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Abstract 

The effectiveness of magnesium (Mg) alloys to improve the capability of bone tissue generation may be severely 

diminished if the required mechanical properties are not provided. Here, the effort is directed to model the 

mechanical performance of severely plastically deformed biodegradable ZK60 Mg alloy in bone regeneration 

protocols. For this purpose, the effects of parallel tubular channel angular pressing (PTCAP) on yield 

strength (σYS), ultimate tensile strength (σUTS), and elongation to failure (δ) were addressed. Given the 

multifaceted variables of the PTCAP with nonlinear interactions, a precise determination of the mechanical 

properties requires a large number of experiments. Therefore, gene expression programming (GEP) and genetic 

programming (GP) models were proposed to achieve appropriate combinations of mechanical properties for 

bone implant purposes based on a rational hypothesis that for correlation coefficient (|R|) higher than 0.8, a 

strong correlation is established between the predicted and measured values. The results verified that the 

highest mechanical performance was achieved at the second pass of PTCAP, thus has a great potential to be the 

most promising candidate for biodegradable implant material. Besides, the proposed models were capable of 

precisely predicting the mechanical performance of the SPD-processed biodegradable ZK60 Mg. 
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1 INTRODUCTION 

The substantial advancement in medical devices has noticeably improved the quality and longevity of human life. 

The medical devices involve various medical implants, which cover an extensive range of applications, e.g., artificial joints, 

stents, pacemakers, and lap-bands with the main aim to support tissue regeneration and provide optimal healing (Bazaka 

and Jacob, 2013). In this context, the utilization of bioresorbable implants is increasing and contending with more 

conventional titanium (Ti)-based implants (Yang et al., 2018). Polymeric implants have been used for several years as 

bioresorbable materials, but Mg-based alloys now offer an improved option. Accordingly, more recent developments 

within the bioresorbable implants market include Mg-based alloys because they present innovatory solutions and have 

higher biological efficiency (Chakraborty Banerjee et al., 2019). Besides, these alloys have attracted much attention due 

to their attractive properties compared to polymeric implants, such as mechanical characteristics similar to those of 

bone, degradation in body fluid, and ability to motivate the development of new bones (Dargusch et al., 2020). This 

suggests that Mg-based alloys are much more suited for use in orthopedic implants. However, some of their weak points, 

for instance highly anisotropic mechanical behavior, inadequate mechanical strength, and elongation to failure must be 

taken into account before applying for bone implants. These weaknesses can be addressed through various 

manufacturing strategies like severe plastic deformation (SPD) processes (Gopi, 2020; Kim et al., 2020; Yan et al., 2020), 

where the composition and the manufacturing process method must be chosen very carefully with regard to the 

necessities of an application. 

Several SPD processes, such as accumulative roll bonding (ARB) (Rao et al., 2019), high-pressure torsion (HPT) 

(Figueiredo and Langdon, 2019), equal channel angular pressing (ECAP) (Martynenko et al., 2019), and tubular channel 

angular pressing (TCAP) (Reshadi et al., 2015) are introduced as encouraging approaches for fabricating UFGs Mg-based 

alloys. Aside from these common methods, PTCAP is also made known as a new SPD technique for the fabrication of 

UFGs and nanostructured tubes, in which the deformation entails two half-cycles that are affected by a range of 

processing parameters involving deformation ratio, curvature angle and channel angle (Kasaeian-Naeini et al., 2019; 

Mesbah et al., 2016a; Mesbah et al., 2019). However, considering the multifarious factors of the SPD techniques with 

nonlinear interrelations, an accurate determination of the material features necessitates a large number of tests, which 

is not industrially and commercially cost-effective (Mesbah, 2013; Mesbah et al., 2014; Mesbah et al., 2016b; 

Wang et al., 2020). Therefore, to accurately examine the in vitro and in vivo performance of severely plastically deformed 

biodegradable Mg-based alloys, it is essential to model the mechanical properties of the processed alloys using more 

advanced machine learning (ML) schemes including Artificial Neural Networks (ANNs) (Bahrami-Karkevandi et al., 2019), 

Decision Trees (DTs) (Blanco-Justicia et al., 2020), Support Vector Machines (SVMs) (Land and Schaffer, 2020), Regression 

Analysis (RA) (Itano et al., 2020), Bayesian Networks (BNs) (McLachlan et al., 2020), and Genetic Algorithms (GAs) (Davis, 

1991). In these techniques, executing ML includes constructing a model that is trained on the training dataset and 

subsequently can process residual data to generate accurate predictions (Mueller et al., 2016; Rafieerad et al., 2016; 

Rafieerad et al., 2017). 

It has been over a decade since the notion that the merging of nanotechnology and ML will make further 

progress in the healthcare industry. In this regard, nanotechnology unites a range of scientific disciplines covering 

physics, chemistry, engineering, and biology, whereas ML can construct mathematical models based on specimen 

data to make predictions or decisions without being expressly planned to do the task (Adir et al., 2019; Azimi-Pour 

and Eskandari-Naddaf, 2018; Jones et al., 2016; Sacha and Varona, 2013). This suggests that creating a proper 

linkage between the nanotechnology and ML can advance modeling of biomechanical response, design of medical 

implants, and clinical treatment, whereby technological excellence in medical care will be achieved (González-Durruthy et al., 

2017; Heller et al., 2019). However, the maturation of this interdisciplinary approach requires a great deal of research in 

various aspects of fabrication, characterization, and performance evaluation of the advanced materials, particularly 

medical implants with improved design and biofunctionality (Cilla et al., 2017). 

Although there are numerous studies on SPD fabrication and refinement of various biodegradable Mg-based alloys 

and their impacts on microstructural evolution, the link between SPD processing parameters and the precise formulation 

of the mechanical behavior is not clear yet. In fact, most of the previous studies just focused on the microstructural and 

mechanical characterization (Khoubrou et al., 2020; Kim et al., 2009; Mueller and Mueller, 2007), regardless of the 

importance of properties modeling of the SPD-processed Mg-based alloys in industrial design, aimed at developing 

improved medical implants based on nanotechnology. Therefore, the present study aims to develop appropriate GEP 

and GP models for estimating the mechanical behavior of the SPD-processed biodegradable ZK60 Mg alloy, where the 

capability of the GAs versus restricted training dataset was addressed in detail for the first time. Here, the SPD method, 

number of the pass, and processing temperature were considered as input parameters to estimate the mechanical 

performance of the processed biodegradable Mg alloy as output. 
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2 MATERIALS AND METHODS 

2.1 ZK60 Mg alloy 

The ZK60 Mg alloy with a chemical composition of Mg–5.5Zn–0.5Zr–0.025Mn–0.025Al (wt%) was purchased as an 

extruded bar and it was then machined into cylindrical workpieces with 40 mm length, 20 mm external diameter, and 

2.5 mm thickness. 

