DESIGN, CONSTRUCTION AND FACILITY ENHANCEMENT FOR DIGITAL NEUTRON RADIOGRAPHY AT REACTOR TRIGA PUSPATI

MUHAMMAD SYAHIR BIN SARKAWI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

JANUARY 2020

ACKNOWLEDGEMENT

"In the name of Allah, the Most Gracious and the Most Merciful."

First and foremost, a special thank you to my supervisor, Dr. Jasman Zainal, for all his guidance, support, advice, and providing time to discuss my work. He has taught me more than I could ever give him credit for here. I also would like to acknowledge my co-supervisor, Dr. Faridah Idris from the Malaysian Nuclear Agency (MNA) for all her suggestions, time, and help throughout my research.

I would also like to express my sincere gratitude to MNA for providing the research facility and their staffs Dr. Muhammad Rawi, Mrs. Khair'iah Yazid, Mr. Hairie Rabir and Mr. Rafhayudi Jamro who have given me valuable opportunity to have used of their resources, equipment, and for all their assistance.

This work would not have been possible without financial support from Universiti Teknologi Malaysia (UTM), and Ministry of Education Malaysia under *Skim Latihan Akademik Muda* (SLAM).

Nobody has been more important to me in the pursuit of this research than the members of my family and friends. I would like to thank my parents, who support me from the beginning of my journey. They are the ultimate role models. Most importantly, I am grateful to my loving and supportive wife, Najaa Fadhilah, who provide continual inspiration.

iv

ABSTRACT

Neutron radiography (NR) is an important application in non-destructive testing which has been used especially in industrial, nuclear material, medical and agriculture. Reactor TRIGA PUSPATI (RTP) is the only research reactor in Malaysia which located at the Malaysian Nuclear Agency, with total capacity of 1MW operation. Its main applications are neutron activation analysis, small angle neutron scattering, and neutron radiography. The first NR facility system in RTP was ready for use in 1985. However, this neutron radiography facility known as NUR-2 was disassembled in 2014 due to several factors such as low collimation ratio, low thermal neutron flux, high gamma dose, and inadequate radiation shielding. Thus, there is a need to upgrade the capabilities of existing neutron radiography facility to meet current users' needs. Monte Carlo simulation code of MCNPX was used to simulate the important parameters and instrument design of the new neutron radiography facility. This simulation code of the neutron beam helps to design experiments before placing any sample objects in the neutron beam. The new collimator, beam shutter, and shielding were fabricated based on the results from Monte Carlo simulations while the concrete mixture of the new exposure room shielding was formulated using Department of Environmental's design method. The concrete samples were tested in terms of radiation shielding capability and strength. The best mix design was chosen to be fabricated as new exposure room shielding for NR facility at RTP. Furthermore, results obtained from the experimental works were used to verify the simulation modelling. Based on the simulation results, the new NR facility has a thermal neutron flux of 3.86×10^3 ncm⁻²s⁻¹ at the sample position. The new collimated beam has been characterized using beam purity indicator and sensitivity indicator from American Society for Testing and Materials. Radiographs of a sensitivity indicator taken using both digital and conventional direct film radiographic method provide one example of the radiographic capabilities of the new facility. The neutron radiograph which was taken by charged-coupled device camera and film showed that digital neutron radiography is not currently capable of producing good quality radiographs but it is mainly due to the limitations of the digital detector itself.

ABSTRAK

Radiografi neutron (NR) merupakan satu aplikasi yang penting telah digunakan dalam ujian tanpa musnah terutama sekali dalam bidang industri, bahan nuklear, perubatan, dan pertanian. Reaktor TRIGA PUSPATI (RTP) merupakan satusatunya reaktor penyelidikan di Malaysia yang terletak di Agensi Nuklear Malaysia (ANM) dan dengan jumlah kapasiti pada 1 MW operasi. Aplikasi utama di reaktor ini adalah analisis pengaktifan neutron, serakan neutron sudut kecil, dan radiografi neutron. Sistem kemudahan NR yang pertama di RTP telah mula digunakan pada tahun 1985. Namun, kemudahan radiografi neutron ini yang dikenali sebagai NUR-2 telah ditutup pada tahun 2014 disebabkan oleh beberapa faktor seperti nisbah pengkolimat yang rendah, fluks neutron terma yang rendah, dos gama yang tinggi, dan pemerisaian sinaran yang tidak mencukupi. Oleh itu, menaik taraf keupayaan kemudahan radiografi neutron sedia ada adalah sangat penting bagi memenuhi keperluan pengguna masakini. Perisian simulasi Monte Carlo MCNPX digunakan untuk mensimulasikan parameter penting dan reka bentuk instrumen kemudahan radiografi neutron yang baharu. Kod simulasi alur neutron ini membantu dalam merekabentuk eksperimen sebelum meletakkan sebarang sampel dalam alur neutron. Pengkolimat baharu, penutup alur, dan perisai sinaran direka berdasarkan keputusan dari simulasi Monte Carlo manakala campuran konkrit perisai bilik pendedahan baharu direkabentuk menggunakan kaedah yang diperolehi dari Jabatan Alam Sekitar. Sampel konkrit telah diuji dari segi pemerisaian sinaran dan ketahanan. Campuran konkrit terbaik dipilih untuk dijadikan sebagai pemerisaian bilik pendedahan yang baharu untuk kemudahan NR di RTP. Selain itu, keputusan yang diperoleh daripada kerja eksperimen digunakan untuk mengesahkan pemodelan simulasi. Berdasarkan keputusan simulasi, kemudahan NR baharu mempunyai fluks neutron terma sebanyak 3.86×10^3 ncm⁻²s⁻¹ pada kedudukan sampel. Alur pengkolimat baharu telah dicirikan dengan menggunakan penunjuk alur ketulenan dan penunjuk kepekaan dari persatuan Amerika untuk pengujian dan bahan. Radiograf penunjuk kepekaan yang diambil menggunakan kedua-dua kaedah digital dan kebiasaan langsung radiografi filem menunjukkan satu contoh keupayaan kemudahan radiografi neutron baharu. Radiografi neutron yang diambil oleh kamera peranti cas terganding dan filem menunjukkan radiografi neutron secara digital tidak mampu menghasilkan radiograf yang berkualiti disebabkan keterbatasan pengesan digital itu sendiri.

TABLE OF CONTENTS

TITLE

	DECLARATION			ii
	DEDICATION			iii
	ACKN	iv		
	ABST		v	
	ABST		vi	
	TABLE OF CONTENTS			
	LIST OF TABLES			
	LIST	OF FIC	GURES	xiii
	LIST	OF AB	BREVIATIONS	xvii
	LIST	OF SY	MBOLS	xix
	LIST	OF AP	PENDICES	XX
CHAPTER 1		INTR	ODUCTION	1
	1.1	Overvi	ew	1
	1.2	Proble	m Statement	3
	1.3	Research Objectives		
	1.4 Scope of the Study			4
	1.5 Significance of the Study			5
	1.6 Structure of Thesis			5
СНАРТЕБ	R 2	LITE	RATURE REVIEW	7
	2.1	Introdu	action	7
	2.2	Transn	nission Imaging	7
		2.2.1	Principles of Radiography	8
		2.2.2	Principles of Neutron Radiography	9
		2.2.3	Comparison between Conventional Radiography and Neutron Radiography	10
	2.3	Neutro	n Source	11
		2.3.1	Neutron Source from Radioisotope	12

		2.3.2	Neutron	Source from Accelerator	13
		2.3.3	Neutron	Source from Nuclear Reactor	14
	2.4	Beam	Collimato	or -	15
	2.5	Neutro	on Radiog	raphy Imaging Techniques	18
		2.5.1	Direct E	xposure Radiographic Method	19
		2.5.2	Transfer	Radiographic Method	20
		2.5.3	Track-Et	ch Radiographic Method	21
		2.5.4	Digital I	maging Method	23
	2.6	TRIG	A MARK	II PUSPATI Research Reactor (RTP)	24
		2.6.1	Present S at the RT	Status of Neutron Radiography Facility	28
	2.7	Radiat	ion Shield	ling	29
	2.8	Image	Quality In	ndicator (IQI) System	31
		2.8.1	Sensitivi	ty Indicator (SI)	32
		2.8.2	Beam Pu	rity Indicator (BPI)	33
CHAPTER	R 3	RESE	ARCH M	IETHODOLOGY	37
	3.1	Introd	uction		37
	3.2	Resear	rch Frame	work	37
	3.3	Monte Code f	c Carlo N for New N	Neutron Particle (MCNP) Simulation	39
		3.3.1	MCNP I	nput Files	40
			3.3.1.1	NR Collimator Input File	41
			3.3.1.2	Ferro Boron Concrete Input File	42
			3.3.1.3	NR Beam Shutter Input File	44
			3.3.1.4	Dose Mapping Around the New NR Facility at RTP Input File	45
	3.4	Ferro	Boron Co	ncrete Samples	47
		3.4.1	Preparati	on of Ferro Boron Concrete Samples	47
		3.4.2	Ferro Bo	oron Concrete Samples Test	49
			3.4.2.1	Slump Test	49
			3.4.2.2	Gamma Transmission Test	50
			3.4.2.3	Mechanical Test	51

3.5	Fabrication of New Neutron Radiography Facility Components	55
	3.5.1 Fabrication of Exposure Room Shielding	56
	3.5.2 Fabrication of Beam Shutter	58
	3.5.3 Fabrication of CCD Camera Shielding	60
3.6	Measurement of Neutron and Gamma Dose	61
	3.6.1 Neutron and Gamma Dose Measurement Inside Exposure Room	63
	3.6.2 Neutron and Gamma Dose Measurement Inside CCD Camera Shielding	64
	3.6.3 Neutron and Gamma Dose Mapping at Beam Stopper of NR Facility	65
	3.6.4 Neutron and Gamma Dose Measurement Around NR Facility	66
3.7	Thermal Neutron Flux Measurement Using Gold and Cadmium	68
	3.7.1 Sample preparations	68
	3.7.2 Sample Irradiation	69
3.8	Measurement of Neutron Spectrum using MICROSPEC-6 Spectrometer	71
3.9	Calculation of Collimation Ratio	72
3.10	Characterization and Demonstration of the New NR Facility at RTP	73
	3.10.1 Preparation and Processing of Radiographic Film	74
	3.10.2 Radiograph of the Image Quality Indicator (IQI)	74
	3.10.3 Neutron Radiography Using CCD Camera	76
CHAPTER 4	RESULTS AND DISCUSSIONS	79
4.1	Introduction	79
4.2	MCNP Simulation Code Results	79
	4.2.1 Ferro Boron Concrete	81
	4.2.2 Neutron and Gamma Flux Inside Collimator	83
	4.2.3 Neutron and Gamma Flux Inside Exposure Room Shielding	87

