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ABSTRACT 

Neutron radiography (NR) is an important application in non-destructive 

testing which has been used especially in industrial, nuclear material, medical and 

agriculture. Reactor TRIGA PUSPATI (RTP) is the only research reactor in Malaysia 

which located at the Malaysian Nuclear Agency, with total capacity of 1MW 

operation. Its main applications are neutron activation analysis, small angle neutron 

scattering, and neutron radiography. The first NR facility system in RTP was ready for 

use in 1985. However, this neutron radiography facility known as NUR-2 was 

disassembled in 2014 due to several factors such as low collimation ratio, low thermal 

neutron flux, high gamma dose, and inadequate radiation shielding. Thus, there is a 

need to upgrade the capabilities of existing neutron radiography facility to meet current 

users’ needs. Monte Carlo simulation code of MCNPX was used to simulate the 

important parameters and instrument design of the new neutron radiography facility. 

This simulation code of the neutron beam helps to design experiments before placing 

any sample objects in the neutron beam. The new collimator, beam shutter, and 

shielding were fabricated based on the results from Monte Carlo simulations while the 

concrete mixture of the new exposure room shielding was formulated using 

Department of Environmental’s design method. The concrete samples were tested in 

terms of radiation shielding capability and strength. The best mix design was chosen 

to be fabricated as new exposure room shielding for NR facility at RTP. Furthermore, 

results obtained from the experimental works were used to verify the simulation 

modelling. Based on the simulation results, the new NR facility has a thermal neutron 

flux of 3.86 × 103 ncm−2s−1 at the sample position. The new collimated beam has 

been characterized using beam purity indicator and sensitivity indicator from 

American Society for Testing and Materials. Radiographs of a sensitivity indicator 

taken using both digital and conventional direct film radiographic method provide one 

example of the radiographic capabilities of the new facility. The neutron radiograph 

which was taken by charged-coupled device camera and film showed that digital 

neutron radiography is not currently capable of producing good quality radiographs 

but it is mainly due to the limitations of the digital detector itself.   
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ABSTRAK 

Radiografi neutron (NR) merupakan satu aplikasi yang penting telah 

digunakan dalam ujian tanpa musnah terutama sekali dalam bidang industri, bahan 

nuklear, perubatan, dan pertanian. Reaktor TRIGA PUSPATI (RTP) merupakan satu-

satunya reaktor penyelidikan di Malaysia yang terletak di Agensi Nuklear Malaysia 

(ANM) dan dengan jumlah kapasiti pada 1 MW operasi. Aplikasi utama di reaktor ini 

adalah analisis pengaktifan neutron, serakan neutron sudut kecil, dan radiografi 

neutron. Sistem kemudahan NR yang pertama di RTP telah mula digunakan pada 

tahun 1985. Namun, kemudahan radiografi neutron ini yang dikenali sebagai NUR-2 

telah ditutup pada tahun 2014 disebabkan oleh beberapa faktor seperti nisbah 

pengkolimat yang rendah, fluks neutron terma yang rendah, dos gama yang tinggi, dan 

pemerisaian sinaran yang tidak mencukupi. Oleh itu, menaik taraf keupayaan 

kemudahan radiografi neutron sedia ada adalah sangat penting bagi memenuhi 

keperluan pengguna masakini. Perisian simulasi Monte Carlo MCNPX digunakan 

untuk mensimulasikan parameter penting dan reka bentuk instrumen kemudahan 

radiografi neutron yang baharu. Kod simulasi alur neutron ini membantu dalam 

merekabentuk eksperimen sebelum meletakkan sebarang sampel dalam alur neutron. 

Pengkolimat baharu, penutup alur, dan perisai sinaran direka berdasarkan keputusan 

dari simulasi Monte Carlo manakala campuran konkrit perisai bilik pendedahan baharu 

direkabentuk menggunakan kaedah yang diperolehi dari Jabatan Alam Sekitar. Sampel 

konkrit telah diuji dari segi pemerisaian sinaran dan ketahanan. Campuran konkrit 

terbaik dipilih untuk dijadikan sebagai pemerisaian bilik pendedahan yang baharu 

untuk kemudahan NR di RTP. Selain itu, keputusan yang diperoleh daripada kerja 

eksperimen digunakan untuk mengesahkan pemodelan simulasi. Berdasarkan 

keputusan simulasi, kemudahan NR baharu mempunyai fluks neutron terma sebanyak 

3.86 × 103 ncm−2s−1 pada kedudukan sampel. Alur pengkolimat baharu telah 

dicirikan dengan menggunakan penunjuk alur ketulenan dan penunjuk kepekaan dari 

persatuan Amerika untuk pengujian dan bahan. Radiograf penunjuk kepekaan yang 

diambil menggunakan kedua-dua kaedah digital dan kebiasaan langsung radiografi 

filem menunjukkan satu contoh keupayaan kemudahan radiografi neutron baharu. 

Radiografi neutron yang diambil oleh kamera peranti cas terganding dan filem 

menunjukkan radiografi neutron secara digital tidak mampu menghasilkan radiograf 

yang berkualiti disebabkan keterbatasan pengesan digital itu sendiri.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Neutron was discovered by an English physicist, Sir James Chadwick in 1932. 

Neutron is a particle that binds together with protons in the atomic nucleus. A neutron 

is neutrally charged and has a mass of about 1 amu, which is nearly the same with a 

proton (Davis, 2015). Different from X-ray and gamma-ray, neutrons interact with the 

nucleus of the atom rather than its electron cloud. Hence, the interaction force between 

neutrons and nuclei are not correlated with the atomic number of the element but 

instead depend on the isotope of the element (Anderson, McGreevy, & Bilheux, 2009). 

Neutrons have now been used for about 80 years to probe the microscopic structure 

and process in a complex matter. 

Neutron imaging has been used more than seven decades since the first 

photograph capture by Kallman and Kuhn in Germany in 1935 (Kallmann, 1940). 

Since the mid-20th century, development of neutron imaging is ongoing showing that 

neutron is suitable for nondestructive testing in the study of bulk materials including 

aircraft components, fuel cell, cultural heritage, turbine blades, and biological samples 

(Fantidis, Potolias, & Bandekas, 2011; Rant, Milič, Turk, & Lengar, 2005; Satija, 

Jacobson, Arif, & Werner, 2004). Compared to X-ray and gamma-ray, the neutron has 

higher penetration power and could penetrate deeper into materials to give insight 

regarding the internal structures of these materials (Grupen, 2012). 