2.2Fabrication method and the concept of a biodegradable implant 

The details of the fabrication and characterization of the UFG ZK60 Mg are described elsewhere (Mesbah et al., 

2019). In brief, a particular die with a φi channel as well as Ψ1 = 150° and Ψ2 = 0° curvature angles were made-up from 

hot-worked tool steel H13 hardened to 55 HRC, followed by the PTCAP using an INSTRON press machine. The specimens 

were subjected to PTCAP up to three passes at 300 °C with a ram speed of 5 mm min−1, wherein molybdenum disulfide 

(MoS2) was used as an inorganic lubricant to lessen the friction of the substance against the die. 

Schematic representation of the PTCAP procedure including preliminary status, first half-cycle, second half-cycle 

along with the die parameters, and an example of ZK60 Mg alloy after three-pass is shown in Figure 1. As illustrated in 

this figure, by applying the primary punch in the right direction, the cylindrical workpieces are driven into the deformation 

region during SPD-induced structural refinement that is composed of a tubular channel with two shear zones. 

The cylindrical workpieces are then pressed rearward into the same shear zones through the next punch to regain their 

initial size. It should be mentioned that tensile circumferential strain is achieved during the first half cycle, while within 

the second half cycle compression circumferential strain is gained. In this process, the overall accumulated plastic strain 

can be calculated based on the number of passes, channel angles, and curvature angles (Mesbah et al., 2019), where 

equivalent plastic strains of 1.8 and 5.4 were specified following the first and third passes of PTCAP, respectively. 

 

Figure 1. Schematic representation of the PTCAP procedure including preliminary status, first half-cycle, second half-cycle along 

with the die parameters, and ZK60 Mg alloy after three-pass. 

On the other hand, various problematic clinical situations can be addressed by the expansion of novel concepts, 

instruments, and medical implant design for surgical trials and exploration in orthopedics-traumatology. Figure 2 shows 

the human skeleton and the implantation of biodegradable ZK60 Mg alloy into the bone defects, wherein just the 

treatment of forearm and femur bones is presented as examples. In this concept, several factors have to be taken into 

consideration based on the highest standard, such as surgical decision making, implant positioning, reinforcement 

mechanisms, and evaluation of bone healing. For instance, in some cases (femur bone fractures), the favored treatment 

is the interior fixation with lag screws and/or cerclage wires and sealing the fracture line, coupled with a neutralization 

plate, wherein the screws/wires employed throughout the fracture make friction between the parts and counteract 

shearing forces, whereas the neutralization plate safeguards the stability from failing (Agarwala et al., 2017). This 

suggests that the mechanical strength of the medical implants must be tuned to meet the needs of tissue regeneration. 

Besides, the modulus of elasticity of Mg-based alloys are in the range of 40 to 45 GPa, which is well-matched with the 

natural bone stiffness (3–20 GPa), whereby can reduce the stress shielding effect as compared to usual metallic implants 

like titanium (Ti)-based alloys (~115 GPa), cobalt (Co)-based alloys (~230 GPa), and stainless steel (~200 GPa) (Kamrani 

and Fleck, 2019). Thus, the main focus here is only on estimating the mechanical features of the SPD-processed 

biodegradable ZK60 Mg alloy. It is also very important to note that the biodegradable implant should degrade at a rate 

fitted to tissue recovering, idyllically diminishing its mechanical strength in a manner harmonizing with an increment in 
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the load-bearing capability of the supporting tissue, as well as sustaining the mechanical entirety until the tissue has 

healed perfectly. In this respect, Mg2+ ions, which leak out throughout degradation, consume metabolically without any 

side effects and toxicity (Ding, 2016; Wang et al., 2019). 

 

Figure 2. Human skeleton and the implantation of biodegradable ZK60 Mg alloy into the bone defects. Here, only the treatment of 

forearm and femur bones is presented. 

2.3 Mechanical behavior modeling 

With the aim of material design, the most important step is to create an interaction model that can precisely portray 

the connection between the input material characteristics or processing parameters and the desired properties based 

on a certain dataset. The creation of traditional models is greatly dependent on physical intuition and procedures, for 

instance, utilizing energy conservation as well as thermodynamics laws to develop mathematical equations with typically 

linear or somewhat nonlinear parameters regressed from available reference data. In contrast, in ML training the model 

is done in a particular path using an elastic and commonly nonlinear form only from accessible data sources (Picklum and 

Beetz, 2019; Schmidt et al., 2019; Wei et al., 2019; Zhou et al., 2019). 

In the field of materials science and engineering, there are commonly multifaceted interactions between the 

configuration of a material and the favorite features; which are arduous to handle through conventional correlation 

schemes. Consequently, ML algorithms came into sight as a potential method for estimating the material properties as 

well as for optimum design purposes and materials screening. In this section, a general workflow for mechanical behavior 

modeling of biodegradable Mg-based alloys based on ML methods, involving descriptor generation and dimensionality 

reduction, model creation, and validation, as well as prediction of mechanical properties (i.e. δ, σYS, and σUTS) and 

verification of the experimental outputs is presented. This general workflow is shown in Figure 3, which includes the 

following steps: 

• The primary phase is to denote a numerical dataset of distinct material using a series of features (descriptors) 

and thus necessitates certain discipline knowledge about the grade and applications of materials. Zn is known as 

an extremely necessary element for humans so that almost all the physiological activities are intensely disturbed 

in its deficiency. On the other hand, Zr has a set of proper features for orthopedic purposes, e.g., high corrosion 

resistance, low specific weight, as well as biocompatibility (Lu et al., 2012). Accordingly, ZK series alloys, in 

particular, ZK40 and ZK60, have recently received considerable interest owing to their biocompatibility and 

biosafety (Liu et al., 2018). This suggests that ZK60 Mg alloy is a promising candidate for biodegradable metal 

implants for use in bone repair therapies (Byun et al., 2020). Based on the above considerations, ZK60 Mg alloy 

was chosen in the present study. Thus, as demonstrated in Figure 3, in the present case, a numerical dataset of 

the SPD-processed ZK60 Mg alloy and specific insight in mechanical behavior (i.e., σYS, σUTS, and δ) and its potential 

applications in implantology is required. Here, the mechanical behavior of the processed ZK60 Mg alloy was 
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examined using the load-displacement data, which collected from each run and converted into the engineering 

stress-strain curve, where elongation to failure was determined through the curves obtained. 

