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ABSTRACT 

The composite materials of metals, metal oxides or polymers with different 

forms of graphene like pristine graphene (GN), graphene oxide (GO) and reduced 

graphene oxide (rGO) have attracted tremendous attention worldwide due to their 

potential applications in various fields such as optical, photochemical, electrical, 

electrochemical, and environmental applications. However, besides the importance of 

this noble material in energy and environmental sector, there are still few reports on the 

fabrication of GO and rGO thin films through the combination of chemical and physical 

routes, which are spin coating and direct current radio frequency sputtering. The detailed 

characterization analysis and further investigation on the applications of GO and rGO 

thin based films fabricated by aforementioned methodology has poorly been reported. 

Therefore, this study focused on the synthesis of GO, rGO and their composites with 

zinc oxide (ZnO), copper (Cu), nickel oxide (NiO) by the combination of spin coating, 

low temperature thermal annealing and  direct current radio frequency (DC/RF) 

sputtering technique for wastewater treatment and optoelectronics applications. The 2-

chlorophenol (CPs) was selected as a model pollutant due to its high cytotoxic, 

mutagenic carcinogenic properties threating the living beings. Initially, GO was 

synthesized by modified Hummers’ method and afterwards, spin coating technique was 

used to deposit the GO thin films on glass substrate. The thin films deposited at different 

GO concentrations (1.6, 3.2, and 4.8 mg/mL) were qualitatively analyzed and further 

optimized having unique structural, optical, chemical states for further applications in 

environment and optics. The band gap of thin films was dependent on GO concentration 

which were 2.98, 2.86, and 2.71 eV for 1.6, 3.2 and 4.8 mg/mL of GO, respectively. The 

refractive indices were in the range of 1.35 to 1.58 depending on the GO concentration. 

The optimized GO thin films were further reduced to rGO by low temperature reduction. 

The reduction was done at different temperatures from room temperature to 300 °C. The 

band gap decreased from 4.10 to 2.41 eV with the formation of conjugated sp2 network.  

The increase in sp2 network from 36.57 to 68.71 % while the decrement of sp3 from 

32.06 to 18.56% in rGO thin films also evidently proved the restoration of GN like 

properties in it. The optimized rGO thin films were further used to fabricate their 

composites with ZnO through DC/RF. The degradation efficiency (2-CP) increased from 

44 to 74%. Further, GO/rGO nano composites thin films with NiO and Cu were 

synthesized to obtain their uniform thin films by controlling the deposition parameters of 

direct current radio frequency sputtering technique. The sp2 hybridization in rGO caused 

more dielectric loss as compared to GO because of its conductive path ways in Cu-ZnO. 

GO and rGO did not affect the preferred structural orientation of Cu-ZnO, and NiO.  Sp2 

network of GO/rGO also assisted their desirability for 2-CP which ultimately led to their 

degradation. The efficiency Cu-ZnO/rGO was 75% while in case of NiO composites it 

was found to be from 46 to 77 % depending on the NiO particle size. In summary, the 

physical and chemical properties of GO and rGO were improved in their thin film 

composites with ZnO, NiO and Cu which enhanced their capability as photo-catalyst 

which could be highly useful for building next generation devices in the field of 

optoelectronics and waste-water treatment.  
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ABSTRAK 

Bahan-bahan komposit logam, logam oksida atau polimer dengan pelbagai 

bentuk grafin seperti grafin asli (GN), grafin oksida (GO) dan grafin oksida terturun 

(rGO) telah menarik perhatian  seluruh dunia kerana potensi aplikasinya dalam pelbagai 

bidang seperti optik, fotokimia, elektrik, elektrokimia, dan aplikasi alam sekitar. Walau 

bagaimanapun, di samping pentingnya bahan yang baik ini dalam sektor tenaga dan alam 

sekitar, terdapat hanya beberapa laporan mengenai fabrikasi filem GO dan rGO yang 

nipis melalui gabungan laluan kimia dan fizikal, iaitu salutan berputar dan semburan arus 

terus frekuensi radio. Analisis perincian terperinci dan siasatan lanjut mengenai aplikasi 

filem GO dan rGO nipis yang dibuat oleh metodologi yang disebutkan di atas tidak 

dilaporkan. Oleh itu, kajian ini menumpukan kepada sintesis GO, rGO dan kompositnya 

dengan zink oksida (ZnO), tembaga (Cu), nikel oksida (NiO) dengan kombinasi 

berputar, penyempuh-lindapan haba suhu rendah dan teknik semburan arus terus 

frekuensi radio (DC/RF) untuk rawatan air sisa dan aplikasi optoelektronik. 2-klorofenol 