	4.2.4	Neutron and Gamma Dose Rate Inside Collimator	91	
	4.2.5	Neutron and Gamma Dose Around Exposure Room Shielding	93	
	4.2.6	Beam Shutter	102	
4.3	Ferro	Boron Concrete Samples Testing Results	105	
	4.3.1	Gamma Transmission Test Results	105	
	4.3.2	Mechanical Test Results	106	
4.4	Exper Measu	imental Results of Neutron and Gamma Dose arement	108	
	4.4.1	Neutron and Gamma Dose Inside Exposure Room Shielding	109	
	4.4.2	Neutron and Gamma Dose Inside CCD Camera Shielding	111	
	4.4.3	Neutron and Gamma Dose at Beam Stopper of NR Facility	112	
	4.4.4	Neutron and Gamma Dose Around NR Facility	115	
4.5	Experi Measu	imental Results of Thermal Neutron Flux arement	118	
4.6	Neutro Positio	on Energy Spectrum Measurement at Samples on of NR Facility	120	
4.7	Beam Characterization and Demonstration of the New NR Facility		122	
	4.7.1	Beam Characterization Using Image Quality Indicator (IQI)	123	
		4.7.1.1 Radiation Beam Composition	123	
		4.7.1.2 Radiographic Sensitivity	127	
	4.7.2	Demonstration of Digital Neutron Radiography Facility at RTP	128	
CHAPTER 5	CON	CLUSION AND RECOMMENDATIONS	133	
5.1	Concl	usions	133	
5.2	Recon	nmendations for Future Work	135	
REFERENCES			137	
LIST OF PUBLICATIONS				
APPENDICES				

LIST OF TABLES

TABLE NO.	TITLE	PAGE			
Table 2.1	Comparison between neutron radiography and conventional radiography (Craft et al, 2017; Reijonen, Kormano, & Reijonen, 1973)	11			
Table 2.2	Neutron sources characteristics (Anderson et al, 2009)				
Table 2.3	Characteristics of radioisotope neutron sources (Domanus, 1992)	13			
Table 2.4	Accelerator neutron sources (Domanus, 1992)	14			
Table 2.5	Current medium and high flux research nuclear reactor (Anderson et al, 2009; Rabir, Abdul Karim, & Mohamed Zin, 2017)	15			
Table 2.6	List of neutron radiography imaging technique (Anderson et al, 2009)	18			
Table 2.7	Characteristics of the RTP	25			
Table 2.8	Characteristics of the beam ports and thermal column at the RTP	27			
Table 2.9	Neutron flux at BP1, BP2, BP3, and B4 at 40 cm distance from the reflector at 750 kW thermal power (Rabir, Abdul Karim, & Mohamed Zin, 2017)	28			
Table 2.10	Comparison of NUR-2 with other NR facilities around the world	29			
Table 2.11	Category of NR facility based on BPI and SI	35			
Table 3.1	Materials used in the simulation of the new collimator for NR facility at RTP	42			
Table 3.2	Initial source used in this simulation	43			
Table 3.3	The elemental compositions and density of the materials (Demir et al., 2011; Resources, 2015)	43			
Table 3.4	Ferro boron contents and density of simulated samples	44			
Table 3.5	Simulated design for new beam shutter at NR facility at RTP				
Table 3.6	Concrete mix design				

Table 3.7	Guidelines for characterizing the quality of concrete structure in term of ultrasonic pulse velocity	53			
Table 3.8	The exposure factors for the neutron radiograph of the BPI and SI				
Table 4.1	Attenuation coefficients of ferro boron concrete samples for 1173 keV and 1332 keV				
Table 4.2	Mechanical properties of ferro boron concrete samples	107			
Table 4.3	Neutron and gamma dose rate inside exposure room shielding at 150 kW and 750 kW reactor power	109			
Table 4.4	Neutron and gamma dose rate inside the CCD camera shielding at 750 kW reactor power	111			
Table 4.5	Neutron and gamma dose rate around NR facility at 750 kW reactor power with both of the beam shutter closed	116			
Table 4.6	Neutron and gamma dose rate around NR facility at 750 kW reactor power with both of the beam shutter open	117			
Table 4.7	Thermal neutron flux inside the new NR collimator	119			
Table 4.8	The effective radiation beam contents in the new collimated beam for the NR facility at the RTP	123			
Table 4.9	Comparison of radiation beam contents of NR facility at RTP for 20 minutes exposure time (Hasham, 2008; Jaafar, 1980)	125			
$T_{abla} 4.10$	Dadia granhia acquitivity (C)	120			
1 able 4.10	Kaulographic sensitivity (G)	128			
Table 4.11	Radiographic sensitivity (H)	128			

LIST OF FIGURES

FIGURE NO). TITLE	PAGE	
Figure 2.1	Schematic diagram of radiography (Raad & Kuiper, 2008)	8	
Figure 2.2	Components of neutron radiography system (Domanus, 1992)	10	
Figure 2.3	Divergent collimator	16	
Figure 2.4	Old NR collimator at the RTP	17	
Figure 2.5	Direct exposure method with photographic film	20	
Figure 2.6	Transfer radiographic method with photographic film	21	
Figure 2.7	Track-Etch radiographic method with nitrocellulose film (Domanus, 1992)	22	
Figure 2.8	Layout of digital neutron camera system	23	
Figure 2.9	Charge Coupled Device (CCD) Camera	24	
Figure 2.10	Vertical cross section of the RTP (Solleh, 2015)	26	
Figure 2.11	Horizontal cross section of the RTP (Jamro et al, 2017)	26	
Figure 2.12	Old and new neutron radiography facility at the RTP respectively	29	
Figure 2.13	Radiation penetrability	31	
Figure 2.14	Schematic diagram of the Sensitivity Indicator (SI)	32	
Figure 2.15	Photo of Sensitivity Indicator (SI)	33	
Figure 2.16	Beam Purity Indicator	34	
Figure 3.1	Research Framework	38	
Figure 3.2	The new NR collimator geometry	41	
Figure 3.3	2D and 3D view of the new collimator design for NR facility at RTP on VISED2	42	
Figure 3.4	Simulated geometry of ferro boron concrete	44	
Figure 3.5	Sample geometry of the beam shutter simulated in this simulation	45	
Figure 3.6	Full geometry of simulated NR facility at RTP	47	
Figure 3.7	Slump Test	49	

Figure 3.8	Experimental set up for gamma transmission test	51
Figure 3.9	Compressive Strength Test	52
Figure 3.10	Ultrasonic pulse velocity testing instrument	54
Figure 3.11	Ultrasonic pulse velocity testing	54
Figure 3.12	Rebound hammer and position for testing concrete surface	55
Figure 3.13	Dimension of the new exposure room shielding for NR at RTP	56
Figure 3.14	Concrete mould and steel framing	57
Figure 3.15	Concreting work for new exposure room shielding	58
Figure 3.16	Dimensions of the new beam shutter frame	59
Figure 3.17	New beam shutter for NR facility at RTP	59
Figure 3.18	Dimension of the CCD camera shielding	60
Figure 3.19	CCD camera shielding	61
Figure 3.20	TLD chip inside TLD card	62
Figure 3.21	Ludlum model 2363 survey meter with the model 42-42L PRESCILA neutron detector	62
Figure 3.22	Locations of the attached TLDs on the CCD camera shielding	65
Figure 3.23	Marked points at the back of the exposure room shielding	66
Figure 3.24	Locations of the dose measurement around the new NR facility at RTP	67
Figure 3.25	Gold wire, cadmium rod, plastic vial, and microbalance used to prepare the samples	68
Figure 3.26	Experimental setup for flux measurement at in front of the beam port	69
Figure 3.27	Experimental setup for neutron flux measurement inside the collimator at beam port 3	70
Figure 3.28	Decay scheme of ¹⁹⁸ Au	71
Figure 3.29	Experimental setup for neutron spectrum measurement at the new NR facility at RTP	72
Figure 3.30	Schematic diagram of neutron radiography facility	73
Figure 3.31	Experimental setup for BPI and SI radiograph	75
Figure 3.32	Digital NR setup for new NR facility at RTP	77

Figure 4.1	Top view and side view of the new NR facility model geometry respectively	80
Figure 4.2	Neutron surface dose for each 10 cm thick of ferro boron concrete	81
Figure 4.3	Gamma surface dose for each 10 cm thick of ferro boron	82
Figure 4.4	Total surface dose for each 10 cm thick of ferro boron	82
Figure 4.5	Contour plot of thermal, fast neutron, and gamma flux inside empty collimator	84
Figure 4.6	Contour plot of thermal and fast neutron flux inside the new NR collimator	86
Figure 4.7	Contour plot of gamma flux inside the new NR collimator	87
Figure 4.8	(Top view) Contour plot of thermal and fast neutron fluxes inside the new exposure room shielding	88
Figure 4.9	(Side view) Contour plot of thermal and fast neutron fluxes inside the new exposure room shielding	89
Figure 4.10	(Top view and side view) Contour plot of gamma flux inside the new exposure room shielding	90
Figure 4.11	Contour plot of neutron and gamma dose inside the new NR collimator	92
Figure 4.12	(Case 1) Contour plot of total dose rate at NR facility without shielding	93
Figure 4.13	(Case 2) Contour plot of total dose rate at NR facility with ordinary concrete	94
Figure 4.14	(Case 3) Contour plot of total dose rate at NR facility with ordinary concrete without door and roof plug	95
Figure 4.15	(Case 4) Contour plot of total dose rate at NR facility with ordinary concrete and ferro boron concrete	97
Figure 4.16	(Case 5) Contour plot of total dose rate at NR facility with ordinary concrete and ferro boron concrete without door and roof plug	98
Figure 4.17	(Case 6) Contour plot of total dose rate at NR facility with ordinary concrete and ferro boron concrete with beam shutter	99
Figure 4.18	(Case 7) Contour plot of total dose rate at NR facility with ordinary concrete, ferro boron concrete, and beam shutter without door	100