As mentioned earlier, the concept of neutron radiography depends on the 

interaction of neutron with the target materials (Davis, 2015). The neutron transmitted 

through the target material could be captured as radiographic images by radiographic 

films or digitally by a charged-coupled device (CCD) camera (Azali Muhammad et 
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al., 2008). The amount of transmitted neutron is proportional to neutron scattering and 

neutron absorbing materials in the beam and can be determined using Beer’s Law: 

 I = Ioexp (−μ ∙ t) (1.1) 

with, μ as the attenuation coefficients of the material, t as the thickness of the target 

sample, Io as the intensity of the incoming neutron beam, and I as the intensity of the 

transmitted neutron through the target material. 

There are three common neutron sources used for a variety of applications, 

which are nuclear reactors, accelerators, and radioisotopes(Domanus, 1992). In a 

research reactor, neutrons produced from the core are channeled through a beam port 

to the target sample, and the transmitted neutrons are used to gain insight into the 

internal structural properties of the sample object (Davis, 2015). Since neutron 

radiography is primarily performed with thermal neutrons, a collimator is needed to 

moderate the fast neutrons and filter gamma radiation (MacGillivray, 2011). 

In Malaysia, the one and only research reactor is Reactor TRIGA PUSPATI 

(RTP) located at the Malaysian Nuclear Agency (MNA). Neutron beams from this 

reactor provide a good thermal neutron source for a variety of applications such as 

neutron activation analysis, isotope production, characterization of materials, and 

neutron radiography. In this research, several components of the previous neutron 

radiography facility will be redesigned in order to upgrade its capability. This research 

focuses on the main limitations of previous neutron radiography facility, which is low 

thermal neutron flux, high gamma radiation for digital neutron radiography, and 

inadequate radiation shielding. The newly upgraded neutron radiography facility will 

be evaluated using standard neutron radiographic sensitivity indicator and various 

sample objects (ASTM E545, 2014). 

The types of concrete used in the new exposure room shielding can be grouped 

into two categories, namely grade-40 concrete, and high-density ferro boron concrete. 

According to the initial plan, all the concrete blocks were to be built using high density 

ferro boron concrete. However, due to budget limitation, the initial design has to be 
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modified in order to meet the financial terms and maintain the radiation shielding 

capability. 

Monte Carlo simulation code of MCNPX is used to study various parameters 

that are needed to conduct neutron radiography testing at the beam port such as neutron 

and gamma flux and dose, design of collimator, and radiation shielding. The data and 

results obtained from simulations, experiments and real time neutron radiography 

practices on various types of objects will be compared and analyzed. 

1.2 Problem Statement 

RTP has a neutron radiography facility known as NUR-2 which has been used 

as a basic inspection tool since 1985 for archaeological and biological objects and 

industrial components. However, this facility has low thermal neutron intensity at the 

sample position, which leads to long irradiation times, and it gives many limitations 

for the industrial applications (Azali Muhammad et al., 2008). This facility also has 

low collimation ratio and high gamma radiation. Besides, its radiation shielding block 

is insufficient due to the streaming problem. The previous neutron radiography facility 

is only limited for the conventional radiographic method, which is using films due to 

high gamma radiation at the sample position area. Hence, due to this drawback NUR-

2 was dissembled in 2014. Since then, neutron radiography can only be done at SANS 

(beam port 4) of RTP.  

In this study, new neutron radiography facility instruments will be designed 

and constructed to upgrade previous outdated components. Many gaps which exist 

between the previous radiation shielding blocks at NUR-2 has led to the radiation 

streaming problem. Besides, the previous radiation shielding blocks were made from 

normal concrete. Thus, new radiation shielding blocks will be designed to reduce 

radiation streaming problem and ferro boron will be added into the concrete mixture 

to enhance its radiation shielding capability. Other than that, the previous beam shutter 

has a large dimension which is not suitable for the new neutron radiography facility. 
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Hence, a new beam shutter will be designed to be more compact and yet sufficient to 

block radiation coming from the beam port.   

The charged coupled device (CCD) camera is used for capturing radiographic 

imaging of the samples. This device is more convenient to use than films in terms of 

image processing and analysis. However, using a CCD camera at the previous neutron 

radiography facility is quite impracticable and risky due to high radiation that can 

cause damage to the electronic parts inside the CCD camera. With new collimator and 

radiation shielding for the camera, this digital imaging at the new neutron radiography 

facility can be realized, and it will be a significant enhancement to the previous facility. 

1.3 Research Objectives 

The aim of this research is to upgrade the neutron radiography facility (NUR-2) for 

digital imaging at Reactor TRIGA PUSPATI, Malaysia. In an attempt to achieve this 

goal, the following tasks are established: 

 

1. To improve collimator, beam shutter, and shielding bunker design 

2. To fabricate the new radiation shielding block and beam shutter 

3. To determine neutron and gamma profile 

4. To demonstrate the new neutron radiography facility capabilities at RTP 

1.4 Scope of the Study 

This research aims to upgrade several parameters and the design of neutron 

radiography facility (NUR-2) at RTP. This research used thermal neutrons from the 

radial beam port (beam port 3) of RTP. New neutron radiography components at RTP, 

such as exposure room shielding, beam shutter, beam stopper, camera shielding, and 

collimator, are introduced in this research. These new instruments are made to upgrade 

the previous neutron radiography facility at RTP. Concrete mix design used in this 

study is based on the United Kingdom Department of Environment’s design method 
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(DOE). The ferro-boron concrete samples are tested with several testing methods, 

including gamma radiation transmission testing, compressive strength testing (ASTM 

C109, 2016), rebound hammer testing, and ultrasonic velocity testing. Neutron and 

gamma profile at NUR-2 is determined by using two methods, namely simulation and 

experimental. Neutron and gamma profiles include flux and dose. Monte Carlo 

simulation code of MCNPX is used to simulate the parameters and instrument design 

of the neutron radiography components.  TLD 600, TLD 700, and survey meter are 

used to measure the neutron and gamma doses around the facility. MICROSPEC-6 

with neutron probe and gold foil are used to determine the neutron energy spectrum 

and neuron flux at the neutron beam respectively. A CCD camera and films are used 

to capture the neutron radiograph of the samples. In this research, direct exposure 

radiographic method is used because the sample is non-radioactive. Standard Image 

Quality Indicator (IQI) as per ASTM (ASTM E545, 2014) will be used to demonstrate 

the neutron radiography capability at the newly upgraded facility. 