(CPs) dipilih sebagai bahan pencemar model kerana ia mempunyai sifat sitotoksik tinggi 

dan sifat karsinogen mutagen yang mengancam makhluk hidup. Pada mulanya, GO telah 

disintesis oleh kaedah Hummers yang diubahsuai dan kemudian, teknik salutan berputar 

digunakan untuk mendepositkan filem-filem nipis GO pada substrat kaca. Filem nipis 

yang didepositkan pada kepekatan GO berbeza (1.6, 3.2 dan 4.8 mg / mL) dianalisis 

secara kualitatif dan dioptimumkan lagi untuk mempunyai keadaan struktur, optik, dan 

kimia yang unik untuk aplikasi selanjutnya dalam alam sekitar dan optik. Jurang tenaga 

filem nipis bergantung kepada kepekatan GO yang masing-masing adalah 2.98, 2.86, dan 

2.71 eV untuk 1.6, 3.2, dan 4.8 mg / mL GO. Indeks biasan berada dalam julat 1.35 

hingga 1.58 bergantung kepada kepekatan GO. Filem GO nipis yang dioptimumkan 

diturunkan lagi kepada rGO oleh penurunan suhu rendah. Penurun dilakukan pada suhu 

yang berbeza dari suhu bilik hingga 300 ° C. Jurang tenaga menurun dari 4.10 ke 2.41 

eV dengan pembentukan rangkaian susunan sp2. Peningkatan rangkaian sp2 dari 36.57 

hingga 68.71% manakala penurunan sp3 dari 32.06 hingga 18.56% dalam filem-filem 

nipis rGO juga membuktikan pemulihan sifat-sifat GN di dalamnya. Filem nipis rGO 

yang dioptimumkan digunakan untuk membuat komposit dengan ZnO melalui DC/RF. 

Kecekapan degradasi (2-CP) meningkat daripada 44 kepada 74%. Selanjutnya, GO / 

rGO filem tipis nano komposit dengan NiO dan Cu disintesis untuk mendapatkan filem 

tipis yang seragam dengan mengawal parameter pemendapan Teknik semburan arus 

terus frekuensi radio. Hibridisasi sp2 dalam rGO menyebabkan kehilangan dielektrik 

yang lebih banyak berbanding dengan GO kerana cara laluan konduktifnya dalam Cu-

ZnO. Selanjutnya, GO dan rGO tidak mempengaruhi orientasi struktur Cu-ZnO, dan 

NiO. Rangkaian GO/rGO juga membantu kegunaan mereka untuk 2-CP yang akhirnya 

membawa kepada perosotan mereka. Kecepkapan Cu-ZnO/rGO kecekapan adalah 75% 

manakala dalam komposit NiO didapati dari 46 hingga 77% bergantung kepada saiz 

zarah NiO. Ringkasnya, sifat fizikal dan kimia GO dan rGO bertambah baik dalam 

komposit filem nipis mereka dengan ZnO, NiO dan Cu yang meningkatkan keupayaan 

mereka sebagai pemangkin foto yang sangat berguna untuk membina peranti generasi 

akan datang dalam bidang optoelektronik dan sisa- rawatan air. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

With the first discovery by Novoselov et al. in 2004, graphene (GN) has 

attracted a tremendous attention worldwide due to its potential applications in various 

fields such as electrical, electrochemical, supercapacitor, photocatalytic, optical and 

biomedicine. GN comprises of sp2-hybridized, single layered, two dimensional 

carbon atoms arranged in an array of hexagonal honeycomb lattice. Its planer orbitals 

are energetically stable comprising the localized sigma bonds arranged at three 

adjacent carbon atoms in this lattice. This structure of GN is responsible for its high 

surface area, and good electrical conductivity other than some of its exceptional 

properties like breaking and tensile strength (Young modules) having respectively the 

benchmark values of ~42Nm
-1

 and 1.0 TPa (Huang et al., 2011). Furthermore, the 

large surface area (2,630 m
2
g

−1
), electronic transportation i.e. high intrinsic mobility 

of (200 000 cm 2 v
 − 1 

s 
− 1

), thermal conductivity (∼5000 Wm 
−1

 K 
− 1

) and extra 

ordinary mechanical properties makes it a prominent material for its applications in 