Figure 4.19	(Case 8) Contour plot of total dose rate at NR facility with ordinary concrete, ferro boron concrete, and beam shutter without door and roof plug	101
Figure 4.20	Neutron surface dose rate of the new beam shutter	103
Figure 4.21	Gamma surface dose rate of the new beam shutter	103
Figure 4.22	Total surface dose rate of the new beam shutter	104
Figure 4.23	Total dose rate inside exposure room shielding at 150 kW and 750 kW reactor power	110
Figure 4.24	Contour plot of neutron, gamma, and the mapping of the rate of the total at the beam stopper of the NR facility respectively (750 kW)	113
Figure 4.25	Temporary beam stopper for NR facility at RTP	115
Figure 4.26	Comparison of experimental and simulated results of thermal neutron flux measurements inside the new NR collimator	119
Figure 4.27	Neutron energy spectrum at sample position	121
Figure 4.28	Estimated energy spectrum of neutron at reactor power of 750 kW	122
Figure 4.29	Comparison of thermal neutron contents of new NR facility with previous facility (Hasham, 2008)	124
Figure 4.30	Comparison of secondary radiation contents of newly upgraded NR facility with the previous one	126
Figure 4.31	Radiographic image samples of IQI for 25 minutes exposure time	127
Figure 4.32	Digital neutron radiograph of a sensitivity indicator and a corresponding gray value profile	129
Figure 4.33	Film neutron radiograph of a sensitivity indicator and a corresponding gray value profile	130
Figure 4.34	Digital neutron radiograph of hibiscus flower and mobile phone taken at new NR facility at RTP	131

LIST OF ABBREVIATIONS

Al_2O_3	-	Aluminium Oxide
ALARA	-	As Low As Reasonably Achievable
ASTM	-	American Society for Testing and Materials
BENSC	-	Berlin Neutron Scattering Centre
BNCT	-	Boron Neutron Capture Therapy
BPE	-	Borated Polyethylene
BPI	-	Beam Purity Indicator
CCD	-	Charged-Coupled Device
DOE	-	Department of Environmental, United Kingdom
EPDM	-	Ethylene Propylene Diene Monomer
FRM-II	-	Forshungsreaktor Munchen II
GADOX	-	Gadolinium Oxysulfide
GM	-	Geiger Muller
HFIR	-	High Flux Isotope Reactor
HFR	-	High Flux Reactor
IQI	-	Image Quality Indicator
IQI JRR-3M	-	Image Quality Indicator Japan Research Reactor-No.3 Modified
IQI JRR-3M MCNP	- -	Image Quality Indicator Japan Research Reactor-No.3 Modified Monte Carlo Neutron Particle
IQI JRR-3M MCNP MCNPX	- - -	Image Quality Indicator Japan Research Reactor-No.3 Modified Monte Carlo Neutron Particle Monte Carlo Neutron Particle version X
IQI JRR-3M MCNP MCNPX MNA	- - -	Image Quality Indicator Japan Research Reactor-No.3 Modified Monte Carlo Neutron Particle Monte Carlo Neutron Particle version X Malaysian Nuclear Agency
IQI JRR-3M MCNP MCNPX MNA NAA		Image Quality Indicator Japan Research Reactor-No.3 Modified Monte Carlo Neutron Particle Monte Carlo Neutron Particle version X Malaysian Nuclear Agency Neutron Activation Analysis
IQI JRR-3M MCNP MCNPX MNA NAA NBSR		Image Quality Indicator Japan Research Reactor-No.3 Modified Monte Carlo Neutron Particle Monte Carlo Neutron Particle version X Malaysian Nuclear Agency Neutron Activation Analysis Neutron Beam Split-Core Reactor
IQI JRR-3M MCNP MCNPX MNA NAA NBSR NDT		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive Testing
IQI JRR-3M MCNP MCNPX MNA NAA NBSR NDT NR		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron Radiography
IQI JRR-3M MCNP MCNPX MNA NAA NBSR NDT NR NRU		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron RadiographyNational Research Universal reactor
IQI JRR-3M MCNP MCNPX MNA MNA NAA NBSR NDT NR NRU OPAL		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron RadiographyNational Research Universal reactorOpen Pool Australian Lightwater reactor
IQI JRR-3M MCNP MCNPX MNA MNA NAA NBSR NDT NR NRU OPAL PGNAA		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron RadiographyNational Research Universal reactorOpen Pool Australian Lightwater reactorPrompt Gamma Neutron Activation Analysis
IQI JRR-3M MCNP MCNPX MNA NAA NBSR NDT NR NRU OPAL PGNAA PPE		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron RadiographyNational Research Universal reactorOpen Pool Australian Lightwater reactorPrompt Gamma Neutron Activation AnalysisPersonal Protective Equipment
IQI JRR-3M MCNP MCNPX MNA NAA NBSR NDT NR NRU OPAL PGNAA PPE RTP		Image Quality IndicatorJapan Research Reactor-No.3 ModifiedMonte Carlo Neutron ParticleMonte Carlo Neutron Particle version XMalaysian Nuclear AgencyNeutron Activation AnalysisNeutron Beam Split-Core ReactorNon-Destructive TestingNeutron RadiographyNational Research Universal reactorOpen Pool Australian Lightwater reactorPrompt Gamma Neutron Activation AnalysisPersonal Protective EquipmentReactor TRIGA PUSPATI

SI	-	Sensitivity Indicator
TLD	-	Thermoluminescent Dosimeter
UTM	-	Universiti Teknologi Malaysia

LIST OF SYMBOLS

А	-	activity [Bq]
α	-	alpha particle
А	-	area
β	-	beta particle
R _{cd}	-	Cadmium Ratio
λ	-	decay constant [s ⁻¹]
ρ	-	density [g/cm ³]
D	-	diameter
eV	-	electronvolt
σ_{epi}	-	Epithermal cross section
ϕ_{epi}	-	Epithermal flux [cm ⁻² s ⁻¹]
γ	-	gamma-ray
g	-	gram
Io	-	Incident neutron
Φ_0	-	Initial flux [cm ⁻² s ⁻¹]
kg	-	kilogram
L	-	length [cm]
μ	-	linear attenuation coefficients [cm ⁻¹]
n	-	neutron particle
σ	-	Neutron cross section [barn]
nv	-	Neutron flux per square centimetre per second
Ν	-	Number of target nuclides [atoms/cm ³]
R	-	Reaction rate
S	-	second
Sv	-	sievert
φ_{th}	-	Thermal flux [cm ⁻² s ⁻¹]
σ_{th}	-	Thermal neutron cross section [barn]
t	-	thickness [cm]
μ_{m}	-	Total mass attenuation coefficients [cm ² /g]
Ι	-	Transmitted neutron

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	MCNP Code Input Files for Simulation of the New Neutron Radiography Facility at RTP	145
Appendix B	British (DOE) Method Form	158
Appendix C	Film Processing	166
Appendix D	Thermal Neutron Flux Measurement Using Gold and Cadmium	170

CHAPTER 1

INTRODUCTION

1.1 Overview

Neutron was discovered by an English physicist, Sir James Chadwick in 1932. Neutron is a particle that binds together with protons in the atomic nucleus. A neutron is neutrally charged and has a mass of about 1 amu, which is nearly the same with a proton (Davis, 2015). Different from X-ray and gamma-ray, neutrons interact with the nucleus of the atom rather than its electron cloud. Hence, the interaction force between neutrons and nuclei are not correlated with the atomic number of the element but instead depend on the isotope of the element (Anderson, McGreevy, & Bilheux, 2009). Neutrons have now been used for about 80 years to probe the microscopic structure and process in a complex matter.

Neutron imaging has been used more than seven decades since the first photograph capture by Kallman and Kuhn in Germany in 1935 (Kallmann, 1940). Since the mid-20th century, development of neutron imaging is ongoing showing that neutron is suitable for nondestructive testing in the study of bulk materials including aircraft components, fuel cell, cultural heritage, turbine blades, and biological samples (Fantidis, Potolias, & Bandekas, 2011; Rant, Milič, Turk, & Lengar, 2005; Satija, Jacobson, Arif, & Werner, 2004). Compared to X-ray and gamma-ray, the neutron has higher penetration power and could penetrate deeper into materials to give insight regarding the internal structures of these materials (Grupen, 2012).

As mentioned earlier, the concept of neutron radiography depends on the interaction of neutron with the target materials (Davis, 2015). The neutron transmitted through the target material could be captured as radiographic images by radiographic films or digitally by a charged-coupled device (CCD) camera (Azali Muhammad et

al., 2008). The amount of transmitted neutron is proportional to neutron scattering and neutron absorbing materials in the beam and can be determined using Beer's Law:

$$I = I_0 \exp(-\mu \cdot t) \tag{1.1}$$

with, μ as the attenuation coefficients of the material, t as the thickness of the target sample, I_o as the intensity of the incoming neutron beam, and I as the intensity of the transmitted neutron through the target material.

There are three common neutron sources used for a variety of applications, which are nuclear reactors, accelerators, and radioisotopes(Domanus, 1992). In a research reactor, neutrons produced from the core are channeled through a beam port to the target sample, and the transmitted neutrons are used to gain insight into the internal structural properties of the sample object (Davis, 2015). Since neutron radiography is primarily performed with thermal neutrons, a collimator is needed to moderate the fast neutrons and filter gamma radiation (MacGillivray, 2011).

In Malaysia, the one and only research reactor is Reactor TRIGA PUSPATI (RTP) located at the Malaysian Nuclear Agency (MNA). Neutron beams from this reactor provide a good thermal neutron source for a variety of applications such as neutron activation analysis, isotope production, characterization of materials, and neutron radiography. In this research, several components of the previous neutron radiography facility will be redesigned in order to upgrade its capability. This research focuses on the main limitations of previous neutron radiography facility, which is low thermal neutron flux, high gamma radiation for digital neutron radiography facility will be evaluated using standard neutron radiographic sensitivity indicator and various sample objects (ASTM E545, 2014).

The types of concrete used in the new exposure room shielding can be grouped into two categories, namely grade-40 concrete, and high-density ferro boron concrete. According to the initial plan, all the concrete blocks were to be built using high density ferro boron concrete. However, due to budget limitation, the initial design has to be modified in order to meet the financial terms and maintain the radiation shielding capability.

Monte Carlo simulation code of MCNPX is used to study various parameters that are needed to conduct neutron radiography testing at the beam port such as neutron and gamma flux and dose, design of collimator, and radiation shielding. The data and results obtained from simulations, experiments and real time neutron radiography practices on various types of objects will be compared and analyzed.