1.5 Significance of the Study 

The significance of carrying out this research is that digital neutron 

radiography can be used as a complementary technique of other non-destructive types 

of testing such as X-ray and gamma radiography. Conventionally, neutron radiography 

used films to capture the radiograph. This method takes a lot of work and time to 

process the image. Hence, this research focusing on upgrading neutron radiography 

facility at RTP for digital neutron radiography using CCD camera. The newly 

upgraded facility also offers higher collimation ratio, which can be used for larger 

samples and produce better radiograph. 

1.6 Structure of Thesis 

This thesis details the work, results and analysis from the upgrading work of 

NR facility at the Reactor TRIGA PUSPATI. Generally, the content of this thesis is 

organized as follows: 
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Chapter 1 highlights a general introduction of NR, available facility in 

Malaysia and the importance of NR as complementary technique to conventional 

radiography. In addition, problem statement and objectives of this research are 

included in this chapter. 

Chapter 2 contains the theoretical background of NR techniques. The 

performance of NR facilities from the other studies from around the world is presented. 

The procedure of NR applications and characterization of NR facility are discussed in 

the literature reviews included in this chapter.  

Chapter 3 discusses the methodologies and materials used in this research. In 

this chapter, all materials used in fabrication of exposure room shielding, beam shutter, 

CCD camera shielding and in experiment done are discussed in detail. Furthermore, 

the methodology used in simulation, fabrication, experiment and characterization of 

the new NR facility are also discussed. 

Chapter 4 presented the results and discussion of simulation and experimental 

work conducted in this research. The simulation and experiment of neutron and gamma 

profile from radial beam port 3 are defined. The discussion is extended further with 

the result of ferro boron concrete samples testing and characterization of the new NR 

facility at RTP. Lastly, Chapter 5 include the conclusions of this thesis and 

recommendations for future works.  
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APPENDICES 

Appendix A MCNP Code Input Files for Simulation of the New Neutron 

Radiography Facility Instrumentations at RTP 

 

1) New neutron radiography facility model at RTP 

 

c   Exposure room                                                                

    1     1 -0.001183 1 2 -3 -4 5 -6 (-48 :4 :43 )(-1 :49 :42 ) 

    2     2   -2.3 1 2 -7 -8 9 -10 (4 :-5 :6 :3 :-2 :-1 )#8 #9 #200 

    3     2   -2.3 1 2 -11 -12 13 -14 (8 :-9 :10 :7 :-2 :-1 )#8 #9 #300 

    4     2   -2.3 1 2 -15 -16 17 -18 (12 :-13 :14 :11 :-2 :-1 )#7 #10 #400 

    5     2   -2.3 1 2 -19 -20 21 -22 (16 :-17 :18 :15 :-2 :-1 )#7 #10  

    6     1 -0.001183 1 2 -23 -24 25 -26 (20 :-21 :22 :19 :-2 :-1 ) 

c  Roof                                                                          

    7     1 -0.001183 27 -28 29 -30 -19 11 

    8     1 -0.001183 31 -32 33 -34 -11 3 

c  Bunker door                                                                   

    9     2   -2.3 2 -3 -5 13 35 -37 

   10     2   -2.3 2 -39 -13 21 36 -38 

c  Beam stopper 

   11     1 -0.001183 -4 -43 48 #12 #13  

   12     1 -0.001183 -44 47 -42 #13 

   13     1 -0.001183 (-45 46 -41 ):(-46 48 -40 ) 

c  Beam shutter                                                                  

   14     4   -1.19 -42 1 -51 

   15     3  -11.35 -42 51 -50  

   16    14    -3.2 -42 50 -49 

c  Collimator                                                                    

  101     6    -2.7 104 103 -102 -110  

  102     6    -2.7 110 -1 111 -40  

  103    10 -11.136 101 -103 104 -105  
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  104     1 -0.001183 -101 104 -105  

  105     8      -4 101 -103 105 -106  

  106     1 -0.001183 -101 105 -106  

  108    10 -11.136 112 -103 -113 118  

  109     8      -4 113 107 -103 -114  

  110     1 -0.001183 113 -107 -114  

  111     8      -4 114 107 -103 -115  

  112     1 -0.001183 114 -107 -115  

  113    10 -11.136 115 107 -103 -110  

  114     1 -0.001183 115 -107 -110  

  115     6    -2.7 110 -111 -116 119  

  116     6    -2.7 116 -111 -117 120  

  117    10 -11.136 117 107 -111 -1  

  118     1 -0.001183 117 -107 -1  

  119     9  -9.747 112 -118 -113  

  120     1 -0.001183 110 -119 -116  

  121     1 -0.001183 116 -120 -117  

  122     7   -8.65 122 -103 -112 121  

  123     1 -0.001183 122 -121 -112  

  124     4  -0.941 106 -103 -124 123  

  125    11      -4 106 -123 -124  

  126     4  -0.941 124 -103 -122 126  

  127    11      -4 124 -126 -125  

  128     6    -2.7 125 -126 -122 121  

  129    11      -4 125 -121 -122  

  130    13   -3.35 127 -1 2 -23 21 -22 102 (-104 :110 :102 )(-110 :1 :40 ) 

  131     1 -0.001183 127 -102 -104                                                                                

  999     0         (-1 :-2 :23 :24 :-25 :26 )(-127 :22 :-21 :1 :-2 :23 ) 

c Ferro boron stopper                                                            

  200    12   -3.9 4 -8 -60 

  300    12   -3.9 8 -12 -60 

  400    12   -3.9 12 -16 -60 

 

    1        px 0  
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    2        pz -60  

    3        pz 60  

    4        px 220  

    5        py -75  

    6        py 75  

c                                                                                

    7        pz 70  

    8        px 232.5  

    9        py -85  

   10        py 85  

c                                                                                

   11        pz 80  

   12        px 245  

   13        py -95  

   14        py 95  

c                                                                                

   15        pz 90  

   16        px 257.5  

   17        py -105  

   18        py 105  

c                                                                                

   19        pz 100  

   20        px 270  

   21        py -115  

   22        py 115  

c                                                                                

   23        pz 200  

   24        px 360  

   25        py -215  

   26        py 215  

c                                                                                

   27        px 120  

   28        px 170  

   29        py -25  
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   30        py 25  

c                                                                                

   31        px 130  

   32        px 160  

   33        py -15  

   34        py 15  

c                                                                                

   35        px 110  

   36        px 105  

   37        px 180  

   38        px 185  

   39        pz 65  

c                                                                                

   40        cx 10  

   41        cx 12  

   42        cx 15  

   43        cx 20  

   44        px 215  

   45        px 205  

   46        px 202  

   47        px 200  

   48        px 195  

   49        px 50 

   50        px 20 

   51        px 10 

   60        sx 190 60  

c collimator                                                                     

  101        kx -201 0.053300121670436 0  

  102        cx 7.5  

  103        cx 7.25  

  104        px -232  

  105        px -222  

  106        px -212  

  107        kx -285 0.00098761014501108 0  
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  110        px -117  