aforementioned fields (Lee et al., 2008, Li et al., 2009). On top of that, there have 

been a dire in developing the new and easy ways to synthesize this material. It is thus 

synthesized by various techniques such as chemical vapor deposition (CVD) (Reina 

et al., 2009, Li et al., 2009), exfoliation process(Lotya et al., 2009, Liu et al., 2008), 

and direct growth from carbon source(Sun et al., 2010, Ruan et al., 2011). The 

synthesis methodology is directly related to the quality of the final GN product and 

thus, can be customized as per the need of application. For example, the reduced-GO 

possesses a lot of defects due to reduction of functional groups, but the genereated 

oxygen vacancies can also be help in engineering its band gaps (Pan et al., 2014). 

Likewise, the GN prepared via CVD possess lesser defects and show better electron 
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conduction due to high planar structure and is thus suitable for building the electrical 

devices (Muñoz and Gómez‐Aleixandre, 2013).  

Graphene oxide (GO) has been preferred a good adsorbent in comparison to 

graphene (GN) as the ratio of oxygen in GO is comparatively high compared to the 

pristine GN which makes them more attractive and efficient materials with enhanced 

adsorption properties. Adding to this, the specific adsoroption properties and 

mesoporosity of GO or GN are being improved by making its composites by 

functionalization with different metal/metal oxides like ZnO. However, the efficiency 

of GO/GN to absorb the pollutants also depends on the pH, oxygen functional groups 

and the nature of the organic matter under analsyis (Zhao et al., 2011, Sitko et al., 

2013). The adsorption process of these materials  have been explored via three 

different mechanismss namely physical interaction occurring due to connection of 

adsorbant with π-π stacking of the GO/GN composites material, surface complication 

interaction because of the molecular ion of the GO/GN and the foreign material 

(Upadhyay et al., 2014). Other than its exploration as adsorbant, the graphene based 

materials (GBM) can also be used to establish the stable photocatalyst semiconductor 

materials (Liu et al., 2014, Chang et al., 2015). For this, these GBM are being 

explored to engineer the band gap of metal/metal oxides etc., which is of great boom 

to develop photocatalysis under visible light to aid environmental remedation.  

Organic dyes or pigments such as 2-chlorophenol (2-CP) or its derivatives 

respectively released from the textile/leather and petroleum industry are the major 

examples to contaminate the streaming water. The high usage of these non-

biodegradable textile dyes is releasing a tons of waste effluents into water bodies. 

Most of the dyes are water soluble and conventional and municipal aerobic treatments 

have been proven to be ineffective in their removal (Ajmal et al., 2014). These 

organic pollutants are discharged into water borne bodies which causes huge 

environmental concern. Recently, heterogeneous photocatalysis has proved to be one 

of the easiest and efficient way to combat these issues. Addition to photolysis, the 

catalyst engages these environmental pollutants through physico-chemical interaction 

process, which is delevloped by chemically engineering the surface chemistry of 

catalyst for selective and efficient adsorption (Dąbrowski, 2001). 
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Apart from their potential use in environmental sector, the high need for 

highly efficient energy storage devices in recent past has triggered the application of 

GBM in this area. GN/GO are considered promising high performance electrode 

materials, due to their high conductivity and thus can increase the performance such 

as the lithium-ion battery and supercapacitor, and make next generation devices, such 

as the lithium-sulfur battery, lithium-O2 battery and sodium-ion battery. The electron 

mobility in GN at room temperature is ~15,000 cm
2
/Vs, and the electrons in GN can 

cover large distances without being scattered, even at room temperature. It shows 

much lower resistivity than silver and the pore size in the GN does not effects its 

surface area, which make the GN ideal candidate for the supercapacitor applications 

as compared to other carbon material like carbon nano tube (CNT) (Tan and Lee, 

2013).  However, the aggregation of the GN may raise the van der Waals interactions 

among the GN layers, which could affect the supercapacitor application. The 

modification of the GN with metal/metal oxides, polymers etc as stated above can 

enhance the specific surface area and minimize the aggregation of GN layers (Kim et 

al., 2011). The functionalization of GN/GO thin films may also create defects in the 

lattice and is expected to give GO/GN composites with hitherto unreported properties.  

