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Abstract— The classification of cancer is a significant application of the DNA microarray data. Gene selection methods are ordinarily 
used handle the issue of high-dimensionality of microarray data to enable experts to diagnose and classify cancer with high accuracy. 
The penalized logistic regression (PLR) technique is usually used in the dimensionality reduction of the high-dimensional gene 
expression data sets to remove irrelevant and redundant predictors from the binary logistic regression model. One of the 
regularization techniques used to achieve this goal is the least absolute shrinkage and selection operator (Lasso). However, this 
technique has been criticized for being biased in the selection of genes. The adaptive Lasso was usually proposed by assigning an 
initial weight to each gene to address the selection bias. This paper is concerned with adapting PLR to improve its capability in 
classification and gene selection, in the sense of accuracy, by introducing the one-dimensional weighted Mahalanobis distance (1-
DWM) for each gene as an initial weight inside L1-norm. By experiments, this proposed method, denoted by adaptive penalized 
logistic regression (APLR), gives more accurate results compared with other famous methods in this regard.  The proposed method is 
applied to some real high-dimensional gene expression data sets in order to demonstrate its efficiency in terms of classification 
accuracy and selection of gene. Therefore, the proposed method could be utilized in other studies implementing gene selection in the 
area of classification of high dimensional cancer data sets. 
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I. INTRODUCTION 

Recently, new technologies have been developed to deal 
with the rapid growth of statistical data to help researchers 
analyze big data and convert it into useful information. Big 
data might have unnecessary features because most of them 
are irrelevant or redundant. Therefore, the purpose of 
selecting essential features is to choose a small subset of the 
significant features of the original data set. The selection of 
features not only speeds up the learning process but also 
improves the work of the model [1]. By using microarray 
technology, researchers can classify both cancerous and 
normal tissues, depending on gene expression profiles. 
Recently, many studies used gene expression data to 
determine types of cancer and predict clinical outcomes in 
order to diagnose patients with cancer[2]–[4]. 

Microarray data of gene expression has many properties 
that hinder the evolution of these techniques. One of these 
properties is the high-dimensionality of data sets. That is, the 

gene expression data set contains a considerable number of 
genes �, with a small number of observations �. This means 
that the gene expression data set matrix has columns very 
much larger than rows, � > � [5]. Another problem is that 
microarray data usually suffer from a high level of technical 
noise. Therefore, it is very crucial to overcome these two 
problems in order to reasonably improve the accuracy of 
classification associated with microarray data [6].  

In recent years, statisticians have developed many 
approaches for feature selection. These approaches fall into 
three main categories. First, the filter category that involves 
the most popular methods for feature selection, where each 
feature is independently examined regardless of its group 
performance. Second, the wrapper category. It uses various 
algorithms to evaluate the process of selecting feature groups. 
Although the wrapper methods are more efficient in feature 
selection than the filter methods, they are usually 
computationally costly, such as forward feature selection and 
backward feature elimination. Third, the embedded category, 
which combines the advantages of filter and wrapper 

1483



approaches. It constitutes regularization (penalizing) 
methods that can concurrently perform both model selection 
and feature selection [1], [7], [8]. 

Associated with classification in gene expression data is 
the logistic regression. Computationally, the training time of 
applying logistic regression increases as the number of the 
genes in gene expression data sets increases and becomes 
complex to compute [9]–[11]. Logistic regression has some 
limitations. For example, it cannot automatically perform a 
selection of genes, although it outperforms other methods in 
classifying gene expression data [12]. Penalized methods are 
very effective embedded gene selection methods, which is 
connected with many popular classification methods. 
Recently, logistic regression, as a sparse classification 
method, received tremendous attention. It combines the 
logistic regression with a penalty for performing gene 
selection and classification simultaneously. Several logistic 
regression models can be applied with different penalties, 
among these penalties are, L1-norm, which is called the least 
absolute shrinkage and selection operator (Lasso) [13], 
smoothly clipped absolute deviation (SCAD) [14], Elastic 
net [15], and adaptive L1-norm [16]. 

The L1-norm penalty model is one of the most popular 
procedures in the class of sparse methods. One of the 
drawbacks of the L1-norm penalty model is that it equally 
penalizes all genes. For this reason, it inconsistently selects 
genes [14], [16]. To improve the process of gene selection, 
the present study proposes an adaptive logistic regression 
method by employing a certain weight inside the L1-norm to 
classify patients concerning having cancer correctly. The 
used weight in the proposed method is proportional to the 
importance of each gene. This paper experimentally 
compares the proposed method and several other methods 
used in gene selection. The experimental results show that 
the proposed method outperforms the other methods in terms 
of classification accuracy. Besides this introduction, this 
paper is organized as follows. Section 2 is dedicated to the 
description of material and methodology. Section 3 presents 
the results and the experimental study that is intended to 
evaluate the efficiency of APLR compared to Lasso and 
ALasso. Finally, Section 4 concludes this paper. 

II. MATERIALS AND METHOD 

A. Penalized Logistic Regression 

The logistic regression is a statistical classification 
method that is used to predict the value of the response 
variable when it is categorical with only two possible values 
that can be denoted by 0 and 1. The logistic regression works 
very well when the number of predictors is limited; however, 
when dealing with high-dimensional data sets such as gene 
expression data sets, the logistic regression method becomes 
inefficient in the sense that the errors of prediction increase 
as the number of predictors increase, and the computation of 
the predictors coefficients becomes cumbersome. Another 
problem that limits the use of logistic regression is 
overfitting, which happens when the number of predictors is 
by far larger than the number of observed values [17]. A 
famous method that has emerged recently to increase the 
efficiency of the logistic regression and improve its 
capability of classification is by regularization. The 

regularization technique can be done by penalizing the 
predictors and shrinking their coefficients. Three techniques 
are used in this regard: Lasso [13], ridge [18], and elastic net 
[15]. The Lasso algorithm can be used to sparse the high-
dimensional gene expression datasets by shrinking most of 
the predictors' coefficients to zero. Although Lasso can do a 
good job in overcoming the overfitting problem, it is biased 
and lacks the oracle properties. It also does not encourage 
group selection. That is, it chooses only one or just few of 
the highly correlated predictors and shrinks the coefficients 
of the rest of the predictors to zero. Several authors adapted 
Lasso to overcome these problems and improve its efficiency 
in classification and collection. They introduced a new 
technique called ALasso (Adaptive Lasso) [16]. One of the 
ways to adapt Lasso is by introducing weights inside the L1-
norm. In this paper, a new weight inside the L1-norm is 
introduced in the context of ALasso as we discuss in details 
in the next section. 

Logistic regression is used to model a binary classification 
problem. This paper concentrates on a generic binary 
classification problem, where we have a set of data X
representing the observed values of certain predictors. The 
data X can be represented as a n p× − dimensional matrix. 

That is, 1 1 2 2( , ), ( , ),..., ( , )n nX x y x y x y=  where n  is 

the sample size, the p-dimensional vector 

1 2( , ,..., )i i i ipx x x x= represents the values of the p  

expression genes corresponding to the thi  observation of the 

response variable, and ijx represents the value of the 

expression of the thj gene for the thi  observation. iy is 
thi  observation. It takes the value 0 or 1. The n  

observation can be classified into exactly two class. iy  

represents the class of the thi  observation.  In other words, 

0iy =  or 1 according to whether the thi observation 

belongs to the first or second class, respectively. In logistic 
regression, the response variable y has a Bernoulli 

distribution.  The probability of y is equal to 1, given x, 

denoted as ( )xπ , is given by 

( 1| ) ( ) , 1,2,...,
1

j

j

x

i ij j x

e
p y x x j p

e

β

βπ
′
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The penalized logistic regression (PLR) is given by 

1

( , ) { log ( )

          (1 ) log(1 ( ))} ( )

n

i i i
i

i i

PLR y y x

y x g

β π

π λ β
=

= =

+ − − +

l
 (5) 

where ( )g β is the penalty term andλ  is a tuning parameter 

( 0)λ ≥ . It regulates the amount of penalty (strength of 

shrinkage) that predictor variables are exposed to. That is, 
when λ  increases, the magnitude of the penalty term 
increases. The value of the tuning parameter λ  depends on 
the data. Therefore, its value can be determined using a 
cross-validation method [17], which can be implemented 
using the R package glmnet. Before solving the PLR 
maximization problem, it is assumed that the genes are 
standardized so that 

2

1 1 1

1
0, 0,  and 1 ,

n n n

i ij ij
i i i

y x x
n= = =

= = =    

for 1,2,...,j p= , in order to make the intercept 0( )β  

equal to zero. 

B. Lasso Regression  

Lasso is one of the most popular penalties. It was 
introduced by Tibshirani [13] to employ L1–norm penalty to 
the coefficients of predictors. That is; it performs variable 
selection by shrinking the coefficients of some predictors 
exactly to zero. Lasso performs continuous shrinkage and 
variable selection at the same time. To obtain the estimates 
of Lasso, the log-likelihood is maximized when the penalty 
term is given by  

1

( ) | |  
p

j
j

g β β
=

=  (6) 

The equation of the penalized logistic regression using 
Lasso is 

1
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j
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By choosing the appropriate penalty term described in 
(6), the coefficients of some predictors become exactly zero. 
This means that Lasso performs variable selection. 
Therefore, Lasso gives sparse solutions. The maximum 
likelihood solution of Eq. (7) is 

1

1

ˆ arg min { log ( )

           (1 ) log(1 ( ))} | |

n

LASSO i i
i

p

i i j
j

y x

y x

ββ π

π λ β

=

=
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+ − − + 
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In other words, 

1 1

ˆ arg min ( , ) | |
pn

LASSO i j
i j

yββ β λ β
= =

 
= + 

 
 l . (9) 

Lasso can do a good job in selecting genes, but it has 
three deficiencies [9], [19]. The first deficiency is related to 
the number of genes that Lasso selects. In gene expression 

data sets, the number of features,  p , is usually by far larger 
than the number of observations, n , in the sample. 
Unfortunately, Lasso cannot select more genes than the 
number of observations; that is, the number of genes Lasso 
selects is bounded above by n . The second deficiency is 
related to the way the genes work. Naturally, genes work as 
clusters or groups. Each group constitutes highly correlated 
genes. It is expected that Lasso takes this into account when 
selecting genes. That is, it is expected either to select the 
whole group of highly correlated genes (if they really are 
related to the disease) or to leave it all (if they are unrelated). 
Unfortunately, Lasso selects only one or a few members of 
each highly correlated group of genes that are related to the 
disease. Zou and Hastie [15] proposed a regularization 
method (called the elastic net) to overcome the first and 
second deficiencies. The elastic net method employs L1–
norm and L2–norm penalties. The third deficiency of Lasso 
is that it is biased in gene selection. The reason is that it 
employs the same penalty to all gene coefficients. As a result 
of this shortcoming, Lasso lacks the oracle properties (see 
[14]). Concerning the last deficiency of Lasso with respect to 
the lack of the oracle properties, Zou [16] developed a new 
regularization technique called the adaptive Lasso technique, 
where different weights are employed inside the L1–norm 
penalty to penalize different coefficients. In the adaptive 
Lasso, adaptive weights are used for penalizing different 
coefficients in the L1–norm penalty. 

The adaptive Lasso technique was first introduced by Zou 
[16] to correct the Lasso's overestimation behavior by 
replacing the L1-penalty by a re-weighted version [20].  That 
is, Zou amended the L1-penalty by assigning different 
weights to different coefficients. The assigned weights can 
be based on Ridge, Lasso, or other shrinkage techniques.  In 
this paper, the lasso resulting from the first stage is used as 
the initial estimator for the coefficients. The penalized 
logistic regression model using adaptive Lasso (ALasso) is 
defined as 

( )

1

1

ˆ argmin { log ( )

| |
          (1 )log(1 ( ))}   

ˆ| |
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=
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where , 0λ γ ≥   and ˆ initial
jβ is an initial estimate for each 

jβ  estimated using the Lasso technique. Here we set 1γ =
, for simplicity. Eqs. (8)-(10) can be solved by using a 
popular method called "coordinate descent algorithm" [21]. 
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C. The Proposed Method 

The work in this paper is motivated by the fact that 
although the PLR method can be applied to the high-
dimensional data sets using L1-norm penalty, this method 
may lead to the selection of irrelevant and redundant 
predictors (genes), because the L1-norm is inconsistent 
concerning variable selection. In other words, the estimates 
of the PLR using L1-norm penalty might be biased for large 
coefficients because they receive larger penalties [7]. This 
work is also motivated by the fact that in PLR, the genes are 
usually standardized, although the standardization process 
may be unreasonable when the variances of genes are 
essential. 

In order to extend the effect of the individual gene to joint 
effect of multigene Peng et al. [22] used the one-dimensional 
weighted Mahalanobis distance (1-DWM) as the criterion of 
gene effectiveness, that is defined as 

2
1 2

. 2

( )
( ) ,   j j

j
wj

x x
J x

σ
−

=
 

(9) 

where jx
is a column vector, denote the expression level of 

gene j  across samples, and 
2 2 2

1 1 2 2. . ,wj j j j jw wσ σ σ= +  

denotes the weighted variance of gene j , 
2
kjσ

 denotes the 

expression level variance of gene j  in class k , kw
 is the 

prior probability or weight of classk , where k in this paper 

is 2; i.e., we have exactly two classes and 1 2 0.5w w= = . 

Therefore, in order to improve selection of genes and ensure 
high classification accuracy, this paper uses the (1-DWM) of 
Peng et al. for each gene as an initial weight inside L1-norm. 

The 
thj component of the p-dimensional vector of genes is 

given by 

.

1
,   1,2,..., ,

| ( ) |j
j

w j p
J x

= =  (10) 

where .( )jJ x is the weight for every gene j  that is defined 

as equation (11). 
To reduce inconsistency in feature selection, the proposed 

weight in this paper gives the gene with a low value of ratio 
a relatively large amount of weight, while it gives the gene 
with a high value of ratio a small weight. Upon appropriately 
assigning weights to features, the PLR becomes capable of 
accurately selecting related features. The algorithm of 
implementing the APLR method is given in Algorithm. The 
existence of a global maximum point of the APLR solution 
is guaranteed by the fact that the APLR equation is convex. 
The APLR solution can be obtained by coordinate descent 
method. 

 

Algorithm : The Computation of APLR 

Step 1. Split each gene . jx  on the basis of the value of y

into two classes 1 jx  and 2 jx  . 

Step 2. Find mean of 1 jx  and 2 jx  

Step 3. Find variance of 1 jx  and 2 jx  

Step 4. Compute 
2 2 2

1 2(0.5)( ) (0.5)( )wj j jσ σ σ= +  

Step 5. Compute 

2
1 2

. 2

( )
( ) j j

j
wj

x x
J x

σ
−

=  

Step 6. Find   ,  1,2, ,jw j p= …  

Step 7. Define i j iw=x x%  

Step 8. Solve the APLR 
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D. Dataset Description 

The proposed method (APLR) is applied to five binary 
logistic cancer classification data sets in order to evaluate its 
performance and demonstrate its advantages over the other 
competitive methods. The detailed information of these data 
sets is summarized in Table I.  

TABLE I 
THE USED DATASETS 

Dataset Samples Genes Classes 
Colon 62 2000 Tumor / Normal 
Prostate 102 12600 Tumor / Non-tumor 
DLBCL 77 7129 DLBCL / FL 
Breast 168 2905 Benign /Malignant 
Sco 54 22283 Sick/Normal 

 
The first data set is the colon cancer, where the number of 

observations (gene expression levels) is 62 (40 cancerous 
tumors and 22 noncancerous tissues), and the number of 
features is 6500 genes.  The colon cancer data set is obtained 
with the use of Affymetrix oligonucleotide array technology.  
In this data set, only 2000 gene expressions was used, 
according to the highest minimal intensity across the 
samples [23]. The second data set is prostate cancer. It 
contains 12600 genes. The sample contains 52 patients with 
cancerous prostate tumor and 50 other patients with non-
cancerous tumor tissues [24]. The third data set is known as 
the diffuse large B-cell lymphoma (DLBCL), which consists 
of 77 observations for gene expressions, which is divided 
into 58 samples of diffuse large B-cell lymphomas (DLBCL) 
and 19 samples of follicular lymphoma (FL). The number of 
gene expression values in each sample is 7,129 [25].  The 
fourth data set is breast cancer (Breast) that includes the 
microarray data from 189 invasive breast carcinomas, and 
three published gene expression datasets from breast 
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carcinomas [26]. The fifth data set is known as the Sarcoma 
data (Sco). The Sarcoma data set consists of expression 
profiles of 22,283 human genes from 54 patients, where 15 
are normal, and 39 are sick with the disease [26]. 

E. Performance Evaluation  

In this subsection, the predictive performance of the 
proposed method is evaluated and then compared with other 
sparse methods; three performance metrics are measured for 
both the training and testing datasets. These metrics include 
classification accuracy (CA), sensitivity (SEN), and 
specificity (SPE). 

 
 

These criteria are defined as 

100%
TP TN

CA
TP FP FN TN

+= ×
+ + +

 (12) 

100%S
TP

TP FN
EN = ×

+
 (13) 

100%
TN

SPE
FP TN

= ×
+

 (14) 

where TP is the number of true positive, FP is the 
number of false positive, TN is the number of true 

negative, and FN is the number of false negative. The 
higher the values of the used evaluation criteria, the better 
the classification performance is.  

III.  RESULTS AND DISCUSSION  

A. Experimental Setting 

The proposed method (APLR) was shown to be effective 
through comparative experiments with three other methods, 
namely Lasso, SCAD, and ALasso. These methods along 
with APLogiR are applied to the data sets described above. 
We proceed as follows. To perform cross-validation (CV), 
each data set is randomly split into two partitions, namely 
the training set and the testing set. The training set consists 
of 70% of the data and the testing set consists of the rest 
30% of the data. For examining the effect of the data 
partitions, the above methods are evaluated along with the 
proposed method, for their performance in classification, 
using 10-fold CV. The result is the average of 100 
replications of the experiment. The value of the tuning 

parameter λ  for each method was allowed a value in the 
interval [0, 100]. For the SCAD penalty, the constant a  was 
set to 3.7 as Fan and Li [14] suggest it. All the replications 
were implemented in R using glmnet. 

B. Experimental Results 

Table II below shows the average of the following 
numerical measures for the five high-dimensional gene 
expression microarray data sets used in this study (colon, 
prostate, DLBCL, breast, and Sarcoma): the number of 
genes selected by each method, the accuracy of classification 
(%) (CA), the sensitivity (%) (SEN), and the specificity (%) 
(SPE) in both the training and testing data sets. To compare 
the different methods, the performance of Lasso, smoothly 
clipped absolute deviation (SCAD), and Adaptive Lasso 
(ALasso) have been also evaluated for the five data sets. 

 

TABLE II 
 THE AVERAGED OF THE EVALUATION  METRICS  OVER 100 TIMES FOR THE FIVE DATA SETS 

   Training set Testing set 
Dataset Methods Genes % CA % SEN % SPE % CA % SEN % SPE 
Colon Lasso 14 94.14 92.20 94.64 79.53 78.43 76.92 
 SCAD 14 94.81 92.51 95.51 79.51 80.13 67.90 
 ALasso 14 94.83 93.22 95.22 78.40 81.41 81.91 
 Proposed 12 96.12 95.85 96.83 82.91 82.42 83.33 

Prostate Lasso 29 99.82 99.63 100.00 91.14 88.34 91.74 
 SCAD 28 99.82 99.71 100.00 60.13 45.63 72.54 
 ALasso 28 99.91 99.72 100.00 82.11 56.41 91.91 
 Proposed 24 100.00 100.00 100.00 93.53 91.82 94.43 

DLBCL Lasso 24 99.80 99.60 99.60 88.33 83.44 91.52 
 SCAD 24 99.81 100.00 99.10 74.02 52.23 92.32 
 ALasso 24 99.93 100.00 99.81 84.41 59.02 94.33 
 Proposed 22 100.00 100.00 100.00 91.32 85.72 95.22 

Breast Lasso 30 93.80 97.50 89.91 71.34 67.12 75.44 
 SCAD 31 93.82 97.62 90.01 64.11 50.03 75.23 
 ALasso 31 93.90 97.71 90.03 68.53 58.02  75.42 
 Proposed 27 95.61 98.83 92.42 75.44 72.74  81.42 

Sco Lasso 20 99.71 100.00 99.52 88.50 87.73 89.32 
 SCAD 20 99.74 100.00 99.31 75.51 51.04 91.54 

 ALasso 20 99.64 100.00 99.24 84.62 67.24 92.82 
 Proposed 15 100.00 100.00 100.00 93.34 88.23 97.43 
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Our first observation is that our proposed method, APLR, 

has the lowest average number of selected genes among all 
other methods. For instance, in prostate cancer, the number 
of genes selected by APLR is 24 genes compared to 29, 28, 
and 28 genes selected by Lasso, SCAD, and ALasso, 
respectively. On the other hand, we found that Lasso gives 
the highest number of selected genes. 

We also observe that in each of the data sets used in this 
study, the average classification accuracy, sensitivity, and 
specificity in both the training and testing sets of APLR are 
slightly larger than that of Lasso, SCAD, and ALasso. For 
example, in breast data, the classification accuracy of APLR 
in the training set is approximately (96%), which is higher 
than (94%), nearly, for Lasso, SCAD, and ALasso. 
Moreover, in colon data, the sensitivity of APLR is 95.85%, 
which is greater than that of Lasso, SCAD and ALasso, 
92.2%, 92.5%, and 93.2%, respectively. The same 
observation can be concluded in the testing sets. 

Another important note is that the specificity of APLR is 
much better than that of Lasso, SCAD, and ALasso in all the 
datasets. For the colon dataset, the specificity of APLR is 
better than that of ALasso and Lasso. For example, in 
DLBCL, the specificity of APLR in the testing set is 
95.22%, which is greater than 94.33% for ALasso, 92.32% 
for SCAD, and 91.52% for Lasso. Therefore, in terms of the 
specificity in training sets in all data sets, either APLR is 
better than the other methods or almost the same. Overall, it 
is clear that the selection and classification performance of 
our proposed method APLR is the best compared to Lasso, 
SCAD, and Alasso.  This asserts that our proposed method 
takes the weight of each gene into consideration during the 
selection and classification process. 

IV.  CONCLUSIONS 

Accuracy of prediction is a desired goal of classification 
methods regarding high-dimensional microarray gene 
expressions data sets. The accuracy increases as the number 
of selected features (genes) decrease. This paper proposes an 
effective feature selection method, APLR, that 
simultaneously increases accuracy and decreases the number 
of selected features.  It has been experimentally shown in 
this paper that the proposed method outperforms the other 
competitive methods in terms of accuracy, namely Lasso, 
SCAD, and ALasso. The proposed method, which was 
implemented with R, was successfully tested on five 
different publicly-known data sets. The results of the 
experiments assert that APLR is an efficient method of 
feature selection and classifications. APLR also can be a 
starting point for developing other regularizations and 
feature selection methods. 
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