  111        cx 9.75  

  112        px -204.38  

  113        px -189.38  

  114        px -179.38  

  115        px -169.38  

  116        px -115.8  

  117        px -114.6  

  118        cx 3  

  119        cx 5.3  

  120        cx 5.35  

  121        cx 1.5  

  122        px -204.48  

  123        cx 2.5  

  124        px -209.46  

  125        px -206.92  

  126        cx 2  

  127        px -250  

 

mode  p 

c      Air                                                                       

m1    7014.      3.78621e-005  

      8016.      1.01568e-005  

c     Ordinary concrete 

m2    1001.           0.00786  

      8016.            0.0439 11023.          0.00105 12000.          0.00014  

      13027.          0.00239 14000.           0.0158 19000.          0.00069  

      20000.          0.00292 26000.          0.00031  

c     Lead                                                                       

m3    82000.50c            -1  $pb 

c     Borated polyethylene                                                       

m4    1000.          -0.13653   

      6000.          -0.81347 5000.             -0.05  

c     SS-304                                                                     
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m5    24000.       0.01851242  

      25055.      0.001751896 28000.      0.006562605 26000.       0.06032172  

c     Aluminium                                                                  

m6    13027.       0.06022142  

c     Cadmium                                                                    

m7    48000.               -1  

c     Ferro boron                                                                

m8    5011.            -0.185  

      6012.           -0.0032 13000.          -0.0008 16000.          -3e-005  

      14000.          -0.0034 15031.          -0.0003 26000.         -0.80727  

c     Bismuth                                                                    

m9    83209.               -1  

c     pb+4% antimony                                                             

m10   82000.50c         -0.96  

      51000.42c         -0.04  

c     Sapphire crystal                                                            

m11   13027.              0.4 

      8016.               0.6 

c     Concrete ferro boron 

m12   1001.          -0.01326 

      6012.        -0.0027704 8016.         -0.344958 11023.       -0.0091248 

      12000.       -0.0007596 13027.       -0.0122918 14000.       -0.1841362 

      19000.        -0.006027 20000.       -0.0257706 26000.        -0.326769 

      5011.            -0.074 15031.         -0.00012 16000.        -1.2e-005 

c     High density concrete 

m13    1001.           0.00786 

      8016.            0.0439 11023.          0.00105 12000.          0.00014  

      13027.          0.00239 14000.           0.0158 19000.          0.00069  

      20000.          0.00292 26000.          0.00031 

c     Barite Colemanite Concrete 

m14   1001.70c      -0.008564   

      5010.70c      -0.009874 26054.70c     -0.010378 20040.70c     -0.085239  

      14028.70c     -0.017733 12000.62c     -0.097028 8016.70c      -0.351537 

      56138.70c     -0.410076 25055.70c     -0.000101 16032.70c     -0.097028  
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      13027.70c     -0.006146 11023.70c     -0.001108 

 

imp:p   1024         2048 1r      4096 1r      8192         32            $ 1, 7 

       16           2048         4096         1024 5r      1 3r          $ 8, 104 

       2 1r         32           64 1r        128 1r       256 3r        $ 105, 116 

       512 1r       32           256 1r       1 1r         4 1r          $ 117, 125 

       16 3r        1 1r         0            2048 1r      4096          $ 126, 400 

mt11 al27.12t 

nps 100000000 

c 

sdef pos=-249.9 0 0 axs=1 0 0 ext=0 rad=d2 vec=1 0 0 dir=1 erg=d1 par=2 

si1 l 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 &           

8.00e-01 9.00E-01 1.10E+00 1.20E+00 1.30E+00 1.40E+00 1.50E+00 &                 

1.60e+00 1.70E+00 1.80E+00 1.90E+00 2.10E+00 2.20E+00 2.30E+00 &                 

2.40e+00 2.50E+00 2.60E+00 2.70E+00 2.80E+00 2.90E+00 3.10E+00 &                 

3.20e+00 3.30E+00 3.40E+00 3.50E+00 3.60E+00 3.70E+00 3.80E+00 & 

3.90e+00 4.10E+00 4.20E+00 4.30E+00 4.40E+00 4.50E+00 4.60E+00 &                 

4.70e+00 4.80E+00 4.90E+00 5.10E+00 5.20E+00 5.30E+00 5.40E+00 &                 

5.50e+00 5.60E+00 5.70E+00 5.80E+00 5.90E+00 6.10E+00 6.20E+00 &                 

6.30e+00 6.40E+00 6.50E+00 6.60E+00 6.70E+00 6.80E+00 6.90E+00 &                 

7.10e+00 7.20E+00 7.30E+00 7.40E+00 7.50E+00 7.60E+00 7.70E+00 &                 

7.80e+00 7.90E+00 8.10E+00 8.20E+00 8.30E+00 8.40E+00 8.50E+00 &                 

8.60e+00 8.70E+00 8.80E+00 8.90E+00 9.10E+00 9.30E+00 9.60E+00 &                 

9.70e+00 9.80E+00                                                                

sp1 0.26502 0.20326 0.09106 0.05187 0.03597 0.03245 0.02026 0.01671 &            

0.01470 0.02486 0.00980 0.00951 0.00836 0.00792 0.00739 0.00724 &                

0.00631 0.00574 0.01098 0.00616 0.07034 0.00235 0.00242 0.00361 &                

0.00238 0.00214 0.00283 0.00850 0.00148 0.00143 0.00198 0.00324 &                

0.00271 0.00190 0.00128 0.00300 0.00206 0.00313 0.00285 0.00076 &                

0.00181 0.00079 0.00306 0.00304 0.00053 0.00409 0.00150 0.00045 &                

0.00047 0.00130 0.00085 0.00031 0.00067 0.00044 0.00133 0.00141 &                

0.00020 0.00079 0.00034 0.00021 0.00022 0.00056 0.00021 0.00040 &                

0.00019 0.00056 0.00016 0.00017 0.00013 0.00484 0.01032 0.00016 &                

0.00021 0.00004 0.00006 0.00008 0.00008 0.00021 0.00021 0.00030 &                
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0.00041 0.00039 0.00023 0.00012 0.00011 0.00005                                  

