Universiti Teknologi Malaysia Institutional Repository

A deep learning AlexNet model for classification of red blood cells in sickle cell anemia

Abdulkarim, Hajara Aliyu and Abdul Razak, Mohd. Azhar and Sudirman, Rubita and Ramli, Norhafizah (2020) A deep learning AlexNet model for classification of red blood cells in sickle cell anemia. IAES International Journal of Artificial Intelligence, 9 (2). pp. 221-228. ISSN 2089-4872

[img]
Preview
PDF
712kB

Official URL: http://dx.doi.org/10.11591/ijai.v9.i2.pp221-228

Abstract

Sickle cell anemia (SCA) is a serious hematological disorder, where affected patients are frequently hospitalized throughout a lifetime and even can cause death. The manual method of detecting and classifying abnormal cells of SCA patient blood film through a microscope is time-consuming, tedious, prone to error, and require a trained hematologist. The affected patient has many cell shapes that show important biomechanical characteristics. Hence, having an effective way of classifying the abnormalities present in the SCA disease will give a better insight into managing the concerned patient's life. This work proposed algorithm in two-phase firstly, automation of red blood cells (RBCs) extraction to identify the RBC region of interest (ROI) from the patient’s blood smear image. Secondly, deep learning AlexNet model is employed to classify and predict the abnormalities presence in SCA patients. The study was performed with (over 9,000 single RBC images) taken from 130 SCA patient each class having 750 cells. To develop a shape factor quantification and general multiscale shape analysis. We reveal that the proposed framework can classify 15 types of RBC shapes including normal in an automated manner with a deep AlexNet transfer learning model. The cell's name classification prediction accuracy, sensitivity, specificity, and precision of 95.92%, 77%, 98.82%, and 90% were achieved, respectively.

Item Type:Article
Uncontrolled Keywords:deep learning AlexNet, red blood cells, sickle cell anemia
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:92681
Deposited By: Yanti Mohd Shah
Deposited On:28 Oct 2021 10:25
Last Modified:28 Oct 2021 10:25

Repository Staff Only: item control page