• The second phase is to create a sketching model between the descriptors and the objective characteristics 

based on recognized data for a set of reference materials, where a variety of ML techniques, such as ANNs 

(Bahrami-Karkevandi et al., 2019), DTs (Blanco-Justicia et al., 2020), SVMs (Land and Schaffer, 2020), RA 

(Itano et al., 2020), BNs (McLachlan et al., 2020), and GAs (Davis, 1991) can be employed. Here, GEP as a 

population-based progressive algorithm was established, wherein individuals were encoded as linear strings of fixed 

size (genome). Besides, GP has been used, as the first extended perfectly matched layer (EPML) technique, to show 

the estimation power of the developed GEP models. 

• In the third phase, the reverse design is done to acquire new structures with favorite performance derived from the 

developed ML-based models and the most encouraging candidate can eventually be fabricated and its actual 

features can be established on trial (Zhou et al., 2019). Here, the model comparison plots of the estimated values 

against the real data are presented in support of GEP and GP models for δ, σYS, and σUTS. 

 

Figure 3. A general workflow for mechanical behavior modeling of biodegradable Mg-based alloys based on ML methods, involving 

descriptor generation and dimensionality reduction, model creation and validation, as well as prediction of mechanical properties 

(i.e., δ, σYS, and σUTS) and verification of the experimental outputs. 

The limit values of input and output variables used in the GEP and GP models are summarized in Table 1. It should 

be noted that further details on input and output variables can be found in the literature (Dumitru et al., 2014; He et al., 

2010; Mostaed et al., 2014; Orlov et al., 2011; Vinogradov, 2017). 

Table 1. The limit values of input and output variables. 

 Minimum Maximum 

Data used in the GP and GEP models 

Input Parameters  

SPD Method M1 M3 

The number of passes 0 8 

Temperature (K) 273 573 

Output Parameters  

δ (%) 4 35.1 

σYS (MPa) 120 320 

σUTS (MPa) 221 397 
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3 RESULTS 

3.1 Mechanical properties of ZK60 Mg alloy 

Figure 4 shows the radar charts of the mechanical properties (δ (%), σYS (MPa), and σUTS (MPa)) of the SPD-processed 

biodegradable ZK60 Mg alloy based on the used dataset, which is collected from our previous work (Mesbah et al., 2019) 

and the relevant literature (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 2014; Orlov et al., 2011; Vinogradov, 

2017). The corresponding dataset is summarized in Table 2. Since the main objective of the present study is on modeling 

the mechanical behavior of severely plastically deformed biodegradable ZK60 Mg alloy, the dataset includes only the 

values obtained from processed ZK60 Mg alloy by different SPD methods, including PTCAP, ECAP, and HRDSR, where the 

type of SPD process, number of the pass, and processing temperature were considered as input parameters to model 

the mechanical behavior of the processed biodegradable ZK60 Mg alloy as output. Based on Figure 4 as well as Table 2, 

higher mechanical strength was observed at the second PTCAP pass as compared to the results of the tensile test of the 

unprocessed and other processed ZK60 Mg alloy. 

 

Figure 4. Radar charts of the mechanical properties of the SPD-processed biodegradable ZK60 Mg alloy (a) σYS (MPa), (b) σUTS (MPa), 

and (c) δ (%) based on the used dataset. 

Table 2. The collected dataset from our prior findings (Mesbah et al., 2019) and the literature (Dumitru et al., 2014; He et al., 2010; 

Mostaed et al., 2014; Orlov et al., 2011; Vinogradov, 2017). 

Alloy 

Input Parameters Output Parameters 

Ref. SPD 

Method 
Pass T (K) δ (%) 

σYS 

(MPa) 

σUTS 

(MPa) 

ZK60-1 M1 1 0 273 6 176 241 (Mesbah et al., 2019) 

ZK60-2 M1 1 573 11 262 332 (Mesbah et al., 2019) 

ZK60-3 M1 2 573 14 320 397 (Mesbah et al., 2019) 

ZK60-4 M1 3 573 4 230 267 (Mesbah et al., 2019) 

ZK60-5 M2 2 4 523 17 233 316 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-6 M2 4 473 21 216 290 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-7 M2 4 423 30 268 300 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-8 M2 8 423 24 216 283 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-9 M2 1 523 20 175 290 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-10 M2 2 523 25 175 325 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-11 M2 3 523 29 175 320 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-12 M2 4 523 30 140 300 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 
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Alloy 

Input Parameters Output Parameters 

Ref. SPD 

Method 
Pass T (K) δ (%) 

σYS 

(MPa) 

σUTS 

(MPa) 

ZK60-13 M2 4 513 28.1 120 221 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-14 M2 8 513 35.1 125 226 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-15 M2 2 523 24 180 277 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

ZK60-16 M3 3 1 473 30 286 338 (Dumitru et al., 2014; He et al., 2010; Mostaed et al., 

2014; Orlov et al., 2011; Vinogradov, 2017) 

1 PTCAP parallel tubular-channel angular pressing; 2 ECAP equal channel angular pressing; 3 HRDSR high-ratio differential speed rolling 

3.2 Predictive modeling construction for mechanical behavior of biodegradable ZK60 Mg alloy 

In this section, the GP and GEP-based mathematical models are developed for use in the mechanical assessment of 

the SPD-processed biodegradable ZK60 Mg alloy aimed at enhancing mechanical integrity for temporary metallic 

implants. For preparing a good dataset, it is essential to consider those parameters that have the greatest effect on the 

system performance. In the present study, the method of SPD (xm), number of passes (xp), and temperature of the 

manufacturing process (xtk) are among the most important parameters that influence the mechanical properties of the 

processed ZK60 Mg alloy, as demonstrated in Figure 5. All these parameters mentioned in Table 2, are introduced to the 

models as the input parameters, while σYS, σUTS, and δ that are designated as the performance symbols, are considered 

as the output parameters. Here, the GP and GEP models make a relationship between all the input parameters and the 

output. This relationship as the harvest of the GP and GEP models is provided in the form of expression trees (ETs) as 

illustrated in Figures 6, 7, 8, 10, 11, and 12, which is translated into a mathematical formula as explained in the following 

paragraphs. 

 

Figure 5. Developing GP and GEP-based mathematical models for the mechanical behavior of the SPD-processed biodegradable 

ZK60 Mg alloy. 

For this purpose, the parameters of GP and GEP must be placed in the training dataset. Since more training 

dataset represents a better model and more testing data stands for better accuracy on testing results, we split the 

dataset 50‒50% for training and testing (Sa et al., 2017). Accordingly, among sixteen trial datasets, eight sets were 

chosen for the training phase and the remaining eight sets were used for the testing phase in the GP and GEP modeling 

to assess the capability of these GAs versus restricted datasets (see Table 2). 

Table 2. Continued... 
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3.2.1 Performance indicators 

Here, the statistic factors including the mean absolute error (MAE), the mean squared error (MSE), and correlation 

coefficient (R) were used to check the accuracy of the recommended GP and GEP models in the training and testing 

phases: 

MAE =
∑ |ℎ𝑖𝑖−𝑡𝑡𝑖𝑖|𝑛𝑛𝑖𝑖=1𝑛𝑛 ,  (1) 

MSE =
∑ (ℎ𝑖𝑖−𝑡𝑡𝑖𝑖)2𝑛𝑛𝑖𝑖=1 𝑛𝑛 ,  (2) 

R =
(∑ (ℎ𝑖𝑖−ℎ𝚤𝚤���) (𝑡𝑡𝑖𝑖−𝑡𝑡𝚤𝚤�𝑛𝑛𝑖𝑖=1 ))∑ (ℎ𝑖𝑖−ℎ𝚤𝚤���)2∑ (𝑡𝑡𝑖𝑖−𝑡𝑡𝚤𝚤�)2𝑛𝑛𝑖𝑖=1𝑛𝑛𝑖𝑖=1   (3) 

where hi and ti are the real and the estimated output values for the ith specimen, respectively. Besides, n is the number 

of samples, ℎ𝚤𝚤�  represents the mean of the actual values, and 𝑡𝑡𝚤𝚤�stands for the mean of the predicted values. It is worth 

mentioning that if the model is a perfect fit for the data, then the R is 1, and MSE and MAE are 0. Thus, the R-value of 

much less than one and a higher MSE and MAE indicate a poorer prediction (Yong et al., 2020). 

3.2.2 GEP-based models 

As a common approach, the fitness function must first be selected to develop GEP-based models. For that reason, 

the fitness (fi) of a given program (i) is initially measured by the following equation (Sarıdemir, 2010): 𝑓𝑓𝑖𝑖 = ∑ (M−Ct𝑗𝑗=1 �𝐶𝐶(𝑖𝑖,𝑗𝑗) − 𝑇𝑇𝑗𝑗�),  (4) 

where M, C(i,j), and Tj are the selection range, the value got back by the individual chromosome i for fitness case j (out 

of Ct fitness cases), and the objective value for fitness case j. The benefit of this type of fitness functions is that the system 

can acquire the best possible solution for itself. Three input parameters comprising xm, xp, xtk are entered as input 

variables and considered to construct the GEP model as input layers, while the output layers are set on σYS, σUTS, and δ. 

Figures 6-8 display the constructed ETs of the GEP approach models for σYS, σUTS, and δ based on the equations (5), (6), 

and (7), respectively, where the number of genes and the head length were ascertained after several trials for the GEP 

formulation. 

𝜎𝜎𝑌𝑌𝑌𝑌 = ���Cos(𝑥𝑥𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑝𝑝� − (𝑥𝑥𝑡𝑡𝑡𝑡)� − �ln �𝑥𝑥𝑝𝑝3 ��+ ��𝑥𝑥𝑝𝑝 − 2.8�× (9.33(𝑥𝑥𝑡𝑡𝑡𝑡))�+ ��Cos(𝑥𝑥𝑚𝑚 + 9.5) × 𝑥𝑥𝑝𝑝��,  (5) 

𝜎𝜎𝑈𝑈𝑈𝑈𝑌𝑌 = �(Cos(𝑥𝑥𝑚𝑚2 + 4.24)) × �4.24𝑥𝑥𝑝𝑝 − 18��+ �(𝑥𝑥𝑚𝑚 + 6) × �Sin(𝑥𝑥𝑚𝑚 + 17) × 𝑥𝑥𝑝𝑝��+ ��𝑥𝑥𝑝𝑝 − 20�×�8.24 × Cos�𝑥𝑥𝑝𝑝���+ ��(sin(𝑥𝑥𝑡𝑡𝑡𝑡) + 5.8) × (46)� − �log�𝑥𝑥𝑡𝑡𝑡𝑡��,  (6) 

𝛿𝛿 = [(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴((𝑥𝑥𝑃𝑃)2 − 0.88)− cos(𝑥𝑥𝑚𝑚))3] + ���sin
𝑥𝑥𝑃𝑃𝑥𝑥𝑚𝑚 + 405.22 + 𝑥𝑥𝑡𝑡𝑡𝑡3 �× (𝑥𝑥𝑚𝑚)�+ �(𝑥𝑥𝑃𝑃) × �cos�(cos(𝑥𝑥𝑃𝑃)3) ×

(𝑥𝑥𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑚𝑚)���  (7) 

As mentioned above, in these ETs, xm, xp, xtk are the values for input layers, which are the SPD method, number of 

the pass, and temperature of the manufacturing process, respectively. Among sixteen datasets, 50% dataset was 

arbitrarily selected for the training segment and the residual set was employed for the testing phase to estimate the 

potential of GEP against limited datasets, which did not play any role in constructing the models (see Table 2). Lastly, the 

models with the best elongation to failure, the yield strength, and the ultimate tensile strength on both of the training 

and testing phases were chosen as the results of the runs. It can also be observed that 20, 45, and 30 number of 

chromosomes creates the best generation of individuals predicting the σYS, σUTS, and δ. The best GEP models with the 

well-adapted parameters were achieved following several runs, as presented in Tables 3-5. It should be noted that the 

selection of the set of terminals and functions are essential to generate the chromosomes, wherein the first one (terminal 

set) is composed of the independent variable, i.e. xm, xp, xtk, and the second one contains some basic functions 

(power (x, y*), e, Log, Cos, Sin, Arc Tan) and (×, /, +, -) as four basic arithmetic operators. 



Mechanical properties modeling of severely plastically deformed biodegradable ZK60 magnesium alloy 

for bone implants 

Yan Zhang et al. 