si2 0 7.5                                                                        

sp2 -21 1                                                                        

c                                                                                

e1 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 &              

8.00e-01 9.00E-01 1.10E+00 1.20E+00 1.30E+00 1.40E+00 1.50E+00 &                 

1.60e+00 1.70E+00 1.80E+00 1.90E+00 2.10E+00 2.20E+00 2.30E+00 &                 

2.40e+00 2.50E+00 2.60E+00 2.70E+00 2.80E+00 2.90E+00 3.10E+00 &                 

3.20e+00 3.30E+00 3.40E+00 3.50E+00 3.60E+00 3.70E+00 3.80E+00 &                 

3.90e+00 4.10E+00 4.20E+00 4.30E+00 4.40E+00 4.50E+00 4.60E+00 &                 

4.70e+00 4.80E+00 4.90E+00 5.10E+00 5.20E+00 5.30E+00 5.40E+00 &                 

5.50e+00 5.60E+00 5.70E+00 5.80E+00 5.90E+00 6.10E+00 6.20E+00 &                 

6.30e+00 6.40E+00 6.50E+00 6.60E+00 6.70E+00 6.80E+00 6.90E+00 &                 

7.10e+00 7.20E+00 7.30E+00 7.40E+00 7.50E+00 7.60E+00 7.70E+00 &                 

7.80e+00 7.90E+00 8.10E+00 8.20E+00 8.30E+00 8.40E+00 8.50E+00 & 

8.60e+00 8.70E+00 8.80E+00 8.90E+00 9.10E+00 9.30E+00 9.60E+00 &                 

9.70e+00 9.80E+00                                                                

f1:p 104 105 106 124 125 112 113 114 115 110 1  

c 

tmesh 

 rmesh11:p dose 10 1 2 1 

  cora11  0 71i 360 

  corb11  -215 85i 215 

  corc11  -25 25 

 rmesh21:p dose 10 1 2 1 

  cora21  0 71i 360 

  corb21  -25 25 

  corc21  -60 51i 200 

 rmesh41:p dose 10 1 2 1 

  cora41  -232 231i 0 

  corb41  -10 19i 10 

  corc41  -0.5 0.5 

endmd 
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2) Ferro boron concrete                                                                               

    1     2      -4 -1  u=1 

    2     1    -2.3 1  u=1                                                                               

   20     1    -2.3 -20  fill=1 u=11 lat=1 

c                                                                                

   30     1    -2.3 22 -23 24 -25 26 -30  fill=11 

   31     1    -2.3 22 -23 24 -25 30 -31  fill=11 

   32     1    -2.3 22 -23 24 -25 31 -32  fill=11 

   33     1    -2.3 22 -23 24 -25 32 -33  fill=11 

   34     1    -2.3 22 -23 24 -25 33 -34  fill=11 

   35     1    -2.3 22 -23 24 -25 34 -35  fill=11 

   36     1    -2.3 22 -23 24 -25 35 -36  fill=11 

   37     1    -2.3 22 -23 24 -25 36 -37  fill=11 

   38     1    -2.3 22 -23 24 -25 37 -38  fill=11 

   39     1    -2.3 22 -23 24 -25 38 -27  fill=11 

c                                                                                

   90     0         22 -23 24 -25 28 -26  

  100     0         -22 :23 :-24 :25 :-28 :27  

 

    1       rpp -1.5 1.5 -1.5 1.5 -1.5 1.5  

c                                                                                

   20       rpp -3.232 3.232 -3.232 3.232 -3.232 3.232  

c                                                                                

   22        pz -50  

   23        pz 50  

   24        py -50  

   25        py 50  

   26        px -50  

c                                                                                

   30        px -40  

   31        px -30  

   32        px -20  

   33        px -10  
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   34        px 0  

   35        px 10  

   36        px 20  

   37        px 30  

   38        px 40  

c                                                                                

   27        px 50  

   28        px -60  

 

mode  n 

m1    1001.             -0.01  

      6012.            -0.001 8016.         -0.529107 11023.           -0.016  

      12000.           -0.002 13027.        -0.033872 14000.        -0.337021  

      19000.           -0.013 20000.           -0.044 26000.           -0.014  

m2    5011.            -0.185  

      6012.           -0.0032 13000.          -0.0008 16000.          -3e-005  

      14000.          -0.0034 15031.          -0.0003 26000.         -0.80727  

imp:n   1 3r         4            8            16           32            $ 1, 34 

       64           128          256          512          1024          $ 35, 39 

       1            0             $ 90, 100 

nps 100000000                                                                    

sdef pos=0 0 0 axs=1 0 0 ext=0 x=-60 y=d1 z=d2 vec=1 0 0 dir=1 erg=d3 par=1      

si1 -50 50                                                                       

sp1 0 1                                                                          

si2 -50 50                                                                       

sp2 0 1                                                                          

si3 l 2.5e-8 4.0e-7                                                              

sp3 0.5 0.5                                                                      

f2:n 26 30 31 32 33 34 35 36 37 38 27                                            

f4:n 90 30 31 32 33 34 35 36 37 38 39                                            

f12:n 26 30 31 32 33 34 35 36 37 38 27                                           

df12 ic=10 iu=2 fac=1                                                            

f14:n 90 30 31 32 33 34 35 36 37 38 39                                           

df14 ic=10 iu=2 fac=1                                                    
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3) Beam Shutter 

MCNPX Visual Editor Version X_24E 

c     Created on: Tuesday, January 09, 2018 at 09:38                             

   10     1   -0.95 2 -3 7 -6 8 -9 

   20     3  -11.34 3 -4 7 -6 8 -9  

   30     4    -3.2 4 -5 7 -6 8 -9 

   50     5   -7.85 6 -11 2 -5 -9 8  

   60     5   -7.85 12 -7 2 -5 -9 8 

   70     5   -7.85 10 -8 2 -5 12 -11 

   40     0         #10 #20 #30 #50 #60 #70 -1 

   99     0         1  

 

    1        so 1000  

    2        px 0  

    3        px 10  

    4        px 25  

    5        px 50 

    6        py 20  

    7        py -20 

    8        pz -20  

    9        pz 20 

   10        pz -21 

   11        py 21 

   12        py -21 

 

mode  n 

m1    5010.66c         0.0098  $5% Borated Polyethylene 

      5011.66c         0.0402 6012.42c         0.8132 1001.66c         0.1368  

m2    5010.66c          0.049  $30% Borated Polyethylene 

      5011.66c          0.201 6012.42c         0.8132 1001.66c         0.1368  

m3    82207.66c             1  $lead 

m4    1001.66c       0.008564  $Barite-colemanite concrete 

      5010.66c       0.009874 12000.66c      0.097028 16032.66c      0.097028  
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      26056.66c      0.010378 80000.42c      0.351537 13027.66c      0.006146  

      20040.21c      0.085239 56138.66c      0.410076 11023.66c      0.001108  

      14028.66c      0.017733 25055.66c      0.000101  

m5    6000.70c           0.16  $Mild Steel 

      14000.60c           0.4 25055.70c           0.7 16000.62c          0.04  

      15031.70c          0.04 

imp:n   4            8            16           1 3r         0             $ 10, 99 

nps 100000000 

sdef pos=0 0 0 axs=1 0 0 ext=0 x=0 y=d1 z=d2 vec=1 0 0 dir=1 erg=d3 par=1 

si1 -20 20                                                                       

sp1 0 1                                                                          

si2 -20 20                                                                       

sp2 0 1 

si3 l 1.00E-10 1.26E-10 1.58E-10 2.00E-10 2.51E-10 3.16E-10 3.98E-10 & 

5.01e-10 6.31E-10 7.94E-10 1.00E-09 1.26E-09 1.58E-09 2.00E-09 &                 

2.51e-09 3.16E-09 3.98E-09 5.01E-09 6.31E-09 7.94E-09 1.00E-08 &                 

1.26e-08 1.58E-08 2.00E-08 2.51E-08 3.16E-08 3.98E-08 5.01E-08 &                 

6.31e-08 7.94E-08 1.00E-07 1.26E-07 1.58E-07 2.00E-07 2.51E-07 &                 

3.16e-07 3.98E-07 5.01E-07 6.31E-07 7.94E-07 1.00E-06 1.26E-06 &                 

1.58e-06 2.00E-06 2.51E-06 3.16E-06 3.98E-06 5.01E-06 6.31E-06 &                 

7.94e-06 1.00E-05 1.26E-05 1.58E-05 2.00E-05 2.51E-05 3.16E-05 &                 

3.98e-05 5.01E-05 6.31E-05 7.94E-05 1.00E-04 1.26E-04 1.58E-04 &                 

2.00e-04 2.51E-04 3.16E-04 3.98E-04 5.01E-04 6.31E-04 7.94E-04 &                 

1.00e-03 1.26E-03 1.58E-03 2.00E-03 2.51E-03 3.16E-03 3.98E-03 &                 

5.01e-03 6.31E-03 7.94E-03 1.00E-02 1.26E-02 1.58E-02 2.00E-02 &                 

2.51e-02 3.16E-02 3.98E-02 5.01E-02 6.31E-02 7.94E-02 1.00E-01 &                 

1.26e-01 1.58E-01 2.00E-01 2.51E-01 3.16E-01 3.98E-01 5.01E-01 &                 

6.31e-01 7.94E-01 1.00E+00 1.26E+00 1.58E+00 2.00E+00 2.51E+00 &                 

3.16e+00 3.98E+00 5.01E+00 6.31E+00 7.94E+00 1.00E+01                            

sp3 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00005 0.00007 & 

0.00010 0.00015 0.00027 0.00041 0.00063 0.00077 0.00107 0.00178 &                

0.00302 0.00450 0.00618 0.00936 0.01397 0.02147 0.03026 0.03898 &                

0.05145 0.06888 0.08218 0.09226 0.09555 0.08646 0.06938 0.04847 &                

0.02816 0.01498 0.00747 0.00484 0.00419 0.00371 0.00342 0.00329 &                
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0.00316 0.00311 0.00302 0.00305 0.00287 0.00284 0.00287 0.00278 &                

0.00274 0.00278 0.00279 0.00269 0.00277 0.00282 0.00265 0.00267 &                

0.00270 0.00279 0.00269 0.00282 0.00276 0.00269 0.00278 0.00263 &                

0.00267 0.00264 0.00265 0.00266 0.00263 0.00262 0.00266 0.00272 &                

0.00268 0.00273 0.00267 0.00271 0.00271 0.00285 0.00262 0.00258 &                

0.00263 0.00272 0.00268 0.00275 0.00297 0.00390 0.00173 0.00245 &                

0.00284 0.00376 0.00195 0.00297 0.00325 0.00286 0.00287 0.00344 & 

0.00370 0.00347 0.00383 0.00436 0.00445 0.00470 0.00486 0.00466 &                

0.00380 0.00247 0.00141 0.00208 0.00147 0.00074 0.00018 

tmesh 

 rmesh11:n dose 10 1 2 1 

  cora11  0 5i 60 

  corb11  -20 3i 20 

  corc11  -20 20 

 rmesh21:n dose 10 1 2 1 

  cora21  0 5i 60 

  corb21  -20 20 

  corc21  -20 3i 20 

endmd 
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Appendix B (DOE) Method Form 

 
 BS - CONCRETE MIX DESIGN (DOE)  

 
DOE METHOD OF CONCRETE MIX DESIGN: The British method of concrete 

mix design, popularly referred to as the "DOE method", is used in the United Kingdom 

and other parts of the world and has a long established record. The method originates 

from the "Road Note No 4" which was published in Great Britain in 1950. In 1975 the 

note was replaced by the "Design of Normal Concrete Mixes", published by the British 

Department of the Environment (DOE). In 1988 the "Design of Normal Concrete 

Mixes" was issued in a revised and updated edition to allow for changes in various 

British Standards.  

 

DOE mix design generally involves the following stages.  

 

1. Determine the target strength  

2. Determine the water/cement (W/C) ratio according to the target strength, types of 

cement and aggregate.  

3. Determine the water content, W, from required workability, size and type of 

aggregate.  

4. Determine cement content, C, from W/C ratio and water content.  

5. Estimate the density of wet fresh concrete, D, based on relative density of 

combined aggregate and water content.  

