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ABSTRACT 

 

 

 

 

 The uses of water in subcritical conditions have several drawbacks, which 

include safety features, increase of production costs and possible degradation of 

bioactive compounds due to high operating conditions. To overcome these problems, 

sonic energy and entrainer were used as external interventions in decreasing the 

dielectric constant of water at milder operating conditions. The extraction 

efficiencies were compared and related to the solubility curve of ginger bioactive 

compounds in hot water, which was calculated using conductor-like screening model 

for real solvents (COSMO-RS). A sonic-assisted water extraction (SAWE) prototype 

with 1.5 liter capacity was designed and fabricated using a high frequency sonication 

probe (800kHz, Shinka Industry Co., Japan). The effect of low (28 kHz) and high 

(800 kHz) frequencies of sonication in the extraction of four major ginger bioactive 

compounds (6-, 8-, 10-gingerol, and 6-shogaol) were compared. Six parameters were 

studied, which were mean particle size (MPS, mm), time of extraction (15 to 60 

minutes), applied power (40 to 80 Watt), sample to solvent ratio (w/v), temperature 

of extraction (25 to 45 
o
C), and the percentage of entrainer (5 to 15 %, v/v). The 

optimum conditions for the high frequency SAWE prototype were MPS 0.89-

1.77mm, 45 minutes, 40W applied power, 1:30 (w/v) and 45 minutes. The 

concentration and recovery of 6-gingerol from the high frequency of the SAWE 

prototype was 2.69 times higher than the low frequency of SAWE at the optimum 

conditions. The performance of high frequency SAWE was improved with a pump 

around process with distilled water (13.0681±0.0210mg/g), which was slightly 

higher than with 10% ethanol as the solvent in the batch system 

(12.9733±0.3186mg/g) for 6-gingerol extract. It was found that milder operating 

conditions can be achieved using high frequency SAWE compared to subcritical 

water extraction (135- 200
o
C, 0.1 MPa). 
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ABSTRAK 

 

 

 

 

 Penggunaan air dalam keadaan subgenting menyebabkan beberapa isu yang 

melibatkan hal-hal keselamatan, kenaikan kos pengeluaran, dan degradasi sebatian 

bioaktif yang disebabkan oleh keadaan operasi yang tinggi. Oleh itu, tenaga sonik 

dan pelarut organik digunakan sebagai intervensi luar untuk menurunkan nilai 

pemalar dielektrik air dalam keadaan kendalian yang lebih sederhana. Kecekapan 

pengekstrakan telah dibandingkan dan dikaitkan dengan lengkung kelarutan sebatian 

bioaktif halia dengan menggunakan model saringan seperti konduktor untuk pelarut 

sebenar (COSMO-RS). Prototaip pengekstrakan air yang dibantu oleh tenaga sonik 

(SAWE) dengan kapasiti 1.5 liter telah direka dan dicipta dengan menggunakan 

tenaga sonik frekuensi tinggi. Kesan frekuensi rendah (28 kHz) dan frekuensi tinggi 

(800 kHz) tenaga sonik terhadap pengekstrakan empat sebatian bioaktif halia 

bioaktif yang utama (6-, 8-, 10-gingerol, dan 6-shogaol) telah dibandingkan. Enam 

parameter yang dikaji ialah saiz zarah purata (MPS, mm), masa pengekstrakan (15 

hingga 60 minit), kuasa dikenakan (40 hingga 80 Watt), nisbah sampel kepada 

pelarut (w/v), suhu pengekstrakan (25 hingga 45°C), dan peratusan pelarut organik 

(5 hingga 15%, v/v). Keadaan optimum untuk frekuensi tinggi prototaip SAWE ialah 

MPS 0.89 - 1.77 mm, 45 minit, 40 Watt kuasa dikenakan, 1:30 (w/v), dan suhu 

45°C.  Kepekatan dan pemulihan 6-gingerol daripada frekuensi tinggi prototaip 

SAWE ialah 2.69 kali ganda lebih tinggi daripada frekuensi rendah SAWE pada 

keadaan optimum. Prestasi frekuensi tinggi SAWE dipertingkatkan dengan 

menggunakan proses pam kitar dengan air suling (13.0681 ± 0.0210 mg/g), iaitu 

lebih tinggi berbanding 10% etanol sebagai pelarut dalam sistem kelompok (12.9733 

