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ABSTRACT 

Computational process design, optimization, growth, characterization and 

computational analysis of zinc oxide (ZnO) nanostructures grown on graphene using 

zinc acetylacetonate (Zn(acac)2) in the presence of hydrogen by ultrasonic spray 

pyrolysis were performed systematically. The dissociation of Zn ions from vapour-

phase Zn(acac)2 and its adsorption onto graphene oxide were studied using quantum 

mechanics approach involving the use of Density Functional Theory (DFT). The 

reaction energies were calculated, and the proposed reaction mechanism was well 

supported by a simulation of infrared properties. Next, Response Surface 

Methodology (RSM) was used to model and optimize the pyrolysis parameters by 

evaluating the nanostructure density, size and shape factor. The evolution of ZnO 

structures was well explained confirming that RSM is a reliable tool for the 

modelling and optimization of the pyrolysis parameters and prediction of 

nanostructure sizes and shapes. Finally, a computational analysis of the measured 

optical and charge transport properties of the grown nanostructures, i.e. Nanosphere 

Clusters (NSCs), Nanorods (NRs) and Nanowires (NWs) were developed. The 

calculated absorbance spectra based on the time-dependent DFT showed very close 

similarity with the measured behaviours. The atomic models and energy level 

diagrams were developed and discussed to explain the structural defects and band 

gap.  As a conclusion it was found that the induced stress in the ZnO NSCs is the 

cause of gap narrowing between the energy levels. ZnO NWs and NRs showed 

homogeneous distribution of the Lowest Unoccupied Molecular Orbitals (LUMO) 

and Highest Occupied Molecular Orbitals (HOMO) orbitals all over the entire 

heterostructure which results to the reduction of the band gap. The calculated band 

gaps are confirmed to be in a good agreement with the experimental results. The 

electrical models and electrostatic potential maps were able to calculate the electron 

life time and to explain the mobility and diffusion behaviours of the grown 

nanostructures, respectively. 
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ABSTRAK 

Proses reka bentuk secara pengkomputeran, pengoptimuman, pertumbuhan, 

pencirian dan analisis secara pengkomputeran telah dijalankan secara sistematik 

bagi pertumbuhan struktur nano zink oksida (ZnO) pada grafin menggunakan zink 

asetilasetonat (Zn(acac)2) dengan kehadiran hidrogen oleh teknik semburan pirolisis 

ultrasonik. Pemisahan ion Zn dari fasa wap Zn(acac)2 dan penjerapannya pada grafin 

oksida dikaji menggunakan pendekatan mekanik kuantum melibatkan penggunaan 

Teori Fungsi Ketumpatan (DFT).Tenaga tindakbalas telah dikira dan mekanisma 

tindakbalas yang dicadangkan telah disokong baik oleh simulasi sifat-sifat 

inframerah. Seterusnya, Kaedah Tindakbalas Permukaan (RSM) digunakan untuk 

memodelkan dan mengoptimumkan parameter pirolisis dengan menilai ketumpatan, 

saiz dan faktor bentuk nanostruktur. Evolusi struktur ZnO telah diterangkan 

sebaiknya mengesahkan bahawa RSM adalah alat yang dipercayai untuk pemodelan 

dan pengopmimuman parameter pirolisis dan anggaran saiz dan bentuk 

nanostruktur. Akhirnya, analisis pengkomputeran bagi sifat optik dan pengangkutan 

zarah bercas yang dikira bagi pertumbuhan nanostruktur seperti Kluster Nanosfera 

(NSCs), Nanorod (NRs) dan Nanowayar (NWs) telah dibangunkan. Spektra 

penyerapan yang dikira berdasarkan pada penggantungan masa DFT menunjukkan 

persamaan yang sangat dekat dengan perilaku yang dikira. Model atom dan gambar 

rajah aras tenaga telah dibangunkan dan dibincangkan untuk menerangkan 

kecacatan struktur dan jurang jalur. Sebagai konklusi didapati bahawa, tekanan 

teraruh di dalam NSCs ZnO adalah disebabkan jurang yang semakin sempit antara 

aras tenaga. NWs dan NRs ZnO menunjukkan pengedaran homogen bagi Orbital 

Terendah tidak Dihuni Molekul (LUMO) dan Orbital Tertinggi Dihuni Molekul 

(HOMO) pada seluruh heterostruktur yang mengakibatkan pengurangan pada jurang 

jalur. Jurang jalur yang dikira adalah disahkan berada dalam persetujuan yang baik 

dengan keputusan eksperimen. Model elektrik dan peta potentsi elektrostatik 

masing-masing boleh dibangunkan untuk mengira jangka hayat elektron dan untuk 

menerangkan pergerakan dan perilaku penyebaran bagi pertumbuhan nanostruktur.  
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background and Motivation 

 According to the Moore’s law, the capability of silicon-large scale integrated 

circuits (Si-LSIs) was improved over the last three decades by increasing the 

population of transistors on the substrate [1, 2]. The most recent processors contain 

over a billion transistors. A remarkable enhancement for the efficiency of the ultra 

large scale integrated circuits (ULSIs) was achieved by following a scaling-up 

routine for the silicon (Si) transistor. However, further enhancement of the efficency 

of the LSIs turn out to be more complicated as a result of the transistors contraction 

(which is attributed to physical limitations) [3].  

  Advanced heterogeneous integration on Si platform has recently attracted 

great attention towards the understanding of a so-called “More than Moore” 

technology. This approach is mainly devoted to the growth of high quality elements 

(i.e. germanium (Ge) [4, 5]) and semiconductors based compounds such as gallium 

arsenide (GaAs) [6-8], gallium nitride (GaN) [9-12] and silicon carbide (SiC) [13], as 

well as metal oxides (i.e. zinc oxide (ZnO) [14, 15] and carbon based materials such 

as graphene [13, 16, 17] and carbon nanotube (CNT) [18-20] on Si platform. In fact, 

the cointegration of such materials led to the present ULSIs with ultra-high speed 

complementary metal-oxide semiconductor (CMOS) transistors [20, 21] in addition 

to various kinds of functional devices  as optical devices [22-24], photodetectors [25-

27],  sensors and solar batteries [28]. Thus, such Si based intelligent system-on-chip 

(i-SoC) is considered to be promising.  
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 The Si based system-on-chip technology is considered as a new generation 

technology. This is ascribed to its ability to present more capable and practical routes 

of development of electronic devices. An insulator that electronically isolates the 

functional materials from the Si substrate found to be essential for producing 

electronic devices. In accordance to this context, various researches reported the 

growth of high quality Ge-on-insulator (GOI) [29, 30], graphene-on-insulator [31-

33], GaAs-on-insulator [8, 33-35], SiC-on-insulator [36-38] and ZnO-on-insulator 

structures [39]. Figure 1.1 illustrates the evolution of the Si based nano-electronics 

device. The integration of devices on Si platform in the way shown in figure was 

reported to improve the functionality, the quality and the efficiency of the device 

system.  

 
 

Figure 1.1 Evolution of Si-based nanoelectronics [40, 41] 

 

 Modern electronic devices are much depending on transparent conductive 

thin films (TCFs). Many applications are currently using TCFs such as field emission 

displays, sensors, thin film transistors solar cells, touch panels, electrostatic 

dissipation, and transparent electrodes for optoelectronic devices [42]. In fact, the 

development of alternative materials for such applications is taking place. For 

instance, the optically transparent and electrically conductive material Indium-Tin-

Oxide (ITO) exhibits a sheet resistance and light transmittance that is meeting the 

standard requirement. However, ITO is not maintaining sufficient flexure stiffness. 
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Researchers have succeeded in preparing TCFs with single-walled carbon nanotubes 

(SWCNT) [43-45]. 

 Recently, graphene nanosheets (GNS) were discovered, which can be 

obtained by the reduction of graphene oxide (GO). Two-dimensional (2D) sheet of 

sp2-hybrized carbons known as graphene has attracted great attention because of its 

exceptional optical, electrical, chemical and mechanical properties that imposes 

promising ability for developing new generation of functional nanomaterials for 

various applications [1-3]. A lot of research on graphene has stimulated the 

development of high-quality graphene for optoelectronic devices [1]. An ideal 

monolayer of graphene has an excellent light transmittance and conductivity at room 

temperature. Such optoelectronic properties suggest graphene as a promising 

material for flexible transparent conductor [3]. Lately, various methods were 

reported for growing graphene for large area production. Chemical vapour deposition 

(CVD) is the most used method for preparing high quality large-area monolayer 

graphene. Such method can control thickness of deposited layers for possible 

application as transparent conductors. Generally, GNS are found to be more 

conductive, flexible and less expensive than ITO or SWCNTs for transparent 

electrode applications [2]. 

  Concerning the targeted applications, there have been huge exerted efforts to 

control and modify the properties of graphene through various functionalization 

routes [46-49]. The combination of various types of materials can lead to 

development of new generations of materials that have tailored properties suitable 

for new optoelectronic applications, which is beyond the ability of the individual 

materials. Thus decorating two-dimensional (2D) graphene with one-dimensional 

(1D) semiconductor nanostructure phase can result in a three-dimensional (3D) 

multifunctional conductor. It was reported in different studies the preparation of 1D-

2D hybrid architectures (HAs) composed of regular arrays of nanorods such as zinc 

oxide, silver, platinum, palladium and gold formed on graphene layers. The 1D-2D 

HAs exhibited outstanding electrical conductivity, optical transparency, and 

mechanical flexibility, comparable to those of graphene. There are few studies that 
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compare the effect of the metallic nano-rods material on the property of the 

multifunctional conductor [46-49].  

 Nanowires as prolonged nanostructures have privileges over other 

nanostructures. For instance, their electrical transport properties are much better than 

those of nanoparticles because of the extended transport surface area of nanowires. 

Besides, the optical reflectance of the nanorods is less than thin films thus, 

significantly their absorption of light increases, which is particularly interesting for 

photovoltaic and photon-induced hydrophillicity applications [50, 51]. Furthermore, 

much research has been conducted for developing semiconducting material/graphene 

hybrid structures either by vapour-phase [52-54] or liquid-phase techniques [55-57]. 

Since the past few decades, ZnO nanostructures have been thoroughly considered in 

many works for optoelectronic and photovoltaic device applications [58-61].  

Recently, it has been reported that ZnO/graphene hybrid nanostructure has excellent 

potential to be used for transparent flexible electrical and optical devices, including 

flexible photovoltaics, displays, and light emitters [62-64].   

1.2 Problem Statement  

 Majority of literatures are reporting on  ZnO/graphene hybrid structures focus 

on the discussion of the structural morphologies [48]. Very few researches focused 

on the optimization of the process parameters [65, 66]. In fact, there is no report on 

the statistical modelling and subsequent optimization of the growth of ZnO 

nanowires on graphene using ultrasonic spray pyrolysis (UASP). Most of 

experimental design in such field is based on single factor design that leads to data 

waste, excessive precursor consumption and longer growth time in addition to lack 

of reproducibility upon scaling-up reactions. Thus, the effect of process parameters 

on the grown structures are not yet clear, for instance, the effect of the process 

parameters on ZnO density, shape and size of grains is not clearly reported. 

Furthermore, the ultrasonic assisted spray pyrolysis is mentioned mostly in articles 

for film deposition, however very scarce articles targeted the process ability for 
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depositing other ZnO nanostructures. Thus, there is a need to clarify the capability of 

the process to deposit other categories of ZnO nanostructures such as quantum dot, 

nanowires and any other possible structures. 

 In order to suit graphene for optoelectronic devices, research works have 

been carried out to develop graphene based materials hybrid with semiconducting 

structures through various processes such as vapour-phase [52-54] or liquid-phase 

deposition techniques [55-57]. The vapour-phase deposition of ZnO using β-

diketonates such as acetylacetonate as the Zn precursor was reported as a promising 

route to grow ZnO nanostructures [67, 68]. However, most studies on ZnO/graphene 

hybrid structures have focused on their structural morphologies and electronic 

properties [69], whereas few have paid attention to the reaction mechanisms of the 

semiconducting species at reaction sites on the graphene surface [65, 70]. There is no 

report to date on the reaction mechanisms of the vapour-phase deposited ZnO onto 

graphene utilizing acetylacetonate as a Zn source. In the current research, the 

possible reaction mechanisms that take place during the deposition of ZnO on 

graphene based substrates are investigated. 

  In this study, the growth of ZnO nanowires onto graphene as insulator using a 

low-temperature ultrasonic assisted spray pyrolysis technique was done. It is a 

simple and potentially industrially scalable process due to the abundance and 

stability of the precursors, and the low maintenance and set-up costs involved in 

scaling-up the process. Besides, it allows the deposition of homogeneous metal oxide 

phases, endowed with excellent physical properties for several applications. In 

addition, this work aimed to investigate the capability of the ultrasonic assisted spray 

pyrolysis for the deposition of every possible ZnO structure on graphene layer.  

Statistical modelling was used in correlation to multi-factorial experimental design to 

investigate the impact of the parameters of the process on the density, size and shape 

of the grown ZnO. 
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 The injection of zinc acetylacetonate in the presence of either alcohol or 

hydrogen was studied, which are the main deposition routes using spray pyrolysis as 

found in literature [71, 72]. Quantum chemistry calculation approach is used to 

identify the most favoured route from the point of view of reaction kinetics taking in 

consideration the reduction of deposition temperature. Finally, various 

characterization techniques such as energy dispersive X-ray spectroscopy (EDX), 

fourier transform infrared spectroscopy (FTIR), field emission electron microscopy 

(FESEM) and energy dispersive spectroscopy (EDS) were used to investigate the 

structures morphology. Photoluminescence (PL) measurements, UV/Visible 

spectroscopy and electrochemical impedance (EIS) were used in combination with 

density functional theory calculations (DFT) (in the excited state of matter) to 

investigate the optoelectronic properties of the synthesized hybrid material. 

1.3 Objectives of the Study 

 The objective of the present study is to prepare and characterize graphene 

based heterogeneous material hybrid with different ZnO nanostructures (mainly 

nanowires) for optoelectronic applications using ultrasonic assisted spray pyrolysis 

from liquid precursors. The objective can be divided into the following sub-

objectives: 

1. To propose growth mechanism using quantum chemistry calculation 

approach. 

2. To design and construct a homemade ultrasonic assisted spray pyrolysis 

system.  

3. To grow ZnO nanowires onto graphene layer and investigate the 

capability of the process to grow other ZnO nanostructures on graphene 

layer. 

4.  To optimize the deposition parameters and develop a statistical model to 

predict the growth rates and reaction kinetics using response surface 

method (RSM). 
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5. To investigate the optical and charge transport properties of the obtained 

structures using analytical and materials research aspects. 

1.4  Scope of the Study 

 To achieve the objective of this study, the work was performed in three 

phases; i) Identify the favoured route for deposition of ZnO nanostructures on 

graphene layer from point of view of reaction kinetics using quantum chemistry 

approach,  ii) grow ZnO nanowires on graphene layer, iii) Optimize the process of 

growth of ZnO nanostructures on graphene layer and iv) characterize the obtained 

samples. Figure 1.2 presents a flow chart summarizing the scope of this study. The 

details of the scope of the present study cover the following stages: 

 

1. Preparation of deposition mixtures of various precursors-solvents mixing 

ratios. 

2. Deposition of ZnO nanostructures on graphene layers under various 

reaction conditions. 

3. Establishing the effects of deposition conditions on the ZnO growth rates 

and reaction kinetics.  

4. Optimization of the growth reaction parameters using RSM. 

5. Determination of various opto-electerical properties of the prepared 

conductor as well as investigating its morphology. 
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 Figure 1.2 Flow chart summarizing the scope of work 
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1.5 Contribution of the Present Work 

 The main contribution of the present study can be divided into 3 major parts. 

The first part comprises of verifying the ability of the UASP process to deposit 

various ZnO nanostructures on SL graphene at relatively low substrate temperatures 

(134 – 355 °C) as well as establishing the growth rates and kinetics for all obtained 

structures using statistical tools. On the other hand, the second part of the 

contribution is identifying the favoured reaction pathway and the optimized 

geometries of transitions, intermediates and products by investigating the chemistry 

of possible pyrolysis routes and its corresponding reaction mechanisms using 

quantum chemistry approach. Lastly, the last part of the contributions is attributed to 

the exploration of optical properties of the ZnO/graphene hybrid structures as well as 

establishing the transport mechanisms of the charged particles through the obtained 

structures. 

1.6 Overview of Thesis Organization 

 This thesis is structured on 6 chapters. First chapter highlights the overview 

of the research background and motivation of the past and current work on the 

growth of ZnO nanostructures on graphene. Besides, the research objectives and 

scopes are also included. Second chapter includes the overview of the main 

properties of ZnO and graphene. Furthermore, a brief description about the methods 

reported for growing ZnO on the graphene is included. Various research works on 

the impact of the morphology of different ZnO nanostructure on the optoelectronic 

properties of ZnO/graphene heterogeneous materials are briefly presented in chapter 

2. The function of graphene as a buffer layer is also highlighted. Moreover, an 

overview of the use of ultrasonic assisted spray pyrolysis process to grow ZnO 

nanostructures on graphene is also included. Finally, the potential applications of 

ZnO on the graphene regarding the development of optoelectronic devices are also 

discussed in this chapter. 
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 The third chapter of this thesis contains a brief discussion about the properties 

of the substrates used in this study. The group of materials, chemicals and equipment 

used throughout the entire research work are also listed in this chapter. The density 

functional theory approach in addition to other quantum chemistry calculations is 

discussed and the possible reaction mechanism of pyrolysis is presented as well. 

Furthermore, the aspects of multi factorial experimental design were presented, 

where RSM experimental design approach is followed. Finally, the ultrasonic 

assisted pyrolysis process is discussed in relation to reactor design and the main 

process parameters are clarified as well. 

 The fourth chapter of the thesis presents the results of the DFT study of the 

dissociation mechanisms of either zinc ions (Zn
2+

) or ZnO from vapour-phase zinc 

acetylacetonate, Zn(C5H7O2)2 and its adsorption onto graphen layer. Moreover, the 

gas-phase reactions followed during the deposition of zinc oxide on graphene to 

produce ZnO/graphene composite had been investigated using two different routes. 

The energies of reactants, transition states and products were calculated and the 

reaction mechanisms were presented also. 

 The fifth chapter of this thesis includes a discussion about the experimental 

design and the results of the RSM modelling. The impact of the process parameters 

on the nanostructures density, size and shape is thoroughly discussed. The growth 

rates and reaction kinetics are also presented in this chapter. Furthermore, the 

structural morphology of ZnO nanostructures is systematically characterized. The 

involved growth mechanism is studied and described.  

 The sixth chapter of this thesis includes the discussion about the 

optoelectronic properties of the grown structures. UV/Visible spectra as well as PL 

spectra were presented in addition to DFT results to investigate the optical properties 

of the grown structures. Moreover, EIS results in correlation to quantum chemistry 

calculations of the electrostatic potential were presented to explain the electronic 

behaviour of the grown structures. Finally, the seventh chapter of this thesis includes 
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conclusive remarks in addition to the contributions of present work and discussion 

about future research work and possible study extensions. 
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