Latin American Journal of Solids and Structures, 2020, 17(5), e293 9/21 

Table 3. The parameters of GEP and GP corresponding to yield strength (σYS). 

Method  Parameters Value 

GEP General Chromosomes 20 

Function set ×, /, +, -, power (x, y*), e, Cos, Sin 

Number of genes 4 

Head size 6 

Linking function + 

Fitness Function MSE  

Genetic Operators Mutation rate 0.09 

One-point recombination rate 0.2 

Two-point recombination rate 0.1 

Gene recombination rate 0.3 

Gene transportation rate 0.3 

Numerical Constant Constants per gene 4 

Data type Floating Point 

Lower bound -10 

Upper bound +10 

GP General Number of population size 600 

Function set +, -, ×, ÷, e, √, Arc Tan 

Value of reproduction 0.3 

Value of mutation 0.03 

Value of crossover 0.5 

Selection method Roulette-wheel 

Type of initialization method Half 

Number of generation 900 

Fitness function MSE  

Table 4. The parameters of GEP and GP corresponding to ultimate tensile strength (σUTS). 

Method  Parameters Value 

GEP General Chromosomes 45 

Function set ×, /, +, -, power (x, y*), Log, Sin, Cos 

Number of genes 3 

Head size 7 

Linking function + 

Fitness Function MSE  

Genetic Operators Mutation rate 0.03 

One-point recombination rate 0.5 

Two-point recombination rate 0.3 

Gene recombination rate 0.4 

Gene transportation rate 0.4 

Numerical Constant Constants per gene 3 

Data type Floating Point 

Lower bound -10 

Upper bound +10 

GP General Number of population size 750 

Function set +, -, ×, ÷, Sin, √, Log, Cos 

Value of reproduction 0.4 

Value of mutation 0.01 

Value of crossover 0.7 

Selection method Roulette-wheel 

Type of initialization method Half 

Number of generation 680 

Fitness function MSE  
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Table 5. The parameters of GEP and GP corresponding to elongation to failure (δ). 

Method  Parameters Value 

GEP General Chromosomes 30 

Function set ×, /, +, -, power (x, y*), Arc Tan, Sin, Cos 

Number of genes 3 

Head size 8 

Linking function + 

Fitness Function MSE  

Genetic Operators Mutation rate 0.02 

One-point recombination rate 0.3 

Two-point recombination rate 0.5 

Gene recombination rate 0.2 

Gene transportation rate 0.2 

Numerical Constant Constants per gene 5 

Data type Floating Point 

Lower bound -10 

Upper bound +10 

GP General Number of population size 600 

Function set +,-,×,÷,e,√, Arc Tan 

Value of reproduction 0.3 

Value of mutation 0.03 

Value of crossover 0.5 

Selection method Roulette-wheel 

Type of initialization method Half 

Number of generation 900 

Fitness function MSE  

One of the main purposes of this work is to predict the objective parameters in the output layers using GEP, where 

this approach can be fulfilled just by utmost R or minimum MAE and MSE. In the present case, these obligations were 

satisfied by the following criteria: 

For σYS, if the genes' number used is three (Sub-ETs), and linking function used is addition (+) (Figure 6). In the first 

sub-ET, it is observed that different functions such as (Cos, +, – ,∛) have been applied. Moreover, inputs such as 𝑥𝑥𝑃𝑃 and 𝑥𝑥𝑡𝑡𝑡𝑡 have been used to form the first sub-ET of the main ET of variable σYS. In the second sub-ET of the model, it can be 

seen that functions such as (×, – ) have been utilized. Moreover, independent variables such as 𝑥𝑥𝑝𝑝 and 𝑥𝑥𝑡𝑡𝑡𝑡 were used to 

formulate this sub-ET. In the last sub-ET (×, Cos, +) are the main functions. These functions and inputs such as 𝑥𝑥𝑃𝑃, and 𝑥𝑥𝑚𝑚 are performed to structure the third sub-ET for formulating the σYS dependent variable. 

 

Figure 6. Expression tree of GEP model for the yield strength (σYS, MPa) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2, and (c) sub-ET 3. 

For σUTS, if the genes' number used is four (Sub-ETs), and linking function used is addition (+) (Figure 7). As is seen 

in this figure, in the first sub-ET, different functions such as (Cos, Power2,+, –, ×) have been applied. Moreover, inputs 

such as 𝑥𝑥𝑃𝑃 and 𝑥𝑥𝑚𝑚 have been used to form the first sub-ET of the main ET of variable σUTS. In the second sub-ET of the 
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model, it can be seen that functions such as (Sin, +, ×) have been utilized. Moreover, independent variables such as 𝑥𝑥𝑚𝑚 and 𝑥𝑥𝑝𝑝 were used to formulate this sub-ET. In the third sub-ET of the model, it can be seen that functions such as (Cos, –, ×) have 

been utilized. Moreover, just 𝑥𝑥𝑝𝑝 as the independent variable was used to formulate this sub-ET. In the last sub-ET �Sin, Log, – , +, ×,√� are the main functions. These functions and input 𝑥𝑥𝑡𝑡𝑡𝑡 were performed to structure the third sub-ET 

for formulating the σUTS dependent variable. 

 

Figure 7. Expression tree of GEP model for the ultimate tensile strength (σUTS, MPa) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2,  

(c) sub-ET 3, and (d) sub-ET 4. 

For δ, if the genes' number used is three (Sub-ETs), and the linking function used is addition (+) (Figure 8). From this 

figure, different functions such as (Power 2, Power 3, Arc Tan, Cos, and – ) have been employed. Also, inputs including 𝑥𝑥𝑃𝑃 and 𝑥𝑥𝑚𝑚 have been utilized to form the first sub-ET of the main ET of variable δ. In the second sub-ET of the model, it 

can be seen that functions for instance (Cube Root (R3), Sin, +,/,×) have been utilized, where independent variables 

such as 𝑥𝑥𝑚𝑚, 𝑥𝑥𝑃𝑃, and 𝑥𝑥𝑡𝑡𝑡𝑡 were used to formulate this sub-ET. In the last sub-ET, (Cos,−, +,×) are the main functions. 

These functions and inputs, including 𝑥𝑥𝑚𝑚, 𝑥𝑥𝑃𝑃, and 𝑥𝑥𝑡𝑡𝑡𝑡 were employed to structure the third sub-ET for formulating the δ 

dependent variable. 

 

Figure 8. Expression tree of GEP model for the elongation to failure (δ, %) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2, and (c) sub-ET 3. 
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Scatter plots of predicted versus measured values of the yield strength (σYS, MPa), the ultimate tensile strength 

(σUTS, MPa), and the elongation to failure (δ, %) of the processed ZK60 Mg alloy for GEP model in training and testing 

phases are illustrated in Figure 9. Figure 9a indicates that the model is accurate based on MSE, MAE, and R values. As it 

is observed, the MSE, MAE, and R of the model are 17.133, 7.088, and 0.93, respectively. After achieving the appropriate 

results in training, the rest 50% data set is applied to evaluate the predictive ability of the GEP model in estimating σYS, 

MSE, MAE, and R of the GEP model in prediction (unseen data set) reached 18.68, 3.55, and 0.99, respectively (Figure 9b). 

Figure 9c shows the accuracy of the proposed model for σUTS based on MSE, MAE, and R values in training. As it is 

observed, the error of the model is 172.4 for MSE and 10.768 for MAE, while the R-value of the model is 0.946. As shown 

in Figure 9d, MSE and MAE of the GEP model in prediction (unseen dataset) are 158.17 and 9.51, respectively, and R is 

0.963 (more precise than the training segment). Figure 9e displays the accurateness of the model founded on 

MSE (13.51), MAE (3.275), and R (0.935). Similar to previous variables, after obtaining the fitting results in training, the 

rest 50% dataset is utilized to check the predictive capability of the GEP model in estimating δ. Figure 9f demonstrates 

that the model can predict the unseen dataset accurately. 

 

Figure 9. Scatter plots of predicted versus measured values of (a,b) the yield strength (σYS, MPa), (c,d) the ultimate tensile strength 

(σUTS, MPa), and (e,f) the elongation to failure (δ%) of the processed ZK60 Mg alloy for GEP model in training and testing phases. 
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3.2.3 GP-based models 

One of the most frequent methods to illustrate the power of a predictive model is to compare the model with other 

predictive procedures. In the present work, we have employed GP, as the first EPML technique, to display the estimation 

power of the developed GEP model (Fallahpour et al., 2016). Accordingly, as one of the main goals of this study, precise 

mathematical models were developed by GP for the mechanical performance of the SPD-processed biodegradable ZK60 

Mg alloy based on the above-mentioned input variables (f(xm,xp, xtk)), where GPLAB software was employed to run the GP 

model. It is found that the determination of the proper parameters for the GP is an error-based approach (Fallahpour et al., 

2016). This shows that if the output is not desirable the parameters optimization process must be remade. As summarized in 

Tables 3-5, in the present work, the number of population size is 600, 750, and 600; function set is (+, -, ×, ÷, e, √, Arc Tan),  
(+, -, ×, ÷, Sin, √, Log, Cos), and (+, -, ×, ÷, e, √, Arc Tan); the reproduction value is 0.3, 0.4, and 0.3; the mutation value is 0.03, 

0.01, and 0.03; the crossover value is 0.5, 0.7, and 0.5; fitness function is the mean squared error (MSE), the selection 

method is roulette-wheel, the initialization method type is Half, and the number of generation is 900, 680, and 900 for 

the σYS, σUTS, and δ, respectively. Finally, the mathematical predictors of σYS, σUTS, and δ using the GP algorithm are 

expressed as equations (8), (9), and (10), respectively. Once the equations were identified, the abilities of these models 

are assessed by applying the testing dataset in terms of MAE, MSE, as well as R. Figures 10-12show the parse trees of the 

GP approach models for σYS, σUTS, and δ, respectively, wherein the number of the gene is three for all the GP formulations. 

𝜎𝜎𝑌𝑌𝑌𝑌 = ��𝑙𝑙𝑙𝑙𝑙𝑙��𝑥𝑥𝑡𝑡𝑡𝑡��3 + 𝑥𝑥𝑝𝑝�+ �((cos(𝑥𝑥𝑚𝑚) + 𝑥𝑥𝑚𝑚)3) × � 𝑥𝑥𝑡𝑡𝑡𝑡𝑒𝑒𝑥𝑥𝑚𝑚��+ (cos(𝑥𝑥𝑡𝑡𝑡𝑡)− 𝑥𝑥𝑚𝑚)3,  (8) 

𝜎𝜎𝑈𝑈𝑈𝑈𝑌𝑌 = �𝑥𝑥𝑝𝑝cos(𝑥𝑥𝑚𝑚)2�+ (𝐴𝐴𝑙𝑙𝑐𝑐(𝑥𝑥𝑚𝑚)𝑥𝑥𝑚𝑚) + (𝑐𝑐𝑠𝑠𝐴𝐴(𝑥𝑥𝑡𝑡𝑡𝑡)− log��𝑥𝑥𝑡𝑡𝑡𝑡�),  (9) 

𝛿𝛿 =  �𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑚𝑚 + �(𝑐𝑐𝑠𝑠𝐴𝐴(𝑥𝑥𝑡𝑡𝑡𝑡)) + (𝑥𝑥𝑝𝑝 − 𝑐𝑐𝑠𝑠𝐴𝐴(𝑥𝑥𝑚𝑚))�+ �𝑥𝑥𝑚𝑚 +
𝑒𝑒𝑠𝑠𝑖𝑖𝑛𝑛�𝑥𝑥𝑡𝑡𝑡𝑡��𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥𝑚𝑚)+𝑐𝑐𝑐𝑐𝑠𝑠�𝑥𝑥𝑝𝑝��  (10) 

 

Figure 10. Parse tree of GP model for the yield strength (σYS, MPa) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2, and (c) sub-ET 3. 

 

Figure 11. Parse tree of GP model for the ultimate tensile strength (σYS, MPa) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2, and (c) sub-ET 3. 
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Figure 12. Parse tree of GP model for the elongation to failure (δ, %) as sub-ETs; (a) sub-ET 1, (b) sub-ET 2, and (c) sub-ET 3. 

After the relationships were established, the robustness of the models was tested against the testing set. Figure 13 

shows scatter plots of predicted versus measured values of the elongation to failure (δ, %), the yield strength (σYS, MPa), 

and the ultimate tensile strength (σUTS, MPa) of the processed ZK60 Mg alloy for GP model in training and testing phases, 

where the linear least-square fit line and the MAE, MSE, as well as R values, are illustrated for the training and testing sets. 

From Figure 13a, the values of MSE, MAE, and R for σYS in the training phase are 93.87, 15.986 and 0.873, respectively. 