± 0.3186 mg/g) untuk ekstrak 6-gingerol. Didapati bahawa keadaan kendalian yang 

lebih sederhana boleh dicapai dengan menggunakan frekuensi tinggi SAWE 

berbanding pengekstrakan air subgenting (135- 200
o
C, 0.1 MPa). 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Recently, with the global increase in environmental awareness and 

intensifying health and safety consciousness in society, scientists and engineers are 

looking for alternative environmentally friendly processes (Chemat et al., 2015).  

This includes replacing traditional toxic solvents in the extraction process, such as 

hexane or methanol.  Solvents with a high level of toxicity are not recommended in 

food related industries, as the residue will have a long-term effect on users.  When 

using these kinds of solvents, disposal as well as workers safety requirements are the 

major issue and concern.  Due to these problems, the uses of environmentally 

friendly methods which use green solvents such as pressurised hot water extraction 

and supercritical fluid extraction have acquired attention where functional bioactives 

related extracts are concerned.  Pressurised hot water extraction uses water as the 

solvent while supercritical fluid extractions commonly use carbon dioxide at critical 

conditions (31.3
 o

C and 7.28MPa).  The utilization of those green technology and 

environmental friendly solvents are intended to supplant the toxic solvents used in 

the conventional extraction process.  
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The “Green Era” of chemistry, especially solvents, started almost 19 years 

ago (Kislik, 2012).  As a result, four types of green solvent have been developed, 

which are superheated water, supercritical fluids, ionic liquids and renewable 

organics.  Those solvents have their advantages and disadvantages.  For instance, 

renewable organics can reduce the toxicity and environmental risks but it still 

possesses flammability and low transparency in some wavelength ranges.  As for 

ionic liquid, even if it used the low temperature melting salt, low vapour pressure and 

varied polarity as a function of cations and anions, it still caused the toxicity from 

some anions or cations and green synthesis is not always possible.  The advantages 

of supercritical fluids are that it has the average properties between gas and liquids, 

for instance, the polarity of supercritical carbon dioxide (SCCO2) is low and it also 

has easy pre-concentration.  Meanwhile, the disadvantages of supercritical fluids are 

the equipment used is expensive and need careful control of temperature and 

pressure.  The benefits of superheated water include the polarity are modifiable with 

temperature and pressure, environmental friendly and green solvent, cheaper 

alternative with no toxicity.  However, the drawbacks of superheated water are that it 

uses high temperature and pressure, which causes additional expended energy, and 

also precipitation after cooling problem (Kislik, 2012). 

 

 

Out of this four solvents, water is the most abundant, safe, cheap and 

environmentally friendly pure solvent. Because of this, water seems to be of crucial 

importance for further development of the chemistry of subcritical and supercritical 

fluids (Galkin and Lunin, 2005).  Water based extraction at high temperature and 

pressure is gaining popularity for its use as a solvent. Subcritical water extraction, 

hot compressed water extraction, pressurised liquid extraction or accelerated solvent 

extraction using water are the other terms of pressurised hot water extraction (Plaza 

and Turner, 2015; Mukhopadhyay and Panja, 2010).  Among these terms, subcritical 

water is most commonly used and preferred (Kislik, 2012).  Subcritical water 

encompasses wider operating conditions compared to hot compressed water.  