6. Determine the total aggregate content from D, C, and W.  

7. Determine the proportion of fine aggregate according to the fineness of fine 

aggregate, maximum aggregate size, slump/Vebe time and W/C.  

8. Determine coarse aggregate.  

 

Specified Strength and Target Strength For Mix Design  

 

a. Variation and probability of concrete strength finding standard deviation and k 

values to calculate the margin. 

 

b. Characteristic strength Probability and statistics have been widely adopted in 

engineering to describe structure failure and material properties. In the old practice, 

concrete strength is specified using "minimum strength". From the probability 

theory adopted today, there is always a possibility, however remote, that the 

strength of concrete falls below a specified strength. Therefore concrete strength 

is specified in term of "Characteristic Strength". The characteristic strength is the 

strength below 2 which a specified proportion of test results, often called 

"defectives", may be expected to fall. The characteristic strength may be defined 

to have any proportion of defectives, BS 5328 "Concrete" and BS8110 "Structure 

use of concrete" adopt 5% defectives level for the determination of characteristic 

strength. 

 

c. Target strength for mix design  

As a results of variability of concrete it is necessary to design the mix to have a 

mean strength greater than the specified characteristic strength by an amount 

termed the margin. Thus the target strength, fm, is  
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fm= fc+ ks ……………..(3)  

where  

fc= specified characteristic strength  

s = standard deviation  

k = constant depending on the defective level associated with the specified 

strength. ks is termed the margin.  

 

Normal Distribution 

 
 

Mean = failure level+ z x standard deviation. 

 

A table of z (or n) values for various values of percentage failures 3  
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(Table 1.10.1 in section 1.10 of the notes) 

Percentage failure permitted Z value 

16 1.00 

10 1.28 

5 1.64 

2.5 1.96 

2 2.05 

1 2.33 

 
Figure 3  

 

• Find w/c by:  

1. Finding strength from table 2 (with w/c =0.5)  

2. Using this strength with w/c 0.5 to drew a curve parallel to other curves in the 

figure 4 

3. Intersection of the line that represent target strength with this curve will determine 

w/c  
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Table 2 Compressive strength of concrete made with w/c 0.5 as per 1988 

British Method 

 
 

 



162 

 
 

• Calculate total Aggregate content  

• Total aggregate content = Wet density-C-W  

• C: cement content Kg/m3  

• W:water content Kg/m3  

• Wet density from figure 5 depending on specific weight of aggregate and water 

content  
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Figure 5 

 
 
To find the percent of fine aggregate  

 

• Using figure 6 to find the percent of fine aggregate through knowing :  

1. Slump and V-B time  

2. Max aggregate size  

3. Water to cement ratio w/c  

4. By knowing the zone of grading for the aggregate, 2 values would be obtained 

(take the average)  
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Figure 6 (10mm) 

 
 

Figure 6 (20mm) 
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• Calculate Fine Aggregate content  

• Fine aggregate content Fagg = pw×(Wagg ) kg/m3  

• Pw (percent of fine agg.) is determined from graphs  

• Cagg= Wagg-Fagg  

 

Material  Content (Kg/m3) 

water   

Cement   

Fine aggregate   

Coarse aggregate   

Density   

w/c   

Mix proportions (cement:sand:gravel)  X:Y:Z 
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Appendix C Film Processing 

Darkroom safe lighting 

X-ray films and paper can be handled under the normal orange-red or green 

darkroom safelights for X-ray films. When doing so care must, of course, be taken to 

see that the distance from the safelight and the duration of exposure are appropriate 

to the speed of the film concerned. Recommended safelight filters: R 1 (orange -red) 

and G 7 (green). 

Developing 

Standardised development is essential if exact exposure data are to be found by 

experiment and then applied systematically, the use of a standard developer at a 

standard temperature, with standard developing times. Standard developer: i.e. 

developer of uniform, constant characteristics (composition). Preferably use G 127 

developer; this will obviate variations in density due to incorrect mixing of the bath 

or the use of impure chemicals. Standard developing times: the times advised will 

give the best results. Altering the developing time to suit the exposure is not to be 

recommended. Standard temperature: 68°F (20°C), in no circumstances below 64"F 

(18°C). 

Developer temperature 

Increasing the temperature of the developer speeds up the developing process. This 

cuts down the developing time, but the developer then becomes exhausted more 

rapidly, and faults aggravated by the age of the film or too exhausted or oxidized 

processing solutions can very readily occur. Conversely, the activity of the developer 

is reduced when its temperature drops. Developing times for temperature other than 

the recommended one of 68°F (20°C) are given here in case it should not be possible 

to bring the developer to this temperature and keep it there during development. 

Developing times (in minutes) for tank development in the conventional X-ray 

developers (e.g. 

G 127), at different temperatures. 
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Agitation of films 

The film should be agitated continuously for the first 30 seconds of development, in 

order to dislodge any air-bubbles which may have formed on the surface of the 

emulsion (and which would cause white spots on the radiograph), and to distribute 

the developer evenly to all areas of the emulsion. If agitation is continuous the 

development process will be speeded up, and the 

times given here can then be cut by about l/5th. 

When using frames with clips, never let the films drain above the developer tank; 

immerse them immediately in the stop bath or rinse. About 320 ml of developer is 

carried over by the film (and frame) for every square metre of film processed. Since, 

for every square metre of film developed, 600 ml of developer lies to be replaced by 

a similar amount of replenishes, this means that a further 280 ml of developer will 

need to be removed from the tank later. When using frames with channels, allow the 

film to drain over the developer tank for two or three seconds. In this way, about 400 

ml of developer will be carried over for each square metre of film processed. It 

follows that a quantity of 200 ml should be drained from the tank in order to add 600 

ml of replenishes. 

Replenishment 

Replenisher can be added up to maximum of 4 litres to every litre of original 

developer solution. After adding the last dose of replenisher, a quarter of a square 

metre of film can be processed per litre of solution before the developer bath needs to 

be discarded and replaced. 
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Stop bath  

It is preferable to immerse the film for 30 seconds, immediately after removal from 

the developer, in a stop bath in order to prevent, 1) neutralisation of the fixer by the 

transfer of 

alkaline developer on the films and hangers; 2) streaks or dichroic fog on the films. 

The stop bath must be kept at a sufficient level of acidity. If a stop bath is not used, 

films should be rinsed in running water for 2-3 minutes immediately after 

development. 

