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ABSTRACT 

Recently, the application of emulsion liquid membrane (ELM) process as an 

alternative technology for solute separation is highlighted due to the simple operation 

of simultaneous extraction and stripping process. The most important aspects for a 

successful ELM process are liquid membrane formulation and emulsion stability. 

This study was carried out to investigate the liquid membrane formulation for the 

reduction of chromium (VI) to chromium (III) from electroplating wastewater using 

continuous ELM process (CELM). Liquid membrane system comprises of three 

liquid phases which are external (electroplating wastewater), organic liquid 

membrane and internal phase. