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ABSTRACT 

Spent nuclear fuel (SNF) is nuclear fuel that is no longer useful in sustaining a 

nuclear reaction in the nuclear reactor but still generates heat in term of decay heat, 

which is of concern for their disposal and transportation. For safety, it needs to be 

cooled adequately in spent fuel pool (SFP) to a safer level. At present, all SFP are 

equipped with an external cooling system to ensure the temperature and water level 

inside the SFP at a safe level. During the loss of an external cooling system accident, 

the SFP is fully dependent on the natural convection process to cool the SNF. It is 

important to predict and evaluate the SFP temperature and water level during this 

accident. Therefore, in this study, a computational model of SFP was developed in 

order to predict the thermal behaviour of the SFP, focusing on the SFP temperature 

and water level during the loss of an external cooling system accident.                             

The computational model is based on a three-dimensional (3D) two-phases thermal 

fluid behaviour computed using the computational fluid dynamic software,             

Ansys Fluent 18.0. In order to validate the computational model, a small-scale SFP 

physical model with the ratio of 1 : 30 from the actual size of SFP was developed. 

Based on the validation process, the developed computational models were deemed 

applicable to predict the SFP water temperature and water level during the accident. 

From the computed results, it shows that for 10 MW decay heat, it took 20 hours for 

the water temperature to achieve the saturation condition and another 102 hours for 

the water level to decrease on the top part of the SNF. The computational model was 

further used to investigate the effect of SNF decay heat value and axial temperature 

distribution on the thermal behaviour of the SFP without an external cooling system. 

Computations for three different SNF decay heat values (5 MW, 1 MW and 0.1 MW) 

and three patterns of axial temperature distributions were carried out. The results show 

that SNF decay heat value affected the increase rate of SFP water temperature and the 

maximum SNF surface temperature. The result also shows that the effect of SNF axial 

temperature distribution was larger on the SFP water temperature distribution and its 

cooling capability. It can be concluded that both the decay heat value and SNF axial 

temperature distribution have significant effects on the SFP thermal behaviour; 

therefore, it should be considered in any SFP thermal analysis. 
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 ABSTRAK 

Bahan api nuklear terpakai (SNF) merupakan bahan api nuklear yang tidak lagi 

berguna dalam menampung tindak balas nuklear di dalam reaktor nuklear tetapi masih 

menghasilkan haba dalam bentuk haba reput yang menjadi kebimbangan semasa 

pelupusan dan pengangkutan bahan tersebut. Untuk keselamatan, ia perlu disejukkan 

secukupnya hingga ke tahap yang lebih selamat di dalam kolam bahan api terpakai 

(SFP). Pada masa ini, semua SFP dilengkapkan dengan sistem penyejukkan luaran 

untuk memastikan suhu dan tahap air di dalam SFP pada tahap yang selamat. Semasa 

kemalangan kehilangan sistem penyejukkan luaran, SFP bergantung sepenuhnya 

kepada proses perolakan semula jadi untuk menyejukkan SNF. Adalah penting untuk 

meramal dan menilai suhu dan tahap air SFP semasa kemalangan ini. Oleh itu, dalam 

kajian ini, sebuah model pengiraan SFP telah dibina bagi meramal perlakuan terma 

SFP dengan memberi tumpuan kepada suhu dan tahap air SFP semasa kemalangan 

kehilangan sistem penyejukkan luaran. Model pengiraan ini berdasarkan kepada 

perlakuan bendalir terma dua fasa tiga dimensi (3D) yang dihitung menggunakan 

perisian pengiraan bendalir dinamik, Ansys Fluent 18.0. Bagi mengesahkan model 

pengiraan ini, sebuah model fizikal SFP berskala kecil dengan nisbah 1 : 30 daripada 

saiz sebenar SFP telah dibina. Berdasarkan proses pengesahan, model pengiraan yang 

dibina dianggap boleh digunakan untuk meramal suhu air dan tahap air SFP semasa 

kemalangan. Keputusan dari pengiraan menunjukkan bagi haba reput 10 MW, suhu 

air mengambil masa selama 20 jam untuk mencapai keadaan penepuan, dan 102 jam 

lagi untuk tahap air berkurang kepada bahagian atas SNF. Model pengiraan 

kemudiannya digunakan untuk menyiasat kesan nilai haba reput dan agihan suhu paksi 

SNF terhadap perlakuan terma SFP tanpa sistem penyejukkan luaran. Pengiraan tiga 

nilai haba reput yang berbeza (5 MW, 1 MW dan 0.1 MW) dan tiga corak agihan suhu 

paksi SNF telah dijalankan. Keputusan menunjukkan bahawa nilai haba reput SNF 

mempengaruhi kadar peningkatan suhu air SFP dan suhu maksimum permukaan SNF. 

Keputusan turut menunjukkan bahawa kesan agihan suhu paksi SNF adalah ketara 

pada agihan suhu air SFP dan keupayaan penyejukkannya. Kesimpulannya, kesan 

kedua-dua nilai haba reput dan agihan suhu paksi SNF terhadap perlakuan terma SFP 

adalah signifikan, oleh itu, ia harus dipertimbangkan dalam setiap analisis terma SFP.  
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CHAPTER 1  

 

 

INTRODUCTION 

The objective of this Chapter is to provides an overview of this research. The 

first part of this Chapter introduced the readers to the background of this research and 

follows with the problem statement. The second part of this Chapter introduced the 

readers to the aims of this research to solve the problem. The last part of this Chapter 

discussed on the scopes and the significances of this research.  

1.1 Background of the Research 

Spent nuclear fuel pool or usually called spent fuel pool (SFP) is the storage 

pool which store the spent nuclear fuel (SNF) since the SNF still generates the amount 

of heat and radiation due to decaying fission product. The SNF usually stored 

underwater, which provides both cooling and shielding against radiation                

(IAEA, 1992). Therefore, an adequate level of heat removal of the storage pool must 

be determined to ensure that temperature limits are not exceeded in any condition. 

Generally, external cooling and air ventilation systems are installed in the SFP 

to ensure safe temperature levels in the water. Both of these systems are powered by 

electrical supplies (AC and DC). Without electrical supplies, both cooling systems will 

stop working thus increasing the temperature inside the SFP and decreasing the water 

level in the SFP due to vaporization process.  

The tragedy in Fukushima Daiichi in 2011 due to the loss of external cooling 

system had resulted in an increase in the awareness of ensuring safe temperature in the 

SFP water at any condition. During this accident, natural convection circulation 

process plays an important role in removing the decay heat from the SNF. Even the 

heat transfer from this process might not be able to ensure enough heat removal to 
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keep the temperature in the SFP at the safe level, but the process might be able to 

reduce the rate of water temperature increase during this accident.  

Appropriate analysis should be taken by considering the thermal behaviour of 

the SFP during the loss of external cooling system accident. Thus, this research aims 

to model the thermal behaviour of the SFP during the loss of external cooling system 

accident and investigate some of the effects that influence the thermal behaviour of the 

SFP during this accident. This research was also investigating the possibility to 

improve the self-cooling capability of the SFP based on these effects. 

1.2 Problem Statement 

It is important to continuously monitor the SFP parameters at any conditions. 

The SFP water temperature and the water level are among the most important 

parameters that indicate the SFP condition. The water temperature and water level in 

the SFP is maintained by an external cooling system. During the loss of external 

cooling system accidents, the heat transfer from the SNF to the entire SFP is dependent 

on the natural convection process. This natural convection process acted as the internal 

passive cooling system in the SFP which determines the thermal behaviour of the SFP 

during the loss of an external cooling accident. Appropriate procedures should be taken 

to predict the SFP thermal behaviour during this accident. 

One of the most popular methods to predict the thermal behaviour of the SFP 

is by developing the SFP thermal model using a computational approach. There are 

several research conducted to predict the thermal behaviour of the SFP during the loss 

of external cooling system accidents by developing the computational model but most 

of these models are proprietary and not available to the public. Some of the models 

previously developed were too complicated to be used and the method used is still in 

doubt. Besides, most of the developed model was also does not consider or take for 

granted the ability and the effect of some important parameters such as natural 

convection process inside the SFP (Gauntt et al, 2012). Hence, there is a need to 

establish a method to develop SFP thermal model during the loss of external cooling 
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accident for further investigation. Therefore, a computational model of the SFP to 

predict the thermal behaviour of the SFP during the loss of external cooling accident 

was developed. 

The natural convection process is the one of the important factors that 

determine the thermal behaviour of the SFP during the absences of the external cooling 

system. The rate of natural convection process depends on the temperature gradient in 

the SFP. To improve the rate of the natural convection process in the SFP, the factor 

affecting the temperature distribution in the SFP should be well understood. Since the 

temperature distribution in the SFP occurs due to the heat generated from the SNF, the 

SNF itself should be investigated as one of the factors affecting the temperature 

distribution in the SFP. One of the parameters related to the SNF which has not yet 

investigated is the SNF axial temperature distribution. All the previous research 

conducted assumes the SNF axial temperature distribution is uniform along with the 

SNF and the effect of this parameter on the SFP temperature distribution were 

neglected. It is important to know the effect of this parameter on the SFP temperature 

distribution thus can improve the natural cooling capability of the SFP. Therefore, in 

this research, the effects of the SNF axial temperature distribution on the temperature 

distribution in the SFP were investigated. 

There were also several previous research conducted to investigate the passive 

cooling capability of the SFP during the loss of the external cooling system accident. 

Most of the results show that the heat generated from the SNF is not transferred and 

distributed efficiently to the entire part of the SFP. Some improvement should be made 

to the current configuration of the SNF in the SFP, so it can transfer and distribute the 

heat efficiently to the entire SFP. Therefore, based on the parameters investigated, this 

research has determined the improvement factors or optimum SNF configuration 

which can improve the rate of heat transfer in the SFP during the loss of external 

cooling system accident. 
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1.3 Objectives of the Research 

Based on the preceding challenge and issues, this research is centred on the 

following objectives. 

1. To model the thermal behaviour of the spent fuel pool during the loss of 

external cooling system accident. 

2. To investigate the effect of spent nuclear fuel decay heat and axial temperature 

distribution on the thermal behaviour of the spent fuel pool during the loss of 

external cooling system accident. 

3. To determine improvement factors which can improve the passive cooling 

capability of the spent fuel pool during the loss of external cooling system 

accident. 

1.4 Scope of the Research 

In this research, a computational approach was used to develop the thermal 

model of SFP during the loss of external cooling system accident without considering 

others SFP parameters such as SFP criticality. The computation also does not consider 

any others accident such as loss of flow accident. The computations were computed 

by using computational fluid dynamic (CFD) software, Ansys Fluent 18.0. The design 

of the SFP used in this research is based on the conceptual design. In term of heat 

source, uniform SNF decay heat were used for all SNF in the SFP. Any change on the 

value of decay heat due to some factors such as the decay of the radionuclides and 

SNF loading time were neglected. 

Both single-phase and two-phase computation models based on conduction and 

convection heat transfer process were developed. Heat transferred due to radiation 

were not considered. The computation model then was used to investigate the effect 

of SNF axial temperature distribution on the temperature distribution in the SFP. Three 

different patterns of SNF temperature distribution were investigated. Other parameters 
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and factors which have been proven or has not been prove affecting the temperature 

distribution in the SFP such as SNF assembly’s arrangement, air movement conditions, 

SNF radial temperature distribution, and auxiliary cooling system were not 

investigated and were keep constant throughout the research.  

1.5 Significance of the Research 

In this research, the data and the results obtained provide meaningful 

information to assist the designer of SFP storage especially in term of SFP thermal 

analysis. This research suggested the suitable methods and steps in developing the SFP 

computational thermal model. The developed computational model can be used to 

predict the thermal behaviour of the SFP during the loss of external cooling system 

accident. The developed two-phase model also can be used to predict the SFP future 

condition such as the SFP water level. Appropriate actions can be taken based on this 

prediction. The developed model can be also applied to all types of SFP and other   

heat-related problems. 

This research also comes out with suggested SNF configurations in the SFP 

which can improve the heat transfer process in the SFP thus improving the natural 

cooling capability of the SFP. This improvement increased the SFP water boil-up time 

during accident thus increasing the safety level of the SFP. This improvement will also 

reduce the operating cost of the SFP since the natural cooling capability of the SFP 

were increase. This model could also be a reference to assist the designer in designing 

a long-term passive cooling system of the SFP or other related heat transfer system. 

Completely passively cooling spent fuel pool is one of the key technologies for the 

long-term passive cooling system (Ye et al, 2013). 
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Appendix A Sample analytical calculations for small-scale experimental model 

 

 

The heat balance equation during heating and boiling process: 

 

During heating process (T<100°C) 

QD = QH + QE + QC 

CpwMw (
dTw

dt
) = QD-QE-QC  

 

All the calculation parameters during heating process were based on average 

temperature which is 60 °C.  