Following the training segment, the remaining eight sets were employed for the testing phase to evaluate the predictive 

capability of the proposed models in measuring the mechanical behavior of the specimens. The statistical values of MSE, 

MAE, and R from testing in the GP model for σYS were found as 21.43, 11.08, and 0.902, respectively (Figure 13b). In the 

case of σUTS, MSE, MAE, and R values in the training phase are 189.23, 11.77, and 0.92, respectively (Figure 13c). These 

statistical values for σUTS in the testing phase were found to be 191.65, 13.51, and 0.918, as shown in Figure 13d. From 

Figure 13e, the values of MSE, MAE, and R for δ in the training phase are 19.33, 3.94, and 0.902, respectively. These 

statistical values for δ in the testing segment reached 11.23, 4.774, and 0.901, respectively (Figure 13f). This assessment 

corroborates that the proposed models are precisely founded on the values of MAE, MSE, and R. 

 

Figure 13. Scatter plots of predicted versus measured values of (a,b) the yield strength (σYS, MPa), (c,d) the ultimate tensile strength 

(σUTS, MPa), and (e,f) the elongation to failure (δ, %) of the processed ZK60 Mg alloy for GP model in training and testing phases. 
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4 DISCUSSION 

4.1 Mechanical behavior of ZK60 Mg alloy 

Referring to Figure 4a and bas well as Table 2, higher mechanical strength was detected at the second PTCAP pass 

as compared to other processed ZK60 Mg alloy. Since the mechanical behavior of the metallic implants principally counts 

on the microstructural features, so varying the microstructure of medical implant results in impressive alterations in the 

microhardness, mechanical strength, and ductility. In other words, the mechanical strength of UFG alloys can be 

controlled by the size of grains in accordance with the Hall–Petch relationship (Hansen, 2004): 𝜎𝜎 = 𝜎𝜎0 + 𝑘𝑘𝑙𝑙𝐿𝐿�−1/2 (11) 

where σ is the yield stress at a mean linear intercept grain size 𝐿𝐿�, while σ0 and kg are the Hall–Petch constants. It should 

be noted that this relationship is unsound as the grain size is less than 20 nm. 

Based on our previous findings that the grain sizes of the PTCAP-processed ZK60 alloy are greater than 20 nm 

(Mesbah et al., 2019), we hypothesized that the improvement in the mechanical behavior of the ZK60-3 sample is 

attributed to a higher shear strain and a better microstructural refinement (a finer microstructure and a rise in the 

fraction of the region occupied by finer grains) during the PTCAP process (Faraji et al., 2012) compared to the other SPD 

processes, such as ECAP and high-ratio differential speed rolling (HRDSR) methods (Mostaed et al., 2014; Orlov et al., 

2011). The other justification for improving the mechanical strength is the dissolution, fragmentation, and the 

rearrangement of the second phase, such as MgZn, MgZn2, ZrZn2, and ZrZn3 (≤ 100 nm), during keeping time in the PTCAP 
channel and/or reheating between the passes. However, the drop in mechanical properties, despite the significant 

decrease in grain size in the ZK60-3, may have been caused by further development of the crystallographic defects like 

cracks and voids (Faraji et al., 2018).As evidenced in Figure 4c, although the PTCAP processing up to two passes has 

improved the ductility of the ZK60 alloy compared to the non-treated alloy, the percentage of improvement is lower than 

the other states. For instance, following one pass, δ raised from an initial value of 6% for the as-received alloy to around 

11% and at the second pass reached a maximum of 14%, which shows a ~133% improvement in ductility, as compared 

to the non-treated alloy. However, in comparison with ZK60-14, which processed by 8 passes ECAP and showed a 485% 

improvement, the enhancement of ductility is not very impressive. In terms of the alloy composition, the obtained results 

also show that the biodegradable ZK60 Mg alloy processed by PTCAP with 2 passes possesses the highest mechanical 

strength as compared to the other TCAP and PTCAP processed Mg-based alloys like AZ31 and AZ91 (Abdolvand et al., 

2017; Eftekhari et al., 2018). Also, from the Formability Index (FI) point of view, which can be estimated from the 

following relationship (Mesbah et al., 2019), the highest value of FI (5558 MPa%) was achieved in the case of 

biodegradable ZK60 Mg alloy processed by PTCAP with 2 passes. This discrepancy can be caused by the differences in 

primary grain size, the temperature of SPD processes, and texture development (Segal, 2018). 𝐹𝐹𝐹𝐹(𝑀𝑀𝑀𝑀𝐴𝐴%) = 𝜎𝜎𝑈𝑈𝑈𝑈𝑌𝑌(MPA) × 𝛿𝛿(%)  (12) 

where FI, σUTS, and with δ are Formability Index, ultimate tensile strength, and elongation to failure, respectively. These 

results corroborate that among various types of biodegradable Mg-based alloys, the processed ZK60 Mg alloy by PTCAP 

with improved mechanical performance is the most promising candidate for use as a potential biodegradable implant 

material. However, the degradation rate of biodegradable ZK60 Mg alloy must be assessed and tuned in future works to 

meet an increase in load-bearing capacity of the supporting tissue and to sustain the mechanical integrity until the tissue 

is perfectly repaired. It is worth noting that in addition to characteristics of temporary implants (biological and mechanical 

properties), a patient must have an appropriate bone density and a robust immune system for successful implantation 

(Brar et al., 2009; Mariani et al., 2019; Pogorielov et al., 2017). 

4.2 Statistical tests 

Table 6 presents the assessment of the accuracy of the GEP models in terms of statistical tests. Following a rational 

assumption, it is argued that for |R| higher than 0.8, a robust correlation is present between the predicted and measured 

values (Smith, 1986). In all circumstances, the values of error, e.g. MAE and MSE, are supposed to at the lowest amount 

(Fallahpour et al., 2017). It should be mentioned that in the present study R is the root square of R2. The achieved results 

corroborate that the proposed GEP-models have a very good performance on both of the training and testing datasets 

for all the three variables. More to the point, new factors recommended by Golbraikh and Tropsha (2002) were tested 
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out as the exterior corroboration of the models on the testing datasets. It is suggested that in any case one slope of the 

regression lines (k or k′) through the origin must be close to 1 (Mollahasani et al., 2011). It should be mentioned that k 

and k′ are the regression line slopes between the regressions of actual output (hi) against predicted output (ti) or ti 
against hi through the origin, i.e. hi = k ti and ti = k′hi, respectively. Besides, the performance indexes of m and n as the 

two factors for assessing the performance of the model must be below 0.1. In addition to these indexes, another 

performance indicator, i.e. 𝑅𝑅𝑚𝑚 is proposed (Roy and Roy, 2008), wherein the circumstance is fulfilled for 𝑅𝑅𝑚𝑚 > 0.5. Either 

the squared correlation coefficient (through the origin) between predicted and experimental values (Ro2), or the squared 

correlation coefficient between experimental and predicted values (Ro′2) should be close to R2 and to 1 (Alavi and 

Gandomi, 2011). Based on the given data in Table 6, the developed models gratify all of the obligatory circumstances, 

and thus this validation phase guarantees that the projected models are robustly proper and applicable. 