1.2 Problem Statement

RTP has a neutron radiography facility known as NUR-2 which has been used as a basic inspection tool since 1985 for archaeological and biological objects and industrial components. However, this facility has low thermal neutron intensity at the sample position, which leads to long irradiation times, and it gives many limitations for the industrial applications (Azali Muhammad et al., 2008). This facility also has low collimation ratio and high gamma radiation. Besides, its radiation shielding block is insufficient due to the streaming problem. The previous neutron radiography facility is only limited for the conventional radiographic method, which is using films due to high gamma radiation at the sample position area. Hence, due to this drawback NUR-2 was dissembled in 2014. Since then, neutron radiography can only be done at SANS (beam port 4) of RTP.

In this study, new neutron radiography facility instruments will be designed and constructed to upgrade previous outdated components. Many gaps which exist between the previous radiation shielding blocks at NUR-2 has led to the radiation streaming problem. Besides, the previous radiation shielding blocks were made from normal concrete. Thus, new radiation shielding blocks will be designed to reduce radiation streaming problem and ferro boron will be added into the concrete mixture to enhance its radiation shielding capability. Other than that, the previous beam shutter has a large dimension which is not suitable for the new neutron radiography facility. Hence, a new beam shutter will be designed to be more compact and yet sufficient to block radiation coming from the beam port.

The charged coupled device (CCD) camera is used for capturing radiographic imaging of the samples. This device is more convenient to use than films in terms of image processing and analysis. However, using a CCD camera at the previous neutron radiography facility is quite impracticable and risky due to high radiation that can cause damage to the electronic parts inside the CCD camera. With new collimator and radiation shielding for the camera, this digital imaging at the new neutron radiography facility can be realized, and it will be a significant enhancement to the previous facility.

1.3 Research Objectives

The aim of this research is to upgrade the neutron radiography facility (NUR-2) for digital imaging at Reactor TRIGA PUSPATI, Malaysia. In an attempt to achieve this goal, the following tasks are established:

- 1. To improve collimator, beam shutter, and shielding bunker design
- 2. To fabricate the new radiation shielding block and beam shutter
- 3. To determine neutron and gamma profile
- 4. To demonstrate the new neutron radiography facility capabilities at RTP

1.4 Scope of the Study

This research aims to upgrade several parameters and the design of neutron radiography facility (NUR-2) at RTP. This research used thermal neutrons from the radial beam port (beam port 3) of RTP. New neutron radiography components at RTP, such as exposure room shielding, beam shutter, beam stopper, camera shielding, and collimator, are introduced in this research. These new instruments are made to upgrade the previous neutron radiography facility at RTP. Concrete mix design used in this study is based on the United Kingdom Department of Environment's design method (DOE). The ferro-boron concrete samples are tested with several testing methods, including gamma radiation transmission testing, compressive strength testing (ASTM C109, 2016), rebound hammer testing, and ultrasonic velocity testing. Neutron and gamma profile at NUR-2 is determined by using two methods, namely simulation and experimental. Neutron and gamma profiles include flux and dose. Monte Carlo simulation code of MCNPX is used to simulate the parameters and instrument design of the neutron radiography components. TLD 600, TLD 700, and survey meter are used to measure the neutron and gamma doses around the facility. MICROSPEC-6 with neutron probe and gold foil are used to determine the neutron energy spectrum and neuron flux at the neutron beam respectively. A CCD camera and films are used to capture the neutron radiograph of the samples. In this research, direct exposure radiographic method is used because the sample is non-radioactive. Standard Image Quality Indicator (IQI) as per ASTM (ASTM E545, 2014) will be used to demonstrate the neutron radiography capability at the newly upgraded facility.

1.5 Significance of the Study

The significance of carrying out this research is that digital neutron radiography can be used as a complementary technique of other non-destructive types of testing such as X-ray and gamma radiography. Conventionally, neutron radiography used films to capture the radiograph. This method takes a lot of work and time to process the image. Hence, this research focusing on upgrading neutron radiography facility at RTP for digital neutron radiography using CCD camera. The newly upgraded facility also offers higher collimation ratio, which can be used for larger samples and produce better radiograph.

1.6 Structure of Thesis

This thesis details the work, results and analysis from the upgrading work of NR facility at the Reactor TRIGA PUSPATI. Generally, the content of this thesis is organized as follows:

Chapter 1 highlights a general introduction of NR, available facility in Malaysia and the importance of NR as complementary technique to conventional radiography. In addition, problem statement and objectives of this research are included in this chapter.

Chapter 2 contains the theoretical background of NR techniques. The performance of NR facilities from the other studies from around the world is presented. The procedure of NR applications and characterization of NR facility are discussed in the literature reviews included in this chapter.

Chapter 3 discusses the methodologies and materials used in this research. In this chapter, all materials used in fabrication of exposure room shielding, beam shutter, CCD camera shielding and in experiment done are discussed in detail. Furthermore, the methodology used in simulation, fabrication, experiment and characterization of the new NR facility are also discussed.

Chapter 4 presented the results and discussion of simulation and experimental work conducted in this research. The simulation and experiment of neutron and gamma profile from radial beam port 3 are defined. The discussion is extended further with the result of ferro boron concrete samples testing and characterization of the new NR facility at RTP. Lastly, Chapter 5 include the conclusions of this thesis and recommendations for future works.

REFERENCES

- Akbay, İ., Köleli, D., Cömertpay, Ü., Güngör, A., & Özdemir, T. (2015). *Rubber for* gamma and neutron radiation protection.
- Arno, M. (2009). Radiation Protection. In *Nuclear Engineering Handbook* (pp. 609-640): CRC Press.
- Ashraf, M. M., & Khan, A. R. (1992). *Review of neutron radiographic applications in industrial and biological systems*. Retrieved from
- American Society for Testing and Materials . Standard Practice for Fabrication of Neutron Radiographic Sensitivity Indicators. In. ASTM International, West Conshohocken, PA, E2023-10. 2014
- American Society for Testing and Materials. Standard Test Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination. In. ASTM International, West Conshohocken, PA, E545. 2014
- American Society for Testing and Materials. Standard Practices for Thermal Neutron Radiography of Materials. In. ASTM International, West Conshohocken, PA, E748-90. 2019
- American Society for Testing and Materials. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). In. ASTM International, West Conshohocken, PA, C109 / C109M-16a. 2016
- American Society for Testing and Materials. Standard Test Method for Slump of Hydraulic-Cement Concrete. In. ASTM International, West Conshohocken, PA, C143 / C143M – 12. 1999
- American Society for Testing and Materials. Standard Test Method for Determining the L/D Ratio of Neutron Radiography Beams. In ASTM International, West Conshohocken, PA, E803-91. 2013
- Anderson, I. S., McGreevy, R. L., & Bilheux, H. Z. (2009). *Neutron imaging and applications : a reference for the imaging community*. New York; London: Springer.

- Azali Muhammad, Abdul Aziz Mohamed, Muhammad Rawi Mohamed Zin, Rafhayudi Jamro, Razali Kassim, Husain Wagiran, Hassan, W. M. S. W. (2008). Development of new neutron radiography facility at MINT TRIGA MARK II tangential beam port using CCD camera imaging system. *Neutron Imaging: A Non-Destructive Tool for Materials Testing*, 19-32.
- Barton, J. P., & Rogers, J. D. (2015). Selective Energy Neutron Radiographic Imaging Origins and Lessons for Low Cost Systems. *Physics Procedia*, 69, 198-201. doi:http://dx.doi.org/10.1016/j.phpro.2015.07.028
- Bastürk, M., Tatlisu, H., & Böck, H. (2006). Nondestructive inspection of fresh WWER-440 fuel assemblies. *Journal of Nuclear Materials*, 350(3), 240-245. <u>doi:http://dx.doi.org/10.1016/j.jnucmat.2006.01.007</u>
- Berger, H. (1975). Practical Applications of Neutron Radiography and Gaging. ASTM STP 586: ASTM International, 1975.
- Berger, H. (1965). *Neutron Radiography : Methods, Capabilities, And Applications* Elsevier Publishing Company.
- Bossi, R. H., Iddings F.A., and Wheeler, G.C. (2002). *Nondestructive Testing Handbook* (Vol. Vol. 4): American Society for Nondestructive Testing, Inc., USA
- Chalovich, T. R., Bennett, L. G. I., Lewis, W. J., & Brenizer Jr, J. S. (2004). Development of neutron radioscopy for the inspection of CF188 flight control surfaces. *Applied Radiation and Isotopes*, 61(4), 693-700. doi:http://dx.doi.org/10.1016/j.apradiso.2004.03.097
- Craft, A. E., & Barton, J. P. (2017). Applications of Neutron Radiography for the Nuclear Power Industry. *Physics Procedia*, 88, 73-80. <u>doi:https://doi.org/10.1016/j.phpro.2017.06.009</u>
- Davis, W. (2015). Procedures and Applications of Nondestructive Testing.
- Dawson, M. N. (2008). Applications of neutron radiography & tomography (Doctoral dissertation, University of Leeds).
- Demir, F., Budak, G., Sahin, R., Karabulut, A., Oltulu, M., & Un, A. (2011). Determination of radiation attenuation coefficients of heavyweight-and normal-weight concretes containing colemanite and barite for 0.663 MeV γrays. *Annals of Nuclear Energy*, 38(6), 1274-1278.
- Domanus, J. C. (1992). Practical neutron radiography.

- El-Khayatt, A. (2010). Radiation shielding of concretes containing different lime/silica ratios. *Annals of Nuclear Energy*, *37*(7), 991-995.
- Eldin, E. M. T. A. (2011). Neutron Radiography. *Thesis Master of Science in Nuclear Engineering*.
- Grosse, M., Lehmann, E., Vontobel, P., & Steinbrueck, M. (2006). Quantitative determination of absorbed hydrogen in oxidised zircaloy by means of neutron radiography. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 566*(2), 739-745. doi:http://dx.doi.org/10.1016/j.nima.2006.06.038
- Hasham, R. (2008). Parameters for Digital Neutron Radiography at TRIGA MARK II Research Reactor of Malaysia Nuclear Agency. Universiti Teknologi Malaysia,
- Harms, A. A., Blake, T. G., & Marton, J. P. (1973). Neutron imaging with thin gadolinium converters. *Nuclear Instruments and Methods*, 109(2), 253-255. <u>doi:http://dx.doi.org/10.1016/0029-554X(73)90269-3</u>
- Hayashi, T., Tobita, K., Nakamori, Y., Orimo, S. (2009). Advanced neutron shielding material using zirconium borohydride and zirconium hydride. *Journal of Nuclear Materials*, 386–388, 119-121. doi:https://doi.org/10.1016/j.jnucmat.2008.12.073
- Hilal, M. A., & Attallah, M. F. (2018). Investigation of chemical composition and moisture content for different materials on the attenuation of γ rays. *Radiochimica Acta*, 106(4), 337-344.
- Idris, F. M. (1993). Neutron Flux Measurement of Reactor Triga Puspati (RTP). User Manual for RTP:1-5.
- Jaafar, R. (1989). The Development of Neutron Radiography and Its Potential Application in Malaysia Industries, Neutron Radiography (3). Proceedings of the Third World Conference, Osaka, Japan, May 14-18, 1989.
- Jamro, R., Kardjilov, N., HairieRabir, M., Zain, M. R. M., Mohamed, A. A., Ali, N. M., Mamat, M. R. (2017). Monte Carlo Simulation for Designing Collimator of the Neutron Radiography Facility in Malaysia. *Physics Procedia*, 88(Supplement C), 361-368. <u>doi:https://doi.org/10.1016/j.phpro.2017.06.049</u>

Keshavamurthy, R. S., Subramanian, D. V., Prasad, R. R., Haridas, A., Mohanakrishnan, P., & Chetal, S. C. (2011). Experimental Measurements of Neutron Attenuation in the Advanced Shield Material Ferro Boron in KAMINI Reactor. *Energy Procedia*, 7, 273-278. doi:http://dx.doi.org/10.1016/j.egypro.2011.06.035

Kok, K. D. (2009). Nuclear Engineering Handbook: CRC Press.

- L'Annunziata, M. F. (2016). Chapter 1 Radioactivity and Our Well-Being. In M. F. L'Annunziata (Ed.), *Radioactivity (Second Edition)* (pp. 1-66). Boston: Elsevier.
- MacGillivray, G. (2011). Neutron Radiography Collimator Design. *Nray Services Inc., Petawa, Ontario, Canada.*
- Martin, J. E. (2013). Physics for radiation protection. Weinheim: Wiley-VCH Verlag.
- Muhammad Syahir,S., Zainal, J., Jamro, R., Mohamed Zain, M. R., Mohamad Idris,
 F., Yazid, K. i., & Yassin, A. (2019). Beam characterization of new neutron radiography facility at TRIGA Mark II PUSPATI research reactor. *IOP Conference Series: Materials Science and Engineering*, 555, 012018. doi:10.1088/1757-899x/555/1/012018
- Murray, R. L., & Holbert, K. E. (2015). Chapter 11 Radiation protection*. In *Nuclear Energy (Seventh Edition)* (pp. 153-176). Boston: Butterworth-Heinemann.
- Othman, M. b. (2012). *Monte carlo simulation of neutron radiography 2 (nur-2)* system at triga mark ii research reactor of malaysian nuclear agency. (Master of Science (Physics)),
- Raad, M. J. A. d., & Kuiper, M. A. (2008). Industrial Radiography
- Rabir, M. H., Abdul Karim, J., & Mohamed Zin, M. R. (2017). Neutron Flux Characterisation of Irradiation Facilities In Rtp. Jurnal Sains Nuklear Malaysia(2), 33-43%V 29.
- Radiation Safety. (2012). (third edition ed.): Malaysian Nuclear Agency (Nuklear Malaysia).
- Reijonen, H., Kormano, M., & Reijonen, K. (1973). Comparison of X-ray and Neutron Radiography of Pathologic Bone Samples. *Investigative Radiology*, 8(5), 326-332.
- Resources, W. Properties of Ferro Boron. Retrieved from <u>http://www.wbrl.co.uk/ferro-boron.html</u>

- Sarıyer, D., Küçer, R., Küçer, N. (2015a). Neutron Shielding Properties of Concrete and Ferro-Boron. Acta Physica Polonica A, 128(2B). doi:10.12693/APhysPolA.128.B-201
- Sarıyer, D., Küçer, R., Küçer, N. (2015b). Neutron Shielding Properties of Concretes
 Containing Boron Carbide and Ferro Boron. *Procedia Social and Behavioral* Sciences, 195, 1752-1756.
 doi:http://dx.doi.org/10.1016/j.sbspro.2015.06.320
- Solleh, M. R. M. (2015). Moderator, Collimator And Shielding Studies For Bnct Research At Malaysian Nuclear Agency. (Doctor of Philosophy), Universiti Sains Malaysia,
- Strobl, M., Manke, I., Kardjilov, N., Hilger, A., Dawson, M., & Banhart, J. (2009). Advances in neutron radiography and tomography. *Journal of Physics D: Applied Physics*, 42(24), 243001.

LIST OF PUBLICATIONS

Indexed Conference Proceedings

- Muhammad Syahir., et al. (2019). "Beam characterization of new neutron radiography facility at TRIGA Mark II PUSPATI research reactor." <u>IOP</u> <u>Conference Series: Materials Science and Engineering</u> 555: 012018. (Indexed by SCOPUS)
- Muhammad Syahir, S., et al. (2018). "Radiation shielding properties of ferroboron concrete." <u>IOP Conference Series: Materials Science and Engineering</u> 298(1): 012037. (Indexed by SCOPUS)

APPENDICES

Appendix A MCNP Code Input Files for Simulation of the New Neutron Radiography Facility Instrumentations at RTP

1) New neutron radiography facility model at RTP

c Exposure room

- 1 1-0.001183 1 2 3 4 5 6 (-48 : 4 : 43)(-1 : 49 : 42)
- 2 2 -2.3 1 2 -7 -8 9 -10 (4 :-5 :6 :3 :-2 :-1)#8 #9 #200
- 3 2 -2.3 1 2 -11 -12 13 -14 (8 :-9 :10 :7 :-2 :-1)#8 #9 #300
- 4 2 -2.3 1 2 -15 -16 17 -18 (12 :-13 :14 :11 :-2 :-1)#7 #10 #400
- 5 2 -2.3 1 2 -19 -20 21 -22 (16 :-17 :18 :15 :-2 :-1)#7 #10
- 6 1 -0.001183 1 2 -23 -24 25 -26 (20 :-21 :22 :19 :-2 :-1)

c Roof

- 7 1-0.001183 27 -28 29 -30 -19 11
- 8 1-0.001183 31-32 33-34-11 3

c Bunker door

- 9 2 -2.3 2 -3 -5 13 35 -37
- 10 2 -2.3 2 -39 -13 21 36 -38

c Beam stopper

- 11 1 -0.001183 -4 -43 48 #12 #13
- 12 1 -0.001183 -44 47 -42 #13
- 13 1 -0.001183 (-45 46 -41):(-46 48 -40)

c Beam shutter

- 14 4 -1.19 -42 1 -51
- 15 3 -11.35 -42 51 -50
- 16 14 -3.2 -42 50 -49

c Collimator

- 101 6 -2.7 104 103 -102 -110
- 102 6 -2.7 110 -1 111 -40
- 103 10 -11.136 101 -103 104 -105

```
104
       1 -0.001183 -101 104 -105
 105
       8 -4 101 -103 105 -106
 106
      1 -0.001183 -101 105 -106
 108
      10 -11.136 112 -103 -113 118
 109
       8 -4 113 107 -103 -114
 110
      1 -0.001183 113 -107 -114
 111
       8 -4 114 107 -103 -115
 112
      1 -0.001183 114 -107 -115
 113
      10 -11.136 115 107 -103 -110
 114
      1 -0.001183 115 -107 -110
 115
      6 -2.7 110 -111 -116 119
 116
      6 -2.7 116 -111 -117 120
 117
      10 -11.136 117 107 -111 -1
 118
       1 -0.001183 117 -107 -1
 119
       9 -9.747 112 -118 -113
 120
      1 -0.001183 110 -119 -116
 121
       1 -0.001183 116 -120 -117
 122
      7 -8.65 122 -103 -112 121
 123
      1 -0.001183 122 -121 -112
 124
       4 -0.941 106 -103 -124 123
 125
      11 -4 106 -123 -124
 126
       4 -0.941 124 -103 -122 126
 127
      11 -4 124 -126 -125
 128
       6 -2.7 125 -126 -122 121
 129
      11 -4 125 -121 -122
 130
      13 -3.35 127 -1 2 -23 21 -22 102 (-104 :110 :102 )(-110 :1 :40 )
 131
       1 -0.001183 127 -102 -104
 999
       0
             (-1:-2:23:24:-25:26)(-127:22:-21:1:-2:23)
c Ferro boron stopper
200 12 -3.9 4 -8 -60
 300
     12 -3.98-12-60
```

400 12 -3.9 12 -16 -60

```
1 px 0
```

pz 70 px 232.5 py -85 py 85 pz 80
pz 70 px 232.5 py -85 py 85 pz 80
px 232.5 py -85 py 85 pz 80
py -85 py 85 pz 80
py 85 pz 80
pz 80
pz 80
1
px 245
ру -95
ру 95
pz 90
px 257.5
ру -105
py 105
pz 100
px 270
ру -115
py 115
pz 200
px 360
ру -215
py 215
px 120
px 170
py -25

2

3

4

5

pz -60

pz 60

px 220

ру -75

30	ру 25
c	
31	px 130
32	px 160
33	ру -15
34	ру 15
c	
35	px 110
36	px 105
37	px 180
38	px 185
39	pz 65
c	
40	cx 10
41	cx 12
42	cx 15
43	cx 20
44	px 215
45	px 205
46	px 202
47	px 200
48	px 195
49	px 50
50	px 20
51	px 10
60	sx 190 60
c collin	nator
101	kx -201 0.053300121670436 0
102	cx 7.5
103	cx 7.25
104	px -232
105	px -222
106	px -212
107	kx -285 0.00098761014501108 0

110	px -117
111	cx 9.75
112	px -204.38
113	px -189.38
114	px -179.38
115	px -169.38
116	px -115.8
117	px -114.6
118	cx 3
119	cx 5.3
120	cx 5.35
121	cx 1.5
122	px -204.48
123	cx 2.5
124	px -209.46
125	px -206.92
126	cx 2
127	px -250

mode p

c	Air	
m1	7014.	3.78621e-005
	8016.	1.01568e-005

c Ordinary concrete

m2	1001.	0.00786	

8016.	0.0439 11023.	0.00105 12000.	0.00014
13027.	0.00239 14000.	0.0158 19000.	0.00069
20000.	0.00292 26000.	0.00031	

c Lead

m3 82000.50c -1 \$pb

c Borated polyethylene

m4 1000.	-0.13653	
6000.	-0.81347 5000.	-0.05

c **SS-304**

m5 24000. 0.01851242 25055. 0.001751896 28000. 0.006562605 26000. 0.06032172 Aluminium С m6 13027. 0.06022142 с Cadmium m7 48000. -1 с Ferro boron m8 5011. -0.185 6012. -0.0032 13000. -0.0008 16000. -3e-005 14000. -0.0034 15031. -0.0003 26000. -0.80727 Bismuth С m9 83209. -1 c pb+4% antimony -0.96 m10 82000.50c 51000.42c -0.04 c Sapphire crystal m11 13027. 0.4 8016. 0.6 **Concrete ferro boron** С m12 1001. -0.013266012. -0.0027704 8016. -0.344958 11023. -0.009124812000. -0.0007596 13027. -0.0122918 14000. -0.1841362 19000. -0.006027 20000. -0.0257706 26000. -0.3267695011. -0.074 15031. -0.00012 16000. -1.2e-005 High density concrete с m13 1001. 0.00786 8016. 0.0439 11023. 0.00105 12000. 0.00014 13027. 0.00239 14000. 0.0158 19000. 0.00069 20000. 0.00292 26000. 0.00031 c Barite Colemanite Concrete m14 1001.70c -0.008564-0.010378 20040.70c -0.085239 5010.70c -0.009874 26054.70c 14028.70c -0.017733 12000.62c -0.097028 8016.70c -0.351537 56138.70c -0.410076 25055.70c -0.000101 16032.70c -0.097028

imp:p	1024	2048	8 1r 40	96 1r 81	192	32 \$1,7
16	5	2048	4096	1024 5r	1 3r	\$ 8, 104
2	1r	32	64 1r	128 1r	256 3r	\$ 105, 116
51	2 1r	32	256 1r	1 1r	4 1r	\$ 117, 125
16	5 3r	1 1r	0	2048 1r	4096	\$ 126, 400
mt11 a	ul27.12	t				
nps 10	00000	00				

с

sdef pos=-249.9 0 0 axs=1 0 0 ext=0 rad=d2 vec=1 0 0 dir=1 erg=d1 par=2 si1 1 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 & 8.00e-01 9.00E-01 1.10E+00 1.20E+00 1.30E+00 1.40E+00 1.50E+00 & 1.60e+00 1.70E+00 1.80E+00 1.90E+00 2.10E+00 2.20E+00 2.30E+00 & 2.40e+00 2.50E+00 2.60E+00 2.70E+00 2.80E+00 2.90E+00 3.10E+00 & 3.20e+00 3.30E+00 3.40E+00 3.50E+00 3.60E+00 3.70E+00 3.80E+00 & 3.90e+00 4.10E+00 4.20E+00 4.30E+00 4.40E+00 4.50E+00 4.60E+00 & 4.70e+00 4.80E+00 4.90E+00 5.10E+00 5.20E+00 5.30E+00 5.40E+00 & 5.50e+00 5.60E+00 5.70E+00 5.80E+00 5.90E+00 6.10E+00 6.20E+00 & 6.30e+00 6.40E+00 6.50E+00 6.60E+00 6.70E+00 6.80E+00 6.90E+00 & 7.10e+00 7.20E+00 7.30E+00 7.40E+00 7.50E+00 7.60E+00 7.70E+00 & 7.80e+00 7.90E+00 8.10E+00 8.20E+00 9.30E+00 8.40E+00 8.50E+00 & 8.60e+00 8.70E+00 8.80E+00 8.90E+00 9.10E+00 9.30E+00 9.60E+00 & 9.70e+00 9.80E+00

sp1 0.26502 0.20326 0.09106 0.05187 0.03597 0.03245 0.02026 0.01671 & 0.01470 0.02486 0.00980 0.00951 0.00836 0.00792 0.00739 0.00724 & 0.00631 0.00574 0.01098 0.00616 0.07034 0.00235 0.00242 0.00361 & 0.00238 0.00214 0.00283 0.00850 0.00148 0.00143 0.00198 0.00324 & 0.00271 0.00190 0.00128 0.00300 0.00206 0.00313 0.00285 0.00076 & 0.00181 0.00079 0.00306 0.00304 0.00053 0.00409 0.00150 0.00045 & 0.00047 0.00130 0.00085 0.00031 0.00067 0.00044 0.00133 0.00141 & 0.00020 0.00079 0.00034 0.00021 0.00022 0.00056 0.00021 0.00040 & 0.00019 0.00056 0.00016 0.00017 0.00013 0.00484 0.01032 0.00016 & 0.00021 0.00021 0.00006 0.00008 0.00021 0.00021 0.00030 &

0.00041 0.00039 0.00023 0.00012 0.00011 0.00005

si2 0 7.5

sp2 -21 1

с

```
e1 1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 &
8.00e-01 9.00E-01 1.10E+00 1.20E+00 1.30E+00 1.40E+00 1.50E+00 &
1.60e+00 1.70E+00 1.80E+00 1.90E+00 2.10E+00 2.20E+00 2.30E+00 &
2.40e+00 2.50E+00 2.60E+00 2.70E+00 2.80E+00 2.90E+00 3.10E+00 &
3.20e+00 3.30E+00 3.40E+00 3.50E+00 3.60E+00 3.70E+00 3.80E+00 &
3.90e+00 4.10E+00 4.20E+00 4.30E+00 4.40E+00 4.50E+00 4.60E+00 &
4.70e+00 4.80E+00 4.90E+00 5.10E+00 5.20E+00 5.30E+00 5.40E+00 &
5.50e+00 5.60E+00 5.70E+00 5.80E+00 5.90E+00 6.10E+00 6.20E+00 &
6.30e+00 6.40E+00 6.50E+00 6.60E+00 6.70E+00 6.80E+00 6.90E+00 &
7.10e+00 7.20E+00 7.30E+00 7.40E+00 7.50E+00 7.60E+00 7.70E+00 &
8.60e+00 8.70E+00 8.80E+00 8.90E+00 9.10E+00 9.30E+00 9.60E+00 &
9.70e+00 9.80E+00
```

f1:p 104 105 106 124 125 112 113 114 115 110 1

```
с
```

tmesh

```
rmesh11:p dose 10 1 2 1
```

```
cora11 0 71i 360
```

```
corb11 -215 85i 215
```

```
corc11 -25 25
```

```
rmesh21:p dose 10 1 2 1
```

```
cora21 0 71i 360
```

```
corb21 -25 25
```

```
corc21 -60 51i 200
```

```
rmesh41:p dose 10 1 2 1
```

```
cora41 -232 231i 0
```

```
corb41 -10 19i 10
```

```
corc41 -0.5 0.5
```

```
endmd
```

2 1 -4 -1 u=1 1 -2.3 1 u=1 2 1 -2.3 -20 fill=1 u=11 lat=1 20 с 1 -2.3 22 -23 24 -25 26 -30 fill=11 30 31 1 -2.3 22 -23 24 -25 30 -31 fill=11 32 1 -2.3 22 -23 24 -25 31 -32 fill=11 33 1 -2.3 22 -23 24 -25 32 -33 fill=11 1 -2.3 22 -23 24 -25 33 -34 fill=11 34 35 1 -2.3 22 -23 24 -25 34 -35 fill=11 1 -2.3 22 -23 24 -25 35 -36 fill=11 36 37 1 -2.3 22 -23 24 -25 36 -37 fill=11 38 1 -2.3 22 -23 24 -25 37 -38 fill=11 39 1 -2.3 22 -23 24 -25 38 -27 fill=11 с 90 0 22 - 23 24 - 25 28 - 26 100 0 -22:23:-24:25:-28:27 1 rpp -1.5 1.5 -1.5 1.5 -1.5 1.5 с 20 rpp -3.232 3.232 -3.232 3.232 -3.232 3.232 с 22 pz -50 23 pz 50 24 py -50 25 py 50 26 px -50 с 30 px -40 31 px -30 32 px -20 33 px -10

34	px 0
35	px 10
36	px 20
37	px 30
38	px 40
c	
27	px 50
28	px -60

```
mode n
```

m1	1001.	-0	0.01			
	60120.001		01 8016.	-0.52	29107 11023.	-0.016
	-0.002 13027.		-0.0	033872 14000	00.337021	
	19000.	-0.0	13 20000.	-(0.044 26000.	-0.014
m2	5011.	-0.	.185			
	60120.0032 1300		32 13000.	-0	.0008 16000.	-3e-005
	140000.0034		034 15031.	-(0.0003 26000	0.80727
imp	o:n 13r	4	8	16	32	\$ 1, 34
	64	128	256	512	1024	\$ 35, 39
	1	0	\$ 90, 100			

nps 10000000

```
sdef pos=0 0 0 axs=1 0 0 ext=0 x=-60 y=d1 z=d2 vec=1 0 0 dir=1 erg=d3 par=1
```

- si1 -50 50
- sp1 0 1
- si2 -50 50
- sp2 0 1

```
si312.5e-84.0e-7
```

sp3 0.5 0.5

f2:n 26 30 31 32 33 34 35 36 37 38 27

f4:n 90 30 31 32 33 34 35 36 37 38 39

f12:n 26 30 31 32 33 34 35 36 37 38 27

df12 ic=10 iu=2 fac=1

f14:n 90 30 31 32 33 34 35 36 37 38 39

df14 ic=10 iu=2 fac=1

3) Beam Shutter

MCNPX Visual Editor Version X_24E

- c Created on: Tuesday, January 09, 2018 at 09:38
 - 10 1 -0.95 2 -3 7 -6 8 -9
 - 20 3 -11.34 3 -4 7 -6 8 -9
 - 30 4 -3.2 4 -5 7 -6 8 -9
 - 50 5 -7.85 6 -11 2 -5 -9 8
 - 60 5 -7.85 12 -7 2 -5 -9 8
 - 70 5 -7.85 10 -8 2 -5 12 -11
 - 40 0 #10 #20 #30 #50 #60 #70 -1
 - 99 0 1
 - 1 so 1000
 - 2 px 0
 - 3 px 10
 - 4 px 25
 - 5 px 50
 - 6 py 20
 - 7 py -20
 - 8 pz -20
 - 9 pz 20
 - 10 pz -21
 - 11 py 21
 - 12 py -21

mode n

m1	5010.66c	0.0098 \$5% Borat	ed Polyethylene	
	5011.66c	0.0402 6012.42c	0.8132 1001.66c	0.1368
m2	5010.66c	0.049 \$30% Bora	ted Polyethylene	
	5011.66c	0.201 6012.42c	0.8132 1001.66c	0.1368
m3	82207.66c	1 \$lead		
m4	1001.66c	0.008564 \$Barite-ce	olemanite concrete	
	5010.66c	0.009874 12000.66c	0.097028 16032.66c	0.097028

