology, 

thickness and conductivity of YSZ nanostructure are reported in chapter 4. Chapter 5 

conclusion of the research and provides a suggestion for future work in this study 

area. 
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