Subcritical water is liquid water below its critical point 374 
o
C and 22.1 MPa at all 

pressure conditions and may operate below its normal boiling point of 100 
o
C and 

atmospheric pressure, 0.1MPa (Morad et al., 2011).  While hot compressed water 

usually used below its boiling point of 100 
o
C (Sarip et al., 2014). 
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 The ability of subcritical water extraction in the selective extraction of 

different ginger bioactive compounds at different temperature was proven.  Among 

the bioactive compounds in the ginger oleoresin extracted, 6-gingerol was dominant 

at 135
o
C, while 6-shogaol and 10-gingerol appeared significantly at 165

o
C and 

200
o
C, respectively (Sarip, 2012).  This shows that the properties of water has high 

potential to be discovered, for example, the dielectric constant of water since it has a 

wide range of polarity at different temperatures and pressures.  The equilibrium and 

transport properties, such as solubility and diffusion coefficient, are very useful for 

process design (Higashi et al., 2001).  In order to establish the feasibility of an 

extraction, the solubility of a substance is a fundamental property (Carr et al., 2011). 

 

 

Milder operating conditions such as ultrasonic assisted extraction (UAE) and 

usage of water as a solvent in the herbal extraction are the focus of this study in order 

to meet the green technology requirement.  Ultrasound-assisted extraction or 

ultrasonic extraction has been extensively explored in the last two decades as an 

efficient extraction method in the food and pharmaceutical industries, as indicated by 

the exponential increase in papers published in this area (Esclapez et al., 2011).  The 

sonication of ultrasound energy creates cavitation, which can accelerate and enhance 

the mass transfer process in the extraction at low temperature and pressure to 

produce high quality food extracts economically.  

 

 

 

 

1.2 Problem Statement  

 

 

Nowadays, consumer interest in functional foods that include nutrients to 

help promote health and prevent disease has increased.  Owing to this situation, it is 

very useful and important to have methods of processing food that can preserve the 

nutritional, sensorial quality and bioactivity of their constituents.  Chemical and 

physical changes of some nutrients, which may impair the organoleptic properties 

and reduce the content or bioavailability, may increase during the heat processing, 



4 

 

particularly under severe conditions.  Apart from reducing the heat or temperature of 

the process, there are also requirements to reduce the use of toxic solvents that will 

affect human safety and environment in extraction. 

 

 

Although subcritical water extraction only used water as the solvent, there are 

some drawbacks especially the use of high pressure and temperature conditions 

during the extraction process.  These conditions not only require higher investment 

cost in the pressure vessels but also additional heating cost is needed during the 

process (Filly et. al., 2016).  Moreover, temperature sensitive compounds would be 

degraded at high temperatures (Sarip, 2012; Soria and Villamiel, 2010).  The 

possibility is therefore manipulating water properties, such that it can mimic other 

solvents.  The use of external interventions, such as sonic energy effect and entrainer 

can be used to achieve the target properties that will influence the extraction 

efficiency of water, namely, the dielectric constant.  The outcome of the findings 

makes water very attractive as a solvent or for reducing the use of toxic solvents, 

and, furthermore, the application can be easily extended for other uses.  This 

technology will not only use lower temperature and normal atmospheric pressure but 

can also be conducted more safely. 

 

 

UAE is environmentally friendly, safer and has been proven in the lab-scale 

as well in the industrial applications for pharmaceutical products (Farooq, 2012).  It 

is a big challenge in developing the green technologies by using water as a solvent 

and ultrasonic energy as the external intervention in manipulating the properties of 

water to mimic the organic solvents.  However, to our best knowledge, there are no 

detailed studies reported on the effect of sonication to the solvent properties.  

Therefore, the effect of sonication to the water property especially dielectric constant 

of water is important to study.  

 

 

The main objective of this study is to manipulate the properties of water and 

study the efficiency of extraction using sonic energy and entrainer.  The main 

property of water that affects the extraction process and which is considered in this 
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study is dielectric constant and it relates to the solubility for extraction efficiency.  

The outcome makes the use of water as a solvent appealing as it simultaneously 

reduces the use of toxic solvents, and, furthermore, the application can be easily 

extended for other fields of usage.  The effectiveness of using sonic energy in water 

as a solvent was demonstrated through the extraction of ginger oleoresin.  It covers 

the fundamental studies on sonic-assisted extraction mechanisms including the 

kinetics, mass transfer, thermodynamics, sonochemistry and selectivity. 

 

 

 

 

1.3 Research Objectives 

 

 

There are four objectives identified in this study:-  

 

 

1. To design and fabricate high frequency sonic assisted water extractor 

(SAWE) prototype. 

2. To conduct and compare sonic assisted ginger compounds extraction 

using water at low and high frequencies. 

3. To analyse ginger bioactive compounds extracted using High 

Performance Liquid Chromatography (HPLC) and compare the 

efficiencies of both frequencies. 

4. To determine the relationship of extraction efficiency between 

experimental methods of high frequency of Sonic Assisted Water 

Extractor (SAWE) prototype with the benchmark of solubility 

prediction using conductor-like screening model for real solvents 

(COSMO-RS) calculations. 
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1.4 Scope of the Study 

 

 

Ginger was used as the reference of herbal extraction using the sonic assisted 

water extractor (SAWE) prototype since extensive studies have been conducted on 

ginger extraction regarding the extraction methods, applications and the 

physicochemical properties.  This study was done in Iwai Lab, Department of 

Chemical Engineering, Kyushu University, Japan and SHIZEN i-kohza (formerly 

known as CLEAR i-kohza), Malaysia-Japan International Institute of Technology 

(MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur.  The study done in 

Iwai lab was focused on the solubility prediction of ginger bioactive compounds in 

hot water (binary system) and with entrainer (ternary system).  The prediction was 

done using conductor-like screening model for real solvents (COSMO-RS) 

calculations during the three months attachment in Iwai Lab. 

 

 

In the meantime, the lab scale of Sonic Assisted Water Extractor (SAWE) 

was designed and fabricated in Shizen i-kohza,  UTM KL using high frequency (800 

kHz) of ultrasonic probe.  The performance of high frequency SAWE was compared 

to low frequency (28kHz) of SAWE using ultrasonic bath.  The parameters that 

affected the sonic assisted water extraction (SAWE) for both low and high 

frequencies include mean particle size (MPS), time of extraction, power of ultrasonic 

generator, the ratio of sample to solvent (w/v), the temperature of extraction (T) and 

the percentage of entrainer (v/v), which were then analysed and compared.  

 

 

Four main ginger bioactive compounds were detected which are 6-gingerol, 

8-gingerol, 10-gingerol and 6-shogaol.  The analysis of ginger bioactive compounds 

concentration was done using the High Performance Liquid Chromatography 

(HPLC).  While the physical properties such as the structure of the ginger samples 

were analysed using Scanning Electron Microscopy (SEM).  
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This research covers the fundamental study to explain the effects of external 

interventions, which are sonic energy and entrainer on the changes of dielectric 

constant of water.  The extraction efficiency was compared through the graph of 

solubility prediction and experimental data from different methods of extraction 

especially ethanol extraction, low frequency of SAWE and high frequency of SAWE.  

The discussion was done in order to find out the effect of sonic energy in the 

solvation and mechanism of extraction and compared the effect of low and high 

frequencies.  This covers the use of sonic energy in escalating the process, the ability 

to force component or active compound out from matrix (sample) and total energy 

required penetrating sample into the core and passing through.  It also compared the 

effects of both low and high frequencies of SAWE.  The findings of this study would 

contribute to the new application of high frequency SAWE in herbal extraction as 

well as other separation of other thermo-labile compounds. 

 

 

 

 

1.5  Research Questions 

 

 

The demand for green solvent and application of sonic energy in mild 

conditions and environmental friendly process, which includes time, energy and cost 

reduction, has raised some research questions:- 

 

1. How do process parameters give effects to the water properties? 

2. What is the important property affected in establishing the feasibility 

of extraction process and how does the interaction and solute 

polarization plays their roles in the process? 

3. How much is the difference of extraction efficiency by using water as 

a solvent with and without ultrasonic intervention? 

4. How can sonication change the polarity of water as the solvent at 

lower temperature and ambient pressure condition? 
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5. How does sonic energy works in increasing the yield along with 

shorter time of extraction process?   

6. What are the potential advantages of using high frequency of SAWE 

in ginger bioactive compounds extraction compared to low 

frequency? 

 

 

 

 

1.6 Structure of Thesis 

 

 

This thesis is structured into five chapters. Chapter 1 is the introduction of the 

thesis, which covers the problem statement, research objectives, scope of study, 

research questions, and the expected findings.  Then, Chapter 2 is the literature 

review on the current extraction techniques, water as the green solvent extraction, 

ginger bioactive compounds, the extraction mechanism of sonic assisted water 

extraction (SAWE), the different range of frequencies and their application, and the 

comparison of low and high frequencies of SAWE. Chapter 3 presents the prediction 

of solubility, experimental procedures and the analysis done in this study. Next, 

Chapter 4 discusses the results obtained from both prediction and experimental 

studies and compared the effect of both low and high frequencies of SAWE. The 

effect of sonication to the polarity of water was also observed. Finally, Chapter 5 

concludes the findings and contribution of this thesis as well as proposes the 

recommendations or improvements of this study. 
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1.7 The Significance of the Study 

 

 

The important finding of this study is the manipulation of water property; 

especially the dielectric constants of water at lower temperature and ambient pressure 

which was done using sonication.  Although the changes of dielectric constant of 

water were not really significant, it shows that there were slight changes or decrease 

with sonication and entrainer.  This means that the interaction between water 

molecules was disturbed and the polarity of water as the solvents decreased to mimic 

the non-polar solvents.  This is important since water under different conditions can 

mimic the properties of various solvents, which have been proven through 

pressurised hot water extraction or subcritical water extraction.  The fundamental 

study on the mechanisms of sonic energy in changing the properties of water in the 

ginger oleoresin extraction is important in order to relate the theory to the real 

application.  This study also discusses the solvation phenomena that occurred during 

the extraction process in order to enhance the extraction efficiency. 

 

 

Since reference to high frequency of ultrasonic assisted extraction (UAE) is 

still scarce, this study has pushed the boundary of knowledge by discussing the 

effects of high frequency in herbal and water based extraction.  The prediction of 

solubility for ginger bioactive compounds in hot water for the binary and ternary 

systems with ethanol as the entrainer was also the commencement of this herbal and 

green extraction field.  Apart from these significances of this study to the body of 

knowledge, the applications of this manipulated water property was implemented in 

1.5 litre lab scale Sonic Assisted Water Extractor (SAWE), which was designed and 

fabricated through this study.  The advantages of using sonic assisted extraction have 

been reported as being a milder process, as well as reducing the cost and time of 

extraction while still using an organic solvent.  

 

 

 Thus, the uses of water as the solvent and sonic assisted extraction would 

encourage the development of green technology since it is operated at milder 

temperature and ambient pressure.  Knowing the properties of water that can be 
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manipulated to mimic common solvents with sonic energy intervention will help to 

reduce the use of toxic solvents in the extraction at the lab scale as well as in 

industry, and, indirectly, reduce the cost, energy and time required, while at the same 

time providing an environmentally friendly process. 
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APPENDIX B 

 

Quantitative Analytical Method using High Performance Liquid Chromatogram 

(HPLC) 

(a) The preparation of  ginger bioactive compounds standard (6-gingerol, 6-

shigaol, 8-gingerol and 10-gingerol 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Standards solution,M1 (500µg/mL) was prepared by diluted 5 mg of standard 

(Chromadex, USA) with 1 mL of methanol (Merck, USA) 

Five level of concentrations were prepared by using formula M1V1=M2V2  

M1 = 500µg/mL, V2=1000µL 

M2=12µg/mL 

V1=24µL 

M2=25µg/mL 

V1=50µL 

M2=50µg/mL 

V1=100µL 

M2=100 µg/mL 

V1=200µL 

M2=200µg/mL 

V1=400µL 

M2=400µg/mL 

V1=800µL 

Methanol (HPLC Grade) was filled up until final volume was 1mL in the 

volumetric flask 

The solutions in volumetric flask was 

shake 

The solutions was transferred to HPLC 

vial 

The ginger standards were ready for 10µL 

HPLC injection 
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(b) Preparation of mobile phase. 