	26056.66c	0.0103	78 8000	0.42c	0.351537	13027.66	6c 0.006146
	20040.21c	0.0852	39 5613	8.66c	0.410076	5 11023.66	5c 0.001108
	14028.66c	0.0177	33 2505	5.66c	0.000101		
m5	6000.70c	0.1	6 \$Mild	l Steel			
	14000.60c	0.4	25055.7	0c	0.7 1600	0.62c	0.04
	15031.70c	0.04					
im	p:n 4	8	16	1 3r	0	\$ 10, 99)
np	s 10000000						
sde	ef pos=0 0 0 a	axs=1 0 0	ext=0 x	=0 y=d	l z=d2 vec	=1 0 0 dir	=1 erg=d3 par=1
si1	-20 20						
spl	01						
si2	-20 20						
sp2	201						
si3	11.00E-101	.26E-10	1.58E-10) 2.00E-	10 2.51E-	10 3.16E-1	10 3.98E-10 &
5.0	1e-10 6.31E	-10 7.94E	-10 1.00)E-09 1.	26E-09 1.5	58E-09 2.0	00E-09 &
2.5	1e-09 3.16E	-09 3.98E	-09 5.01	E-09 6.	31E-09 7.9	94E-09 1.0	00E-08 &
1.2	6e-08 1.58E	-08 2.00E	-08 2.51	E-08 3.	16E-08 3.9	€98E-08 5.0	01E-08 &
6.3	1e-08 7.94E	-08 1.00E	-07 1.26	бЕ-071.	58E-07 2.0	00E-07 2.5	51E-07 &
3.1	6e-07 3.98E	-07 5.01E	-07 6.31	E-07 7.	94E-07 1.0	00E-06 1.2	26E-06 &
1.5	8e-06 2.00E	-06 2.51E	-06 3.16	6E-06 3.	98E-06 5.0)1E-06 6.3	31E-06 &
7.9	4e-06 1.00E	-05 1.26E	-05 1.58	BE-05 2.	00E-05 2.5	51E-05 3.1	16E-05 &
3.9	8e-05 5.01E	-05 6.31E	-05 7.94	E-05 1.	00E-04 1.2	26E-04 1.5	58E-04 &
2.0	0e-04 2.51E	-04 3.16E	-04 3.98	BE-04 5.	01E-04 6.3	31E-04 7.9	94E-04 &
1.0	0e-03 1.26E	-03 1.58E	-03 2.00)E-03 2.	51E-03 3.1	16E-03 3.9	98E-03 &
5.0	1e-03 6.31E	-03 7.94E	-03 1.00)E-02 1.	26E-02 1.5	58E-02 2.0	00E-02 &
2.5	1e-02 3.16E	-02 3.98E	-02 5.01	E-02 6.	31E-02 7.9	94E-02 1.0	00E-01 &
1.2	6e-01 1.58E	-01 2.00E	-01 2.51	E-01 3.	16E-01 3.9	98E-01 5.0	01E-01 &
6.3	1e-01 7.94E	-01 1.00E	+00 1.2	6E+00 1	.58E+00 2	2.00E+00 2	2.51E+00 &
3.1	6e+00 3.98E	2+00 5.01	E+00 6.3	31E+00	7.94E+00	1.00E+01	l
sp?	3 0.00001 0.0	00001 0.00	0001 0.0	00002 0.	00002 0.0	0002 0.000	005 0.00007 &
0.0	0010 0.0001	5 0.00027	0.0004	1 0.000	53 0.00077	7 0.00107	0.00178 &
0.0	0302 0.0045	0 0.00618	3 0.0093	6 0.013	97 0.02147	7 0.03026	0.03898 &
0.0	5145 0.0688	8 0.08218	3 0.0922	6 0.095:	55 0.08646	5 0.06938	0.04847 &
0.0	2816 0.0149	8 0.00747	0.0048	4 0.004	19 0.00371	0.00342	0.00329 &

0.00316 0.00311 0.00302 0.00305 0.00287 0.00284 0.00287 0.00278 & 0.00274 0.00278 0.00279 0.00269 0.00277 0.00282 0.00265 0.00267 & 0.00270 0.00279 0.00269 0.00282 0.00276 0.00269 0.00278 0.00263 & 0.00267 0.00264 0.00265 0.00266 0.00263 0.00262 0.00266 0.00272 & 0.00268 0.00273 0.00267 0.00271 0.00271 0.00285 0.00262 0.00258 & 0.00263 0.00272 0.00268 0.00275 0.00297 0.00390 0.00173 0.00245 & 0.00284 0.00376 0.00195 0.00297 0.00325 0.00286 0.00287 0.00344 & 0.00370 0.00347 0.00383 0.00436 0.00445 0.00470 0.00486 0.00466 & 0.00380 0.00247 0.00141 0.00208 0.00147 0.00074 0.00018

tmesh

rmesh11:n dose 10 1 2 1 cora11 0 5i 60 corb11 -20 3i 20 corc11 -20 20 rmesh21:n dose 10 1 2 1 cora21 0 5i 60 corb21 -20 20 corc21 -20 3i 20 endmd

Appendix B (DOE) Method Form

BS - CONCRETE MIX DESIGN (DOE)

DOE METHOD OF CONCRETE MIX DESIGN: The British method of concrete mix design, popularly referred to as the "DOE method", is used in the United Kingdom and other parts of the world and has a long established record. The method originates from the "Road Note No 4" which was published in Great Britain in 1950. In 1975 the note was replaced by the "Design of Normal Concrete Mixes", published by the British Department of the Environment (DOE). In 1988 the "Design of Normal Concrete Mixes" was issued in a revised and updated edition to allow for changes in various British Standards.

DOE mix design generally involves the following stages.

- 1. Determine the target strength
- 2. Determine the water/cement (W/C) ratio according to the target strength, types of cement and aggregate.
- 3. Determine the water content, W, from required workability, size and type of aggregate.
- 4. Determine cement content, C, from W/C ratio and water content.
- 5. Estimate the density of wet fresh concrete, D, based on relative density of combined aggregate and water content.
- 6. Determine the total aggregate content from D, C, and W.
- 7. Determine the proportion of fine aggregate according to the fineness of fine aggregate, maximum aggregate size, slump/Vebe time and W/C.
- 8. Determine coarse aggregate.

Specified Strength and Target Strength For Mix Design

- a. Variation and probability of concrete strength finding standard deviation and k values to calculate the margin.
- b. Characteristic strength Probability and statistics have been widely adopted in engineering to describe structure failure and material properties. In the old practice, concrete strength is specified using "minimum strength". From the probability theory adopted today, there is always a possibility, however remote, that the strength of concrete falls below a specified strength. Therefore concrete strength is specified in term of "Characteristic Strength". The characteristic strength is the strength below 2 which a specified proportion of test results, often called "defectives", may be expected to fall. The characteristic strength may be defined to have any proportion of defectives, BS 5328 "Concrete" and BS8110 "Structure use of concrete" adopt 5% defectives level for the determination of characteristic strength.

c. Target strength for mix design

As a results of variability of concrete it is necessary to design the mix to have a mean strength greater than the specified characteristic strength by an amount termed the **margin**. Thus the **target strength**, fm, is

fm= fc+ ks(3) where

fc= specified characteristic strength

s = standard deviation

k = constant depending on the defective level associated with the specified strength. ks is termed the margin.

Normal Distribution

Mean = failure level+ z x standard deviation.

A table of z (or n) values for various values of percentage failures 3

Percentage failure permitted	Z value
16	1.00
10	1.28
5	1.64
2.5	1.96
2	2.05
1	2.33

(Table 1.10.1 in section 1.10 of the notes)

Figure 3

• Find w/c by:

- 1. Finding strength from table 2 (with w/c = 0.5)
- 2. Using this strength with w/c 0.5 to drew a curve parallel to other curves in the figure 4
- 3. Intersection of the line that represent target strength with this curve will determine w/c

		Dintis	in meenou				
S.	Type of cement	Type of coarse aggregate C.A.	Compressive cube strength at the age in MPa				
No.			3 days	7 days	28 days	91 days	
1.	Ordinary portland cement (type I)	Un crushed	18 — 22	27 — 30	40 — 42	48 — 49	
2.	Sulphate resisting cement (type V)	Crushed	23 — 27	33 — 36	47 — 49	55 — 56	
3.	Rapid hardening portland cement (type III)	Un crushed crushed	25 — 29 30 — 34	34 — 37 40 — 43	46 — 48 53 — 55	53 — 54 60 — 61	

Table 2Compressive strength of concrete made with w/c 0.5 as per 1988
British Method

Note. Higher value may be adopted

Table 3 App	rox water conter	nts (kg/m ³)	required	to give wo	orkability
Slump (mm)	0-10	10-30	30-60	60-180	
Vebe time (s)		more than 12	6-12	3-6	0-3
Maximum aggregate size (mm)	Type of aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

- Calculate total Aggregate content
- Total aggregate content = Wet density-C-W
- C: cement content Kg/m3
- W:water content Kg/m3

• Wet density from figure 5 depending on specific weight of aggregate and water content

To find the percent of fine aggregate

- Using figure 6 to find the percent of fine aggregate through knowing :
- 1. Slump and V-B time
- 2. Max aggregate size
- 3. Water to cement ratio w/c
- 4. By knowing the zone of grading for the aggregate, 2 values would be obtained (take the average)

Figure 6 (10mm)

Figure 6 (20mm)

- Calculate Fine Aggregate content
- Fine aggregate content Fagg = $pw \times (Wagg) kg/m3$
- Pw (percent of fine agg.) is determined from graphs
- Cagg= Wagg-Fagg

Material	Content (Kg/m ³)
water	
Cement	
Fine aggregate	
Coarse aggregate	
Density	
w/c	
Mix proportions (cement:sand:gravel)	X:Y:Z

Appendix C Film Processing

Darkroom safe lighting

X-ray films and paper can be handled under the normal orange-red or green darkroom safelights for X-ray films. When doing so care must, of course, be taken to see that the distance from the safelight and the duration of exposure are appropriate to the speed of the film concerned. Recommended safelight filters: R 1 (orange -red) and G 7 (green).