The electronic transport properties and application of the GN may change 

with the number of GN layers, which can be calculated by the Raman spectroscopy or 

through the atomic force microscope (AFM).  The increasing layers in the GN render 

the optical and electrical properties (Nourbakhsh et al., 2011, Miyazaki et al., 2010). 

The band gap engineering can easily be done in the few layered graphene (FLG) as 

compared to the single layered graphene (SLG) (Ohta et al., 2006, Tian et al., 2010). 

The stacking interactions within the layers present in the GN may also change the 

nature of GN because of its aggregation (van der Waal interaction). Thus, it is 

desirable to synthesize FLG for application point of view as large number of layers 

limits its application (Torres et al., 2014). 

One of the easiest ways to tailor GN thin films with desired thickness is by 

using graphene oxide (GO) as the precursor. GO can be easily deposited into single or 

few layers, which can be later converted into GN by various techniques such as 

chemical, thermal etc. Thus, GO can be easily incorporated into polymers, metal 
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oxides etc and later its conversion into GN can give GN composites with unique 

properties.  

1.2  Problem Statement 

Inspite of the interesting properties of GN and GO which makes it promising, 

these materials still have a long way to go before being ready for practical device 

applications. GN has been researched intensively, but it is far from replacing silicon 

in electronics such as chips etc (Chiappetta, 2014). Thus, several general problems 

are an issue of concern in order to make it truly viable for mass applications. 

The synthesis method for the production of high quality GN sheets on larger 

scale must be developed. The synthesis methodology should involve less corrosive 

reagents (without acids or dilute acid solution). In corrosive environment, the 

honeycomb lattice of GN sheet may sustain damage, such as defects and 

functionalization by various groups, during the exfoliation process, which may further 

limit its application (Parveen et al., 2015). The number of layers in the GN is 

important for its electrical and optical properties as stacked layering may reduce its 

efficiency. Thus, an optimized methodology is needed for single and few layered GN 

synthesis. Optimized layering of GN sheets should be done in order to solve the 

switching problems in optical and electrical devices 

Uniform few layered semitransparent film depositions need to be done for 

GN/GO composites with metal oxides, polymers, metals etc. One of the main 

problems in GN based composite films is the agglomeration of GN sheets inside the 

matrix for example in polymers (Atif et al., 2016). Thus, the selection of the right 

modification method for the tuning of van der Waal forces, π-π interlayer stacking of 

graphene layers, balancing of electrostatic intersection between the GN layers needs 

to be done (Hassan et al., 2009). 
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The use of corrosive chemicals may give highly defective GN, which hinders 

the electron mobility and thus affects the quality. Hence proper chemical-thermal or a 

combination of both methodologies should be optimized for obtaining highly ordered 

GN. The functionalization of GN and GO can increase its adsorbent capacity. Hence 

functionalization should be done with surfactants, polymers etc to impart additional 

functional groups and to improve the selectivity (Sohail et al., 2017). Band gap of GN 

is zero which also hinders its applications in photocatalysis and energy devices. 

Hence band gap engineering with metal oxides or polymer or a ternary system of 

GN/GO-metal oxides-polymers may be explored (Zhang et al., 2015c).. So, to obtain 

the maximum efficiency of the GN/GO and its derivatives, the above mentioned 

concerns should be minimized for advanced applications.   

In the viewpoint of synthesizing noble materials for the advanced applications 

and safeguarding the environmental challenges, we have designed this research 

project which involves the fabrication of exciting next generation carbon based 

materials such as GN and GO. The materials will be fabricated into different 

morphological, chemical functionalization and further their composites with ZnO, Cu 

and NiO. The wide band gap of ZnO ((3.37 eV) leads to good optical, electronic and 

catalytic properties Similarly, NiO is also a promising candidate for decades due to its 

interesting electronic structure, wide band gap (3.6-4.0 eV), low resistivity and 

catalytic activity for optoelectronics and environmental applications.  Moreover, 

doping of metallic Cu can further enhance the properties of ZnO and NiO. However, 

the doping of Cu should be optimized otherwise it can decay the basic properties of 

ZnO and NiO. The prepared samples will be studied for photocatalytic activities of 2-

chlorophenol, apart from the characterization on the energy applications. The 

prepared samples will have hugely potential to enlighten a better tomorrow for the 

human beings 
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1.3 Objective of the Study 

The major goal of this research is to produce high performance 

rGO/metal@metal oxide (ZnO, CuO and NiO) composite with via DC/RF sputtering 

for the application in photocatalytic degradation of pollutants and optoelectronics. 

Therefore, four specific objectives are outlined as follows;   

i. To synthesize GO thin film from graphite via modified Hummer method and 

spin coating technique, and investigate the effect of GO concentration on their 

physico-chemical properties. 

ii. To convert GO thin film to reduced GO (rGO) thin film at temperature varied 

from 25
o
C to 300

o
C and to modify the band-gap of GO/rGO by compositing it 

with ZnO for better performance in photocatalysis and optoelectronics.  

iii. To further enhance the photocatalytic and optoelectronics properties of the 

GO/rGO-ZnO composite thin film by incorporating Cu through direct current 

radio frequency (DC/RF) sputtering method.  

iv. To examine the effect of deposition time of NiO as alternative additive onto 

GO thin film on photocatalytic and optoelectronics properties.   

1.4 Scope of the Study 

The following scopes have been identified to achieve the above discussed 

objectives. 

1. Selection of facile synthesis method for GO  

i. Determining the suitable concentration of sulfuric acid, phosphoric 

acid and the ratio of graphite and potassium permanganate. 

ii. To find the suitable reaction time (2 to 30 h) for complete oxidation of 

graphite into high quality GO.  

iii. Synthesising GO thin films by using spin coater and further the 

selection of its rotation speed (1000 to 4000 rpm), deposition time (10 
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to 60 sec) and GO concentration to obtain high quality uniform GO 

thin films.  

iv. Characterizing the deposited thins films for their structural (X-ray 

diffraction spectroscopy), surface (atomic force micrscopy and felid 

emission scanning electron microscope), qualitative (Raman 

spectroscopy) and chemical state (X-ray photoelectron spectroscopy) 

analysis.  

v. Calculating the band gap, optical absorption and dielectric constants 

through UV data.      

 

2. Reduction of GO to rGO with less defective and high conductivity sheets  

i. Identifying the impact of reduction temperature (range from room 

temperature to 300
o
) on structural, surface composition, surface 

morphology and functional groups of rGO.  

ii. Calculating the band gap of rGO at reduction temperature range from 

room temperature to 300
o
.  

iii. Selection of highly conductive, uniform and less defective rGO for its 

composites fabrication with ZnO through DC/RF sputtering system for 

photocatalytic and optoelectronics (such as light transmittance and 

absorption, band gap and dielectric constants) applications.     

 

3. Synthesis of GO/rGO nano composites thin films with metal/metal oxides 

(ZnO, and Cu) through spin coating and DC/RF sputtering technique. 

i. Selection of deposition parameters of DC/RF sputtering technique 

such as thickness (few nanometers), deposition time (up to 1200 

seconds) and doping rate (change in atomic weight percentage) to 

obtain uniform nano composites thin films. 

ii. To find ratio of GO/rGO with ZnO (35 %) and Cu (4.5 %) in nano 

composites thin films.  

iii. Investigation of the effect of ZnO and Cu concentration over the 

GO/rGO thin films at different parameters of DC/RF sputtering. 

iv. Comparative study (degradation of 2-chlorophenol) of pure GO/rGO 

thin films in comparison to Cu-ZnO nano composites thin films.    
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4. Synthesis of GO-NiO composites for photocatalytic (degradation of 2-

chlorophenol) and optoelectronics applications 

i. Obtaining the UV-spectroscopy (Wavelength 190 to 900 nm)  data for 

prepared graphene based composites 

ii. Calculating the optical constants (band gap, transmittance, absorbance, 

intenal heat effect dielectric loss)  through UV- obtained data 

iii. Environmental application of prepared nanocomposites thin films 

through photodegradation.  

iv. Investigating the relation between structural, surface, band gap, 

chemical state, photocatalytic degradation of organic pollutants  

v.  Proposing the tentative mechanism of photocatalytic degradation of 

organic pollutants 

vi. Comparsion for ZnO, Cu and NiO nanocomposites thin films for the 

degradation of 2-chlorophenol 

1.5 Thesis Organization 

This thesis consisted of eight chapters which describe original and novel 

research on GN based composites for photocatalytic and optoelectronics applications. 