Table 6. Statistical factors of the decision model for external validation. 

Item Formula Condition σYS σUTS δ 

1 R 0.8 < 𝑅𝑅 0.99 0.963 0.922 

2 𝑘𝑘 =
∑ (ℎ𝑖𝑖 × 𝑡𝑡𝑖𝑖)𝑛𝑛𝑖𝑖=1ℎ𝑖𝑖2  

0.85 < 𝑘𝑘 < 1.15 1.11 1.01 0.995 

3 𝑘𝑘′ =
∑ (ℎ𝑖𝑖 × 𝑡𝑡𝑖𝑖)𝑛𝑛𝑖𝑖=1 𝑡𝑡𝑖𝑖2  

0.85 < 𝑘𝑘′ < 1.15 1.04 1.007 1.003 

4 𝑚𝑚 =
𝑅𝑅2 − 𝑅𝑅𝑐𝑐2𝑅𝑅2  

|𝑚𝑚| < 0.1 0.013 0.041 0.022 

5 𝐴𝐴 =
𝑅𝑅2 − 𝑅𝑅𝑐𝑐′2𝑅𝑅2  

|𝐴𝐴| < 0.1 0.009 0.007 0.022 

6 𝑅𝑅𝑚𝑚 = 𝑅𝑅2 × �1− ��𝑅𝑅2 − 𝑅𝑅𝑐𝑐2�� 
0.5 < 𝑅𝑅𝑚𝑚 0.978 0.951 0.832 

4.3 Comparison of GP and GEP models 

As illustrated in Figures 9 and 13, the training set outcome verified that the proposed GEP and GP models have 

remarkably well learned the non-linear relationship between the input and the output variables with great solidarity and 

relatively low error values. Also, comparing the GEP and GP approach models prediction with the experimental 

consequences for the testing phase reveals a high generalization capability of the projected models and relatively low 

error values. This suggests the prosperous performance of the GEP and GP models for predicting the elongation to failure 

(δ, %), the yield strength (σYS, MPa), and the ultimate tensile strength (σUTS, MPa) of biodegradable Mg-based alloys as 

temporary orthopedic implants in training and testing phases. Figure 14 demonstrates the model comparison plots of 

the estimated values against the real data in support of GEP and GP models for δ, σYS, and σUTS. In fact, this figure makes 

available a synopsis on dissimilarities between the accurateness attained for disparate models in the testing phase. It is 

crystal clear from the graphs that both GEP and GP models do predict accurately the elongation to failure, the yield 

strength, and the ultimate tensile strength; however, the comparison between these models exhibits that the GEP model 

is more accurate than the GP model. This result is in good agreement with those available in the literature (ADMA, 2006; 

Faradonbeh et al., 2018). Therefore, it can be concluded that although both methods are capable of providing algebraic 

equations, the GEP approach model is more accurate than the GP procedure in estimating the mechanical properties of 

the processed ZK60 Mg alloy, especially for bone implant applications. 

 

Figure 14. Model comparison plots of the estimated values against the real data for GEP and GP models, (a) the elongation to 

failure (δ, %), (b) the yield strength (σYS, MPa), and (c) the ultimate tensile strength (σUTS, MPa). 
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According to the results, it can be argued that GEP and GP as genetic algorithms are condemned to face one of two 

constraints: (i) if they are straightforward to manipulate genetically, they lose in functional complexity; (ii) if they have a 

specified amount of functional intricacy, they are very difficult to reproduce with modification (Koza, 1994). On the other 

hand, the manufacturing and processing of materials are subject to high uncertainty, which derives from characterization 

techniques and constraints in the accurateness of controlling the manufacturing process (Picklum and Beetz, 2019). 

In this context, variable selection and class imbalance is a challenging issue for the data mining community, it takes place 

as the specimens exhibiting one class is much lower than those presenting other classes. The easiest solution to prevail 

over this problem is to ensure that there is a balanced presentation of the members of each class present in the dataset, 

but this is an important task in the SPD-processed ZK60 Mg alloy as the lack of large well-arrange datasets severely 

restricts the amount, variety, as well as quality of data available. This is perhaps the most important limitation in the 

present study. Since the field of SPD of tube materials is comparatively young, the data mining results presented in this 

paper are very preliminary and their generalizability is questionable. Thus, the generalizability of GEP and GP models 

require a more extensive data set. This suggests that, as a major drawback, all empirical equations proposed in this 

research are presented only for a restricted range of datasets, which means that these equations did not have the 

capability of generalizing the mechanical performance of biodegradable ZK60 Mg alloy in biological environments and 

are still an issue open for further investigation. 

5 CONCLUSIONS 

This work aimed to propose an efficient approach for the formulation of the mechanical performance of the 

PTCAP-processed biodegradable ZK60 Mg alloy using GEP and GP. In this context, to verify the power of the predictive 

GEP model, the GP method was employed. Accordingly, two different GEP- and GP-based models were developed to 

predict the elongation to failure (δ, %), the yield strength (σYS, MPa), and the ultimate tensile strength (σUTS, MPa) of 

biodegradable Mg-based alloy as a temporary orthopedic implant, wherein the projected models were empirical as well 

as based on findings collected from the literature. Here, the SPD method, the number of the passes, and processing 

temperature were chosen as the input data, while σYS, σUTS, and δ of the processed alloys were selected as the output 

layer. The results of the training phase showed that the proposed GEP and GP models had well learned the non-linear 

relationship between the input and the output factors with great solidarity and relatively low error values. Moreover, 

the outputs of the testing segment corroborated a high generalization capacity of the projected models, wherein the 

accuracy of the models was assessed in terms of statistical values of MAE, MSE and R. The comparison between the 

proposed models revealed that the GEP model was accurate than the GP procedure and thus it can serve as a robust 

approach model for the new explicit formulation of the mechanical properties of numerous ultrafine-grained alloys for 

bone implant applications. 
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