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ABSTRACT 

Silk fibroin (SF) obtained from Bombyx mori silkworm cocoon is an 
insoluble protein-based polymer that widely used in biomaterial applications, 
including wound healing. A pristine SF film can be prepared via a solution casting 
method, but the film has poor strength (i.e. brittle). The main drawbacks of SF film 
are the brittleness of the films that can be overcame via post-treatment (ethanol 
immersion, methanol immersion and water annealing). Attenuated total reflectance-
Fourier transformed infrared spectroscopy (ATR-FTIR) showed that SF films were 
presented in a more stable form after ethanol (80% v/v) post treatment. The peaks of 
silk II structure from amide I and II of the ethanol treated films were shifted to 1620 
cm-1 and 1510 cm-1 and the crystallinity results is supporting by X-ray diffraction 
(XRD) analysis. The introduction of nano-sized graphene platelets (GNP) into the SF 
systems to form SF-GNP composite films could enhance the physical, mechanical 
and thermal properties of the film. Drawbacks, due to brittleness and less flexibility, 
the GNP fillers were poorly dispersed throughout the SF matrix. Hence, glycerol (20 
wt.%)  as a plasticizer was introduced into the SF-GNP system in order to increase 
the flexibility, thus assisting the dispersibility of the GNP fillers. In this study, the 
effects of SF-GNP and post-treated SF-GNP composite films at various GNP 
loadings (0.1 wt.%-1.0 wt.%) were investigated. Results from ATR-FTIR revealed a 
high absorption intensity at the peak position  1620 cm-1 which correspond to the �-
sheet conformation of amide I (C=O stretching) for SF-GNP composite films and the 
post-treated composite films. The addition of GNP had increased the crystallinities of 
the SF-GNP composite films obtained from the plot of XRD. Comparing the results 
between the FTIR and the XRD findings, the relation between SF molecular chains 
and graphene can be connected. Thermal stabilities of the composite films were also 
increased with increasing GNP and the degradation rate, as measured by 
thermogravimetric analysis and biodegradation test. The addition of GNP and  
glycerol has also improved the flexibility (strain), the SF-0.7G has shown 
tremendously good flexibility of the composite which an increases up to 1180 % 
compare to pristine SF as demonstrated by tensile and the fracture surface of the 
films were examined using field emission scanning electron microscopy. Images 
from the transmission electron microscopy also shown GNP filler had been dispersed 
uniformly throughout the matrix. The results of in vitro cell culture displayed that the 
SF-GNP composite films had supported the cell survival and exhibited the optimal 
biocompatibility. The SF-GNP composite films showed several potentially wound 
healing properties where the composites have the ability to recover from wound 
scratching assay test. From all of the results obtained, the SF-GNP better results in 
mechanical and thermal properties compared to the post-treated SF-GNP. Thus, SF-
0.7G revealed the best results compared to other formulation which shows good 
flexibility and wound healing properties compared to others. In conclusion, SF-GNP 
composite films offer a new option in biomaterial choice for the development of 
wound healing. 
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ABSTRAK 