Developing

Standardised development is essential if exact exposure data are to be found by experiment and then applied systematically, the use of a standard developer at a standard temperature, with standard developing times. Standard developer: i.e. developer of uniform, constant characteristics (composition). Preferably use G 127 developer; this will obviate variations in density due to incorrect mixing of the bath or the use of impure chemicals. Standard developing times: the times advised will give the best results. Altering the developing time to suit the exposure is not to be recommended. Standard temperature: 68°F (20°C), in no circumstances below 64"F (18°C).

Developer temperature

Increasing the temperature of the developer speeds up the developing process. This cuts down the developing time, but the developer then becomes exhausted more rapidly, and faults aggravated by the age of the film or too exhausted or oxidized processing solutions can very readily occur. Conversely, the activity of the developer is reduced when its temperature drops. Developing times for temperature other than the recommended one of $68^{\circ}F$ (20°C) are given here in case it should not be possible to bring the developer to this temperature and keep it there during development.

Developing times (in minutes) for tank development in the conventional X-ray developers (e.g.

G 127), at different temperatures.

Structurix	64°F	68°F	72°F	75°F	79°С	82°F	86°F
film	18°C	20°C	22°C	24°C	26°С	28°C	30°C
D 2 D 4 D 5 D 7 D 10	6	5	4	3.5	3	2.5	2

Agitation of films

The film should be agitated continuously for the first 30 seconds of development, in order to dislodge any air-bubbles which may have formed on the surface of the emulsion (and which would cause white spots on the radiograph), and to distribute the developer evenly to all areas of the emulsion. If agitation is continuous the development process will be speeded up, and the

times given here can then be cut by about l/5th.

When using frames with clips, never let the films drain above the developer tank; immerse them immediately in the stop bath or rinse. About 320 ml of developer is carried over by the film (and frame) for every square metre of film processed. Since, for every square metre of film developed, 600 ml of developer lies to be replaced by a similar amount of replenishes, this means that a further 280 ml of developer will need to be removed from the tank later. When using frames with channels, allow the film to drain over the developer tank for two or three seconds. In this way, about 400 ml of developer will be carried over for each square metre of film processed. It follows that a quantity of 200 ml should be drained from the tank in order to add 600 ml of replenishes.

Replenishment

Replenisher can be added up to maximum of 4 litres to every litre of original developer solution. After adding the last dose of replenisher, a quarter of a square metre of film can be processed per litre of solution before the developer bath needs to be discarded and replaced.

Stop bath

It is preferable to immerse the film for 30 seconds, immediately after removal from the developer, in a stop bath in order to prevent, 1) neutralisation of the fixer by the transfer of

alkaline developer on the films and hangers; 2) streaks or dichroic fog on the films. The stop bath must be kept at a sufficient level of acidity. If a stop bath is not used, films should be rinsed in running water for 2-3 minutes immediately after development.

Fixing

The following fixers are recommended:

1) non-hardening fixer G 321

2) hardening fixers:

a) formula GP 308

b) G 321 with the addition of Aditan hardener.

Films should be fixed for double the time taken for cleaning the emulsion (disappearance of

the opalescent milkiness).

As a general rule, not more than one square metre of film can be processed per litre of fixer. Films must be agitated continuously during the first 30 seconds of fixing, particularly when a hardening fixer is involved; failure to do this can result in a deposit forming in the fixer which appears as white patches on the film. This deposit can be removed by placing the films in a 10% solution of sodium carbonate. An over-warm processing bath has a tendency to strip the emulsion from its base and to melt the emulsion (see Washing, below). For this reason, a hardening fixer should be used wherever the temperature of the washing water is higher than 7TF (25"C).

Final wash

Thee silver compounds which are formed during the fixing stage must be removed from the emulsion, since they can affect the silver image at the later stage. For this reason the film must be washed thoroughly in running water. The duration of washing will depend upon the temperature of the water used:

at 41 - 54°F (5 - ITC) wash for 30 min.,

at 55 - 7TF (13 - 25°C) wash for 20 min.,

at 78 - 86°F (26 - 30°C) wash for 15 min.,

at more than 86°F (30°C) wash for 10 min.

Avoid temperatures above 77°F (25e'C) if possible.

Draining

Leave films to drain for 2 minutes or so before placing them in the drying cabinet; this will keep the floor of the cabinet dry. It is advisable to immerse films for 1 minute in a solution of wetting agent after the final wash. The films then will drain more quickly, completely and evenly, and as no droplets of water will be left on the surface of the films there will be less risk of drying marks.

Drying

X-ray films should preferably be dried in a specially-designed drying cabinet; if not, they must be dried in a dry, dust-free room. The higher the temperature and the lower the relative humidity, the more rapidly the film will dry; temperatures higher than 104°F (40°C) must however be avoided, as they will involve the risk of melting the gelatine or stripping the emulsion from its base. The flow of air reaching the films must be even; excessively forced ventilation, producing an uneven flow of air inside the drying cabinet, can cause abnormal curling or distortion of the films. Practical advice on avoiding processing faults will be found in the booklet "50 Hints on the darkroom processing of industrial X-ray films", produced specially for darkroom staff.

Source: Domanus, J. C. (1992). Practical neutron radiography.

Appendix D Thermal Neutron Flux Measurement Using Gold and Cadmium

The neutron energy range can roughly be categorized into three groups, each with its own characteristics. Table 3.8 lists the three main neutron groups.

Group	Energy range	Region
Fast	10 keV – 10 MeV	Fission
Resonance	1 eV – 10 keV	1/E
Thermal	0 - eV	Maxwellian

Table 1Three main neutron groups

with E as the neutron's energy

For gold (Au), its response region is in between 0.0014 eV to 5.8 eV, which can only absorb thermal and epithermal neutrons. If the cut-off energy of cadmium (Cd) i.e. 0.55 eV is used to mark the thermal and epithermal regions, the difference between the activity of bare gold wire and the gold wire covered with cadmium can be determined. If both were irradiated in the same flux under the same circumstances, the activity caused by thermal neutron flux can be determined (Idris, 1993). The activity of bare gold wire induced by neutrons is given by:

$$A_{\text{bare}}(\tau) = \Phi_{\text{th}}\sigma_{\text{th}}N_{s}(1 - \exp(-\lambda t))\exp(-\lambda \tau)$$
(1)
+ $\Phi_{\text{epi}}\sigma_{\text{epi}}(1 - \exp(-\lambda t))\exp(-\lambda \tau)$

The activity of gold wire covered with 1 mm cadmium is given by:

$$A_{Cd}(\tau) = \Phi_{epi}\sigma_{epi}N_s(1 - exp(-\lambda t))exp(-\lambda \tau)$$
(2)

with

σ_{th}	Thermal neutron cross section, with value 98.8 barn
σ_{epi}	Epithermal cross section
Φ_{th}	Thermal flux
Φ _{epi}	Epithermal flux

As $A_{thermal} = A_{bare}(\tau) - A_{Cd}(\tau)$, therefor the difference (1)-(2) will give:

$$A_{\text{thermal}}(\tau) = \Phi_{\text{th}}\sigma_{\text{th}}N_{s}(1 - \exp(-\lambda \tau))\exp(-\lambda \tau)$$
(3)

From equation (3.6), the thermal neutron flux $Ø_{th}$ can be calculated.

For epithermal neutron of a gold detector, its resonance integral is given by:

$$I_{\rm r} = \int_{0.55 \text{ eV}}^{0.2 \text{ MeV}} \sigma(E) \ \frac{dE}{E} = 1562 \text{ barn}$$
(4)

Therefore, its reaction rate with epithermal neutron is given by:

$$R = \theta \int_{0.55 \text{ eV}}^{0.2 \text{ MeV}} \sigma(E) \frac{dE}{E}$$

$$= \theta I_{r}$$

$$= \theta 1562 \text{ barn}$$
(5)

with θ as the intermediate neutron flux density per unit 'lethargy' and has a constant value. The cadmium ratio is defined as

$$R_{Cd} = \frac{A_{bare}}{A_{Cd}}$$
(6)
$$= \frac{A_{th} + A_{epi}}{A_{th}}$$
$$= 1 + \frac{A_{epi}}{A_{th}}$$

or,

$$R_{Cd} - 1 \approx \frac{r_{th}}{r_{epi}}$$
(7)

and

$$R_{Cd} = \frac{\Phi_{th}\sigma_{th} + \Phi_{th}\sigma_{epi}}{\Phi_{epi}\sigma_{epi}}$$
(8)

Thus, the ratio of a bare gold detector and the one covered with Cd could be written as:

$$R_{Cd} - 1 \approx \frac{\Phi_{th}\sigma_{th}}{\theta \int_{0.55 \text{ eV}}^{0.2 \text{ MeV}} \Phi_{epi}(E) \frac{dE}{E}}$$

$$\approx \frac{\Phi_{th}\sigma_{th}}{\theta \text{ 1562 barn}}$$
(9)

From equation (3.12), the value of θ could be calculated. Therefore, the total intermediate neutron flux detected by gold is:

$$\Phi_{\text{int}} = \theta \int_{0.55 \text{ eV}}^{0.2 \text{ MeV}} \Phi_{\text{epi}}(E) \frac{dE}{E}$$

$$\approx \theta \ln \frac{0.2 E + 06}{0.5}$$
(10)

Pre-Irradiation calculations

Before the irradiation of the samples was carried out using the reactor, it was important to calculate the activity of the samples prior irradiation for safety purposes. The expected activity of each material was estimated using the equation below:

$$A_{s} = N_{t}\sigma\Phi(1 - \exp(-\lambda t))\exp(-\lambda \tau)$$
(11)

with,

- Φ neutron flux at measurement point
- σ neutron cross section of the target nuclide
- N_t total number of target nuclides in the sample
- λ decay constant

A neutron flux of 1×10^6 n.cm⁻².s⁻¹ was used for the pre-irradiation calculations (Hasham, 2008).