Fixing 

The following fixers are recommended: 

1) non-hardening fixer G 321 

2) hardening fixers: 

a) formula GP 308 

b) G 321 with the addition of Aditan hardener. 

Films should be fixed for double the time taken for cleaning the emulsion 

(disappearance of 

the opalescent milkiness). 

As a general rule, not more than one square metre of film can be processed per litre 

of fixer. Films must be agitated continuously during the first 30 seconds of fixing, 

particularly when a hardening fixer is involved; failure to do this can result in a 

deposit forming in the fixer which appears as white patches on the film. This deposit 

can be removed by placing the films in a 10% solution of sodium carbonate. An 

over-warm processing bath has a tendency to strip the emulsion from its base and to 

melt the emulsion (see Washing, below). For this reason, a hardening fixer should be 

used wherever the temperature of the washing water is higher than 7TF (25"C). 

Final wash 

Thee silver compounds which are formed during the fixing stage must be removed 

from the emulsion, since they can affect the silver image at the later stage. For this 
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reason the film must be washed thoroughly in running water. The duration of 

washing will depend upon the temperature of the water used: 

at 41 - 54°F ( 5 - ITC) wash for 30 min., 

at 55 - 7TF (13 - 25°C) wash for 20 min., 

at 78 - 86°F (26 - 30°C) wash for 15 min., 

at more than 86°F (30°C) wash for 10 min. 

Avoid temperatures above 77°F (25e'C) if possible. 

Draining 

Leave films to drain for 2 minutes or so before placing them in the drying cabinet; 

this will keep the floor of the cabinet dry. It is advisable to immerse films for 1 

minute in a solution of wetting agent after the final wash. The films then will drain 

more quickly, completely and evenly, and as no droplets of water will be left on the 

surface of the films there will be less risk of drying marks. 

Drying 

X-ray films should preferably be dried in a specially-designed drying cabinet; if not, 

they must be dried in a dry, dust-free room. The higher the temperature and the lower 

the relative humidity, the more rapidly the film will dry; temperatures higher than 

104°F (40°C) must however be avoided, as they will involve the risk of melting the 

gelatine or stripping the emulsion from its base. The flow of air reaching the films 

must be even; excessively forced ventilation, producing an uneven flow of air inside 

the drying cabinet, can cause abnormal curling or distortion of the films. Practical 

advice on avoiding processing faults will be found in the booklet "50 Hints on the 

darkroom processing of industrial X-ray films", produced specially for darkroom 

staff. 

 

Source: Domanus, J. C. (1992). Practical neutron radiography. 
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Appendix D Thermal Neutron Flux Measurement Using Gold and Cadmium 

 

The neutron energy range can roughly be categorized into three groups, each 

with its own characteristics. Table 3.8 lists the three main neutron groups. 

Table 1 Three main neutron groups 

Group Energy range Region 

Fast 10 keV – 10 MeV Fission 

Resonance 1 eV – 10 keV 1/E 

Thermal 0 - eV Maxwellian 

with E as the neutron’s energy 

For gold (Au), its response region is in between 0.0014 eV to 5.8 eV, which 

can only absorb thermal and epithermal neutrons. If the cut-off energy of cadmium 

(Cd) i.e. 0.55 eV is used to mark the thermal and epithermal regions, the difference 

between the activity of bare gold wire and the gold wire covered with cadmium can be 

determined. If both were irradiated in the same flux under the same circumstances, the 

activity caused by thermal neutron flux can be determined (Idris, 1993). The activity 

of bare gold wire induced by neutrons is given by: 

Abare(τ) = ΦthσthNs(1 − exp(−λt)) exp(−λτ)

+ Φepiσepi(1 − exp(−λt))exp (−λτ) 

(1) 

 

The activity of gold wire covered with 1 mm cadmium is given by: 

ACd(τ) = ΦepiσepiNs(1 − exp(−λt)) exp(−λτ) (2) 

with 

  σth Thermal neutron cross section, with value 98.8 barn 

  σepi Epithermal cross section 

  Φth Thermal flux 

  Φepi Epithermal flux 

As 𝐴𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝐴𝑏𝑎𝑟𝑒(𝜏) − 𝐴𝐶𝑑(𝜏), therefor the difference (1)-(2) will give: 
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Athermal(τ) = 𝛷thσthNs(1 − exp(−λt)) exp(−λτ) (3) 

From equation (3.6), the thermal neutron flux ∅𝑡ℎ can be calculated. 

For epithermal neutron of a gold detector, its resonance integral is given by: 

Ir = ∫ σ(E) 
dE

E

0.2 MeV

0.55 eV

= 1562 barn 
(4) 

Therefore, its reaction rate with epithermal neutron is given by: 

R = θ ∫ σ(E)
dE

E

0.2 MeV

0.55 eV

 

= θ Ir 

= θ 1562 barn 

(5) 

with 𝜃 as the intermediate neutron flux density per unit ‘lethargy’ and has a constant 

value. The cadmium ratio is defined as 

RCd =
Abare

ACd
 

=
Ath + Aepi

Ath
 

= 1 +
Aepi

Ath
 

(6) 

or, 

RCd − 1 ≈
rth

repi
 

 

(7) 

and 

RCd =
Φthσth + Φthσepi

Φepiσepi
 

 

(8) 

Thus, the ratio of a bare gold detector and the one covered with Cd could be written 

as: 

RCd − 1 ≈
Φthσth

θ ∫ Φepi(E)
dE
E

0.2 MeV

0.55 eV

 

≈
Φthσth

θ 1562 barn
 

(9) 
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From equation (3.12), the value of 𝜃 could be calculated. Therefore, the total 

intermediate neutron flux detected by gold is: 

Φint = θ ∫ Φepi(E)
dE

E

0.2 MeV

0.55 eV

 

≈ θ ln
0.2 E + 06

0.5
 

(10) 

 

Pre-Irradiation calculations 

Before the irradiation of the samples was carried out using the reactor, it was 

important to calculate the activity of the samples prior irradiation for safety purposes. 

The expected activity of each material was estimated using the equation below: 

As = NtσΦ(1 − exp(−λt))exp (−λτ) (11) 

with,  

  Φ neutron flux at measurement point 

  𝜎 neutron cross section of the target nuclide 

  𝑁𝑡 total number of target nuclides in the sample 

  𝜆 decay constant 

A neutron flux of 1x106 n.cm-2.s-1 was used for the pre-irradiation calculations 

(Hasham, 2008). 