Fibroin sutera (SF) dari kepompong sutera Bombyx mori merupakan polimer 
protein tidak terlarut yang digunakan dalam pelbagai aplikasi bahan-bio termasuk 
penyembuhan luka. Filem asli SF boleh disediakan melalui kaedah acuan larutan 
tetapi filem yang dihasilkan mempunyai kekuatan yang rendah (cth. rapuh). 
Kekangan utama filem SF adalah kerapuhan filem yang dapat diatasi melalui proses 
pasca-rawatan filem (rendaman etanol, rendaman methanol dan penyepuhlindapan 
air). Refleksi pantulan keseluruhan – inframerah jelmaan Fourier (ATR-FTIR) 
menunjukkan filem SF adalah lebih stabil selepas pasca-rawatan menggunakan 
etanol (80% v/v). Struktur  sutera II daripada amide I and II telah berinjak kepada 
1620 cm-1 and 1510 cm-1 dan keputusan kekristalan disokong oleh analisis 
pembelauan sinar X (XRD). Penambahan platelet nano grafin (GNP) ke dalam 
sistem SF untuk menghasilkan SF-GNP filem komposit mampu meningkatkan sifat-
sifat fizikal, mekanikal dan termal filem. Disebabkan rapuh dan ketidakbolehan 
mulur SF, pengisi GNP tidak disebarkan dengan baik dalam matriks SF. Maka 
gliserol (20 % berat) sebagai pemplastik telah diperkenalkan dan seterusnya 
membantu penyebaran pengisi GNP dan meningkatkan kemuluran filem komposit. 
Kajian ini mengkaji kesan SF-GNP filem komposit dan pasca-rawatan SF-GNP 
dengan pelbagai kandungan GNP (0.1% berat - 1.0% berat) Keputusan ATR-FTIR 
menunjukkan penyerapan yang tinggi pada puncak  1620 cm-1 yang merujuk kepada 
pengesahan lemberan-� daripada amide I (regangan C=O) bagi SF-GNP filem 
komposit dan pasca-rawatan SF-GNP filem komposit. Kehabluran filem komposit 
SF-GNP meningkat dengan penambahan grafin yang ditunjukkan dalam plot XRD. 
Pembezaan analisis XRD dan analisis ATR-FTIR dapat menjelaskan hubungan 
antara rantai molekul SF dan grafin. Kestabilan termal dan degradasi SF-GNP 
meningkat dengan peningkatan kandungan grafin berdasarkan analisa 
termagravimetrik dan ujian degradasi. Penambahan GNP dan gliserol telah 
meningkatkan kebolehlenturan komposit filem , dimana SF-0.7G telah menunjukkan 
peningkatan yang bagus, iaitu sebanyak 1180% berbanding SF asli yang didapati dari 
ujian regangan dan permukaan retakan telah diperiksa dengan mikroskop elektron 
pengimbas pancaran medan. Imej mikroskop elektron penghantar juga menunjukkan 
penyebaran pengisi grafin yang baik dalam matriks. Hasil kultur sel in vitro 
menunjukkan bahawa filem komposit SF-GNP dapat menyokong kemandirian sel 
dan memperlihatkan keserasian optimum. Filem komposit SF-GNP menunjukkan 
beberapa ciri keupayaan penyembuhan luka dengan komposit mempunyai keupayaan 
untuk pulih dari ujian penilaian gores luka. Daripada keseluruhan keputusan 
didapati,SF-GNP filem komposit menunjukkan keputusan mekanikal dan termal 
yang lebih baik berbanding keputusan pasca-rawatan SF-GNP. Maka, SF-0.7G 
menunjukkan keputusan yang terbaik berbanding formulasi yang lain dari segi 
kebolehlenturan dan penyembuhan luka. Kesimpulannya, keputusan dari kajian ini 
menunjukkan bahawa komposit filem SF-GNP menawarkan pilihan baharu dalam 
pilihan bahan-bio untuk pembangunan penyembuhan luka. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Biomaterial is a study on materials development and modification to fit the 

medical application; where their physical and biological feasibility is assessed. 

Biomaterial can be described as any substance or a mixture of substances, that can be 

used as a whole or as part of a system that replaces, treats or augment any tissue, 

organ or function of the living body  [1]. In general, biomaterials are classified to 

synthetic and natural. Among a range of synthetic biomaterials are ceramics, 

composites, metal and also synthetic polymer.  Synthetic polymers are commonly 

selected for biomedical application, for example polyester, polylactic acid (PLA), 

polytetrafluoroethylene (PTFE) and polyurethane (PU). On the other hand, the 

natural biomaterials from plant and animal origin offer several attractive advantages 

such as, unique mechanical properties, excellent biocompatibility and both 

enzymatically and hydrolytically degradable  [2]. 

 
 
Natural biomaterial is often presumed to exhibit enhanced compatibility with 

human hosts, which signifies the ability to demonstrate bioactivity, and to undergo 

biodegradation. As such, natural materials and particulate materials can exhibit these 

characteristics in situations where synthetic materials have not met clinical 

expectations [3]. The natural materials‘ inherent biocompatibility and healing 

properties have therefore attracted the interest of medical practitioners and scientists, 

who endeavoured to repair, restore or enhance the human body. Their availability, 

ease of processing and relatively low cost ensured their prevalence in many 

biomedical fields, from burn treatments to the design of drug capsules, to tissue 

replacement  [4]. 
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Main criteria needed for wound healing from the natural biomaterials are that 

the materials able to support tissue formation retain their shape and volume, 

appearance and most importantly shorten the time of wound healing. An ideal 

regenerative biomaterial stimulates wound healing and initiates cells to create a new 

feasible tissue during in vivo  [5]. During the healing, the chemistry and biology have 

indicative impact on the biomaterial properties. However, biological repairing does 

not focused on the physical improvement of the biomaterials that experience 

chemical and mechanical disruption due to degradation effects in vivo [6]. In wound 

healing, it is particularly important that the developed biomaterials have the capacity 

to improve mechanical, chemical damage and are capable of self-repair. 

 
 

Protein based materials are favourable in biomedical engineering. Protein 

biomaterials consist of the sequence of monomers in the polymer chain as specified 

by the polymerization reamers which are unique. Protein polymer can be described 

as polypeptides comprising up to 20 different building blocks of amino acid  [7]. One 

class of biomaterials, the silk proteins, have been shown to offer non-immunogenic 

responses upon implantation in vivo, controllable degradation rates with native tissue 

replacement, tuneable mechanical properties, and ambient processing conditions (i.e. 

water solvation, physiological pH and temperature)  [8-11]. These properties 

demonstrate silk‘s potential to be used as biomaterial especially in wound healing. 

 
 
Silk fibre is a common fibrous protein produced by a variety of insects 

consisting silkworm, spiders, mites, scorpions and flies. Among the native silk 

proteins, the silkworm silk, in specific that of the domesticated Bombyx mori has 

been utilized as high-quality textile fibre and suture for a long time. Silk fibre 

contains sericin and fibroin, where the silk fibroin (SF) is the main structural protein 

of silk fibre. Regenerated silk fibroin (SF) solution can be applied in numerous 

forms, such as fibres, gels, powders or membranes, depending on function and 

application  [12-14]. Many scientists have recently examined SF as one of the 

potential materials for biomedical studies, since it has several useful properties, 

consisting of excellent biocompatibility, great permeability of water vapour and 

oxygen, biodegradability and minimal inflammatory reaction  [15-20]. 
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The molecular fibroin chains are developed by a structure of two components 

connected by a disulfide bond, which is a complete protein fibroin chain, that mostly 

hydrophobic and create anisotropic nanocrystals, which high in �-sheet, as well as a 

second small protein fibroin chain, that is relatively elastic and hydrophobic  [21]. 

Various secondary structures have been found in silk fibroin, including �-pleated 

sheets, twisted – helices or coiled coils, and that gives the biopolymer material with 

distinctive physical properties such as elasticity, extensibility, and high 

strength [21,22] . As a result of the outstanding versatility in processing with 

excellent physical properties, silk proteins have been utilized in biomedical 

engineering. It was also reported that silk fibroin matrices are useful for culturing 

fibroblasts, osteoblasts, and stem cells  [23-25]. 

 
 
Plasticizers are additives that increase the flexibility and processability of 

polymers. In general, plasticizers low the intermolecular forces along the polymer 

chains, and therefore increasing chain movements and free volume. Plasticization 

can modify the mechanical and thermal properties of polymeric materials when they 

are added to the polymer matrix. In biopolymer-based films and coatings, plasticizers 

are the common additives used since it can enhance the flexibility and ease the 

handling of the films, retain integrity and avoid cracks and pores of the film  [26]. 

General plasticizers for biopolymers are monosaccharides, oligosaccharides, polyols, 

lipids, and derivatives. Glycerol has been identified to be exceptionally effective for 

use in plasticized hydrophilic polymers such as SF  [27-29]. Appreciable properties 

for plasticizers are miscible and compatible in all proportions with plastic 

components, and they may be added to polymers in solution or after solvents have 

been removed  [30]. The properties of composites are closely related to their 

structure and therefore, the improvement in the properties is mainly attributed to the 

high interfacial area between particle and biopolymer matrices and the dispersion of 

particle. 

 
 

Incorporation of second phase as reinforcement by introducing the filler 

could potentially improve the mechanical properties of the natural polymer  [31]. 

Among popular and known fillers is graphene oxide  (GO) and graphene (G), which 
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exhibit huge potential due to their outstanding mechanical properties, high binding 

potential, high aspect ratio, high flexibility, and superior processability  [22,32,33].  

 
 

  
 

1.2 Problem Statement of Study 

SF films produced at room temperature by solution casting are brittle and 

water soluble, which can compromise many applications. This is due to the dominant 

structures of random-coil. Thus, the molecular conformation of SF, the elasticity and 

malleability of the films are important parameters of SF films that should be 

controlled for biomaterial application, since they are stiff when dried  [34]. The 

brittleness of the films is primarily determined by the secondary structure. Therefore, 

by introducing post-treatment using solvents or water annealing, the secondary 

structure (high beta sheet) of SF can be modified  [35,36]. Post-treatment by 

methanol immersion, ethanol immersion and water vapour annealing was intended to 

regenerate construction of the �-sheet structure in order to improve the insolubilities 

and the stabilities properties of the silk fibroin film  [37,38].The study of structural 

changes of SF films by these methods, immersion in organic solvents and water 

annealing, are very interesting subject either for fundamental or applied researches 

from the standpoint of exploiting this biopolymer for new applications. 

 
 

Glycerol has high hygroscopicity, and therefore polymers show softness 

when mixed with glycerol and also act as plasticizer to the materials to form more 

flexible systems  [27,39].  Many researched evaluated the improvement in 

mechanical properties and flexibility when glycerol is added as a plasticizer, without 

affecting the other properties of the original material such as microstructure or 

biological response [27,34].For these reasons; glycerol was introduced into the 

system to improve the physical and mechanical properties of the synthesized film. 

Polymers show softness when mixed with glycerol and act as plasticizer to the 

materials to form more flexible systems  [27,39].  
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New found materials such as graphene have triggered interest in researcher to 

construct of diversity of new composites due to its considerable application in 

biomedical. Recently, it was discovered that silk has potential to be bound with 

graphene, thanks to the �-� stacking and H-bonding [40,41]. This indicates that silk 

fibroin solution could be promising natural materials for dispersing graphene and 

definitely for developing silk fibroin-graphene composites. Silk fibroin solution and 

graphene dispersion produce miscible solution but produce non-homogenous 

composite films [21]. Addition of glycerol improved the homogeneity of the 

composites and thus, enhanced the mechanical properties of the composites due to 

strong interfacial adhesion with the matrix  [28,30,42].  

 
 

It is very interesting to investigate silk fibroin and graphene. A number of 

researchers have prepared SF / GO - based materials before this research. Hu et al. 

fabricated a new layer - by - layer ultrathin SF / GO nanocomposite membrane with 

high tensile strength, modulus, and toughness  [32] . Huang et al. were inspired by 

the natural nacre and prepared strong composite films with layered structures by 

simple solution casting of SF / GO  hydrogels  [43]. Recently, Wang and 

friends  [44] produced a flexible and biocompatible SF / GO composite film using a 

simple and environmentally friendly method without perceptible reagents. The 

mechanical properties and thermal stability of the composite films increased at fairly 

low concentrations of GO, and the incorporation of GO also improved the resistance 

of these films to degradation from an enzyme solution. 

 
 

Although the development of the SF/GO blend composites has been explored, 

only a few researches have been based on SF/G composites. Herein, Wang et al. 

reported the first fabrication of green graphene-silk fibroin (G-S) composite films 

prepared from facile photo thermal reduction technique using varied amount of 

graphene fillers (0.1 wt.% to 10 wt.%). These green graphene - silk composites have 

been shown to be completely miscible in the nanoscale. The synergistic improvement 

of graphene and silk, facilitated by the interaction of hydrophobic-hydrophobic 

between graphitic surfaces and hydrophobic silk blocks is achieved through a very 

low concentration of graphene in silk matrix. The 0.5 wt. % GS composite elastic 

module is astounding, which is six times higher than the pure silk film due to its fast 
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and simple manufacture and low graphene nanofiller used  [21]. Unfortunately, the 

understanding of SF/G composites with glycerol as plasticizer remains unclear and 

limited.  

 
 

The usual technique practiced for the incorporation of graphene filler into 

biopolymers are solution mixing, in-situ polymerization and melt blending  [45]. 

Solution mixing is among the most favourite and simplest ways for the fabrication of 

graphene/polymer composites.  The easy and fast preparation of the plasticized silk 

fibroin-graphene composite films prepared by solution casting technique with adding 

very low loading of graphene could be an advantage for the composite films. 

Therefore, in this study the understanding of the structural changes, mechanical 

properties, thermal properties, morphology and biological properties of silk fibroin 

film with the addition of graphene nanoplatelet (GNP) as reinforce and glycerol as 

plasticizer was explored. Although several studies on SF-GNP composites have been 

done, there have been no reports on the study of the incorporation of plasticizers on 

those composites.  

 
 
The novelty of the study is the combined effect of both graphene nanoplatelet 

filler and glycerol plasticizer on SF composite films in several fields especially in 

biomaterial, but its performance as good flexible material with good dispersion has 

not been addressed yet. Not only that, there are limited research on the post treated of 

composite films. This study could be relevant, as silk fibroin composite films have a 

wide scope of applications in biomedical application especially in tissue engineering 

in the development of wound healing application Furthermore, wounds treated with 

these materials have shown to promote the healing by enhanced cellular 

proliferation, growth and differentiation and, reduced inflammation when applied to 

in vivo models. In this work, silk fibroin/graphene composite films were developed. 

The resulting materials were characterized by their physical-mechanical properties 

and the effect of wound healing properties was evaluated. 
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1.3 Objectives of Study 

In this study, the silk fibroin/graphene composite films were discovered in 

order to evaluate its potential use in biomedical engineering. This study focused on 

characterization, physical properties, mechanical properties, thermal properties, 

degradation rate, biocompatibility and wound healing effect with the influence of 

different series of graphene content. The main aim of this research is to fabricate 

strong and robust silk fibroin composite films. The other objectives to achieve the 

main of this research include: 

 

 

1) To determine the effect of the post treatment (water vapour annealing, 

ethanol and methanol immersion) on physical characterization , 

morphology, crystallinity, thermal properties and mechanical properties 

of the silk fibroin films. 

2) To analyse the effect of the preparation of processing glycerol plasticized 

silk fibroin/graphene composite films using easy solution mixing with 

casting method and also the effect of adding different series of graphene 

loading on the physical characterization, morphology, crystallinity, 

mechanical properties, thermal properties, biodegradation rate, 

biocompatibility and wound healing effect of the SF-GNP composite 

films. 

 

3) To evaluate the effect of post treatment of the plasticized SF-GNP 

composite films on the physical characterization, morphology, 

crystallinity, mechanical properties and thermal properties. 
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1.4 Question of Study 

The following research questions are used to achieve the objectives of the study: 

 

1) What is the relationship between physical, structural and morphology of 

the silk fibroin films and what are the effects on films robustness through 

the post treatment by water vapour annealing, ethanol and methanol 

immersion? 

2) How the solution mixing and solution casting method impacted the 

characterization, secondary structure, morphology, crystallinity, 

mechanical properties, thermal properties, biocompatibility and 

biodegrading rate of the SF/GNP composite films and how effective are 

the wound healing effect of the SF/GNP composite films? 

3) What are the effect post treatment on the characterization, secondary 

structure, morphology, crystallinity, mechanical properties and thermal 

properties of the SF/GNP composite? 

 
 
 
 
1.5 Significance of Study 

In this study, we try to understand the structural changes, mechanical and 

characterization of the silk fibroin film with the addition of graphene. This fact opens 

a set of applications of graphene / silk fibroin composites films via solution casting 

in several fields especially in biomedical application, due to its performance as a 

strong and robust material. This study could be relevant, as composite films have a 

wide scope and promising applications in biomaterials, membranes and tissue 

engineering with the use of facile preparation techniques that are easy, low cost, 

quick and environmentally friendly.  
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1.6 Scope of Study 

The scopes of this research are identified and divided into few parts. 

 

(a) Preparation of silk fibroin solution by degumming the silk cocoon in 

sodium carbonate (Na2CO3) and dried at room temperature. The silk fibre 

was dissolved in salt solution and was dialyzed against distilled water.  

The silk fibroin films were prepared through solution casting. The effects 

of post treatment of the silk fibroin films by water vapor annealing, 

ethanol and methanol immersion on the structural, thermal properties, 

mechanical properties, were examined via attenuated total reflectance -

Fourier Transform infra-red (ATRFTIR) spectroscopy, X-ray diffraction 

(XRD),UV/vis spectroscopy, differential scanning calorimeter (DSC), 

thermogravimetric analysis (TGA) and tensile tests.  

 

(b) Incorporation of graphene with different loading homogenously dispersed 

in silk solution was prepared through easy solution mixing with the help of 

vortex mixer and solution casting on Teflon mold.  The effects of 

plasticized SF/graphene on the structural, thermal properties, mechanical 

properties, biodegradation rate and biocompatibility of the SF/graphene 

composite films were investigated via ATR-FTIR, XRD, DSC, TGA, 

tensile tests, field emission scanning electron microscope (FESEM) and 

transmission electron microscopy (TEM). 

 

(c)  The biological properties of the SF/G as potential used in wound healing 

were determined by in vitro biodegradation test, in vitro cytotoxicity and 

wound healing assay. 
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1.7 Organization of Thesis 

Chapter 1 provides the overview, problem statement of the study, the objectives, 

research question and scope of this study. 

Chapter 2 is a review the literature related to the research such as the silk fibroin, 

graphene, and wound healing properties. 

Chapter 3 provides the research methods including the materials used, sample 

preparation, characterization, mechanical characterization, thermal characterization 

and bio-properties.  

Chapter 4 presents the results and discussion of the analysis. 

Research conclusions are provided in Chapter 5.  
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