 

1. Heat loss at the concrete wall due to conduction process: 

Calculation parameters: 

QD = 3600W, λc = 0.6
W

mK
, dw = 0.07m, A = 1.3924m2, Cpw = 4.187

kJ

kgK
 , 

Mw = 60.75kg 

 

Calculation: 

 

QC(T) =
λc(Tci-Tco)

dw
A 

= 0.6 (
W

mK
) ×

20

0.07
(
K

m
) × 1.3924(m2) 

= 238.7 W 

 

2. Heat loss at the water surface due to evaporation process: 

 

Calculation parameters: 

hfg = 2260
kJ

kg
, A = 0.135m2, ρa = 1.22

kg

m3
, 
ρ0-ρ∞

ρ∞
= 0.204 , l = 0.5m, 

 P = 101.325kPa, PS0 = 10kPa, v = 0.0475 × 10-5 m2

s
, D = 2.82 × 10-5 m2

s
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Gr = g |
ρo-ρ∞

ρ∞
| = 9.81|0.204|

0.53

(0.0475×10-5)2
= 1.11 × 1012  

c =
v

D
=

0.0475 × 10-5

2.82 × 10-5
= 0.0168 

Sh = 1.65 × 0.0185Gr0.4Sc0.4 = 391 

hD =
ShD

l
=

391(2.82 × 10-5)

0.5
= 0.02 

 

QE = hDρa (
0.622PS0

P
)hfgA 

= 0.02 (
m

s
) × 1.22 (

kg

m3
) × (

0.622 × 10kPa

101.325kPa
) × 2260 (

kJ

kg
) × 0.135(m2) 

= 0.45 kW 

 

Therefore, the time taken for the temperature of the water reach 100 °C: 

 

CpwMw (
dTw

dt
) = 3.6 kW-0.238 kW-0.45 kW 

4.187 × 60.75 × (
dTw

dt
) = 2.92 kW 

dTw

dt
= 0.0115 

dt = 6097 s = 1 hours 40 minutes 

 

 

During boiling process (100°C): 

 

QD = QB + QE + QC 

(
dMw

dt
) hfg = -(QD-QC-QE) 

 

All the calculation parameters during heating process were based on saturation 

temperature, 100 °C. 
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1. Heat loss at the concrete wall due to conduction process: 

 

Calculation parameters: 

QD = 3600W, λc = 0.6
W

mK
, dw = 0.07m, A = 1.3924m2, Cpw = 4.187

kJ

kgK
,  

Mw = 60.75kg 

 

Calculation: 

QC(T) =
λc(Tci-Tco)

dw
A 

= 0.6 (
W

mK
) ×

50

0.07
(
K

m
) × 1.3924(m2) 

= 0.546kW 

 

2. Heat loss at the water surface due to evaporation process: 

 

Calculation parameters: 

hfg = 2260
kJ

kg
, A = 0.135m2, ρa = 1.22

kg

m3, 
ρ0-ρ∞

ρ∞
= 0.204 , l = 0.5m, 

 P = 101.325kPa, PS0 = 15kPa, v = 0.0294 × 10-5 m2

s
, D = 3.81 × 10-5 m2

s
 

 

Calculation: 

 

Gr = g |
ρ0-ρ∞

ρ∞
|
l3

v2
= 9.81|0.204|

0.53

(0.0294 × 10-5)2
= 2.9 × 1012 

Sc =
v

D
=

0.0294 × 10-5

3.81 × 10-5
= 0.00772 

Sh = 1.65 × 0.0185Gr0.4Sc0.4 = 421 

hD =
ShD

l
=

967(3.81 × 10-5)

0.5
= 0.03 

 

QE = hDρa (
0.622PS0

P
)hfgA 

= 0.03 (
m

s
) × 1.22 (

kg

m3
) × (

0.622 × 15kPa

101.325kPa
) × 2260 (

kJ

kg
) × 0.135(m2) = 1 kW 
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The remaining heat were assumed used to change the phase of water: 

QD = QB + QE + QC 

(
dMw

dt
) 2260 = -(3.6kW-0.546 kW-1 kW) 

(
dMw

dt
) = 0.00092 

 

 

The total mass of water loss when the water level reached the top part of heater: 

Hw =
Mw

ρwAws
 

0.33(m) =
Mw

1000 (
kg
m3) × 0.135(m2)

 

Mw(kg) = 44.55 

dMw(kg) = 44.55 kg 

 

If the total mass of the water loss from the model is 44.5(kg), the time taken for the 

water level drop to the top surface of heater is: 

(
44.55(kg)

dt
) = 0.00092 

dt = 48000 s ≈ 13 hours  
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Appendix B Construction of small-scale experimental model 

 

1. Setting up the steel frame and dimension of the small-scale experimental 

model 

 

 

 

2. Construction of the model 
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3. Setting up the electrical component 

 

 

 

4. Coating the concrete with waterproof paint 
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5. Waterproof testing 
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