The first chapter concisely explores the ideas of GN based composites. The research 

background of GN based material and the issues that lead to the current study were 

discussed. The four research objectives were identified, followed by the scopes of 

study used to achieve these objectives. Chapter 2 highlights the recent developments 

and progress in the synthetic approaches of GN and its composites. The synthesis of 

graphene through exfoliation, epitaxial growth, direct growth via carbon source as 

well as the modification approaches by covalent and non-covalent methodology has 

been reviewed in detail. Moreover, the limitation of each synthesis method has also 

been reviewed. In addition to this, the applications of graphene based metal and metal 

oxide composites through photocatalytic process has also been mentioned.  Chapter 3 

gives the list of chemicals that was used for the synthesis of GO, rGO and further 

their composites with ZnO, NiO and Cu. This chapter also concisely describes the 
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characterizations that were utilized to analyze the structural, morphological, optical, 

photocatalytic etc. characteristics of the composites. Chapter 4 deals with the 

synthesis of GO by facile modified Hummer method. The thin films of GO were 

deposited on glass substrate by spin coating method. The thin films were deposited at 

different GO concentration (1.6, 3.2, and 4.8 mg/mL) to optimize the samples for 

further applications purposes using their structural, optical, chemical state and 

qualitative analysis. Chapter 5 describes the adoption of low temperature 

methodology (varied from room temperature to 300 °C) for the reduction of GO to 

rGO thin films. The whole reduction process from room temperature to 300 °C was 

analysed at different stages in terms of their structural and surface chemical state 

composition. The optical, and dielectric properties were calculated by using the UV-

visible spectroscopic approach. Furthermore, the role of rGO was studied towards the 

photo-degradation of toxic recalcitrant 2-chlorophenol (2-CP) by preparing rGO/ZnO 

composite. 

Chapter 6 describes the deposition of GO and rGO thin films were done over 

glass slides by using spin coating technique. The surface of GO and rGO was further 

coated with Cu doped ZnO nanoparticle. The change in the structural, optical, 

dielectric and chemical state of Cu-ZnO thin films was briefly investigated in the 

presences of GO and rGO. Furthermore, the role of hydroxides along with the sp2 

network in GO and rGO for the photo-degradation of 2-chlorophenol (2-CP). The 

synthesis of GO composites with NiO has been describes in Chapter 7. The prepared 

GO/NiO thin composite was investigated in terms of its structural and surface 

chemical state composition. The optical, and dielectric properties were calculated by 

using the UV-visible spectroscopic approach. Further, the photocatalytic activity of 

the composite thin films was investigated by the degradation of 2-CP which suggest 

that GO played a major role along with NiO in the degradation of pollutant in 

wastewater. Moreover, the comparison between NiO and ZnO was also studied. 

Finally, Chapter 8 presents the general conclusions from present work and providing 

a list of some recommendations for future researches. 
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APPENIDIX B 

CALCULATIONS OF BAND GAP FOR PURE NiO THIN FILMS 

The band gap calculation for pure NiO thin films was through Equation 3.6. A 

decrease in the band gap of pure NiO thin films was observed with an increase in the 

deposition time of NiO. The pure NiO thin films with deposition time 400 sec have 

band gap 3.09 eV while 800 sec and 1200 sec have 2.93 eV and 2.74 eV, 

respectively.  
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APPENIDIX C 

PHOTOCATALYTIC ACTIVITY OF GRAPHENE OXIDE AND REDUCED 

GRAPHENE OXIDE  

The Photocatalytic activity of pure GO and rGO thin films was tested for the 

degradation of 2-CP as shown Figure S1. The results showed that in comparison of 

GO, the rGO is more active in pure form which might be due to the presence of sp2-

hybridization cause by eradication of oxygenated moieties on surface of GO. 

 

Figure S1 Photocatalytic activity for GO and rGO thin films 

The reduced band-gap in rGO is the reason for its high photocatalytic activity 

towards the degradation of 2-CP (Sjong et al., 2019). In our case, the composites of 
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metal or metal oxide with rGO exhibited higher photocatalytic activity than pure GO 

or rGO. This is because, GO and rGO assists the metal oxide in the charge transfer 

process and also lowers the recombination rate by dispersing the charge carriers in 

their heavily rich π bonded structure ( Jaihindh et al , 2018)  
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