 

There are two mobile phases prepared for HPLC analysis which were 50% (v/v) 

methanol and 100% (v/v) acetonitrile, both are HPLC grade. After mixed, both 

mobile phases were filtered through 0.22µm nylon membrane filter with vacuum 

pump. Then, both mobile phases were degassing using low frequency of sonication 

for 15 minutes to make sure there were no gas entrapped in the liquid. 

 

 

(c) The standard chromatogram of 6-gingerol, 6-shogaol, 8-gingerol and 10-

gingerol at different concentration. 

 

 

 

12 µg/mL 

25 µg/mL 

50 µg/mL 

100 µg/mL 

200 µg/mL 

400 µg/mL 
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(d) HPLC results and calibration curves 

 

(i) 6-gingerol 

 

 

 

(ii) 8-gingerol 
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(iii) 6-shogaol 

 

 

y = 1903.3x 
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(iv) 10-gingerol 

 

 

y = 2472.9x 
R² = 0.9964 
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It is observed that r
2 

for all four ginger bioactive compounds were more than 0.9800. 

Those graphs were considered a good linear correlation since r2>0.960. Based on the 

equation obtained from calibration curve, the ginger bioactive compounds 

concentration for different ginger extracts were calculated as equations below: 

 

          (1) 

y = peak area, x = ginger bioactive concentrations 

(i) 6-gingerol ,      
         

    
    (2) 

 

(ii) 8-gingerol ,      
         

      
   (3) 

 

(iii) 6-shogaol ,      
         

      
  (4) 

 

(iv) 10-gingerol ,       
         

      
  (5) 

 

 

 

 

(e) The calculation  concentration of 6-gingerol, 6-shogaol, 8-gingerol and 10-

ginerol 

 

Ethanol Extraction 

Based on the HPLC result below, the concentration of ginger bioactive 

compounds was calculated as follows:- 
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where V = volume of solvent, DF = dilution factor, W= weight of sample 

For example 
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HPLC Results for ethanol extraction 
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APPENDIX C 

 

Significant test was done using one way ANOVA analysis from Excel worksheet. 

From the data on the effect of entrainer in high frequency of SAWE, the result of 

ANOVA single factor was as follows: 

Anova: Single Factor 
     

       SUMMARY 
      Groups Count Sum Average Variance 

  0 3 27573.88 9191.295 28478149 
  5 3 30794.02 10264.67 32308239 
  10 3 38920.11 12973.37 28104591 
  15 3 58200.6 19400.2 1.23E+08 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 1.89E+08 3 62944251 1.186067 0.374527 4.066181 

Within Groups 4.25E+08 8 53069713 
   

       Total 6.13E+08 11         

       Groups were represented the range of the parameters studied, which for this case was 

the percentage of ethanol as the entrainer. 

Count was represented how many trials were done, and for this case the experiment 

was done in triplicate. 

Sum was the total concentration and average was the mean value of the 

concentration. 

SS is sum of the square, where  

SS between groups(B):   

   

 

SS within groups (W): 

 

 

SS total groups (T): 

 

 
df is degree of freedom 

 

MS is mean square and is defined as 
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while 

 

MST is the variance for the total sample. MSW is the sum of the group sample 

variances. MSB is the variance for the “between sample” 

F is the value of F-Test 

P is the significant value, thus P=0.37 > 0.05, the effect of entrainer was not 

significant. 
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APPENDIX D 

 

(a) The calculation of  extraction yield was as follows: 

 

Yield       
   f -  b 

 s
               

where; 

Wf = weight of the round bottom flask after purification process (g) = 265.34 g 

Wb= weight of the round bottom flask before purification process (g) = 267.04 g 

Ws= weight of the sample matrix (g) = 20g 

Thus,  

Yield       
                   g

  g
       

(b) Yield percentage was 

 

Yield     Yield       x           

 

(c) Recovery 

             
                        

  
  

                                     
  
                          

        

 

For example, the recovery of 6-gingerol for third runs of 10% of entrainer using high 

frequency of SAWE was calculated as follows: 

               
            

  
 

        
  
 

               

 

(d) Mean Particle Size, MPS calculation 
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APPENDIX E 

 

Mass balance calculation, total mass in = total mass out 

 

The mass of solvent, m   ρV 

 

Total mass in: 

density 

g/mL 

Different 

conditions 

  

before extract in 

weight of 

ginger (g) 

volume of 

solvent 

(mL)   

1.0000 1:10 70.0000 700.0000 770.0000 

1.0000 1:20 35.0000 700.0000 735.0000 

1.0000 1:30 23.3300 700.0000 723.3300 

1.0000 1:50 14.0000 700.0000 714.0000 

1.0000 45 
o
C 23.3300 700.0000 723.3300 

1.0000 55 
o
C 23.3300 700.0000 723.3300 

1.0000 recycle DW i 26.6700 800.0000 826.6700 

1.0000 recycle DW ii 26.6700 800.0000 826.6700 

0.9769 

recycle 10% 

EtOH i 26.6700 781.4800 808.1500 

0.9769 

recycle 10% 

EtOH ii 26.6700 781.4800 808.1500 

0.9850 5% EtOH 23.3300 689.5070 712.8370 

0.9769 10% EtOH 23.3300 683.7950 707.1250 

0.9691 15% EtOH 23.3300 678.3770 701.7070 

0.9769 5% EtOH 23.3300 683.7950 707.1250 

0.9850 10% EtOH 23.3300 689.5070 712.8370 

0.9691 15% EtOH 23.3300 678.3770 701.7070 

1.0000 800 mL 26.6700 800.0000 826.6700 

1.0000 900 mL 30.0000 900.0000 930.0000 

1.0000 1000 mL 33.3300 1000.0000 1033.3300 

1.0000 800 mL 26.6700 800.0000 826.6700 

1.0000 900 mL 30.0000 900.0000 930.0000 

1.0000 1000 mL 33.3300 1000.0000 1033.3300 

 

 

 

 



204 
 

Total mass out: 

after extract out loss % of loss 

weight of ginger 

(g) 

volume of solvent 

(mL)       

238.2400 500 738.2400 31.7600 4.1247 

135.3400 555 690.3400 44.6600 6.0762 

92.4500 595 687.4500 35.8800 4.9604 

60.4500 600 660.4500 53.5500 7.5000 

91.3800 590 681.3800 41.9500 5.7996 

99.4800 580 679.4800 43.8500 6.0622 

120.8000 690 810.8000 15.8700 1.9198 

121.5500 700 821.5500 5.1200 0.6194 

106.7800 680 786.7800 21.3700 2.6443 

101.5500 650 751.5500 56.6000 7.0037 

95.8500 565 660.8500 51.9870 7.2930 

92.0700 610 702.0700 5.0550 0.7149 

92.2700 595 687.2700 14.4370 2.0574 

98.6900 583 681.6900 25.4350 3.5970 

97.6000 593 690.6000 22.2370 3.1195 

87.8100 529 616.8100 84.8970 12.0986 

107.7500 695 802.7500 23.9200 2.8935 

122.7000 735 857.7000 72.3000 7.7742 

138.2900 830 968.2900 65.0400 6.2942 

117.7900 647 764.7900 61.8800 7.4855 

127.9100 741 868.9100 61.0900 6.5688 

137.8300 765 902.8300 130.5000 12.6291 

   

everage 5.419808 

 

                         
                                

             
       

 

                             
                        

  
  

 

                                      

AA   

∑(
|xi  xavg|
xi

)

n
        

Thus, the average percentage of loss = 5.4198±2.5043% 
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APPENDIX F 

 

Example of Temperature Profile of High Frequency Sonic Assisted Water Extractor 

(SAWE) Vessel 

Pump around process of ginger extraction using 100% distilled water. 

Part 1: 

 

Part 2: 

 

Part 3: 
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Part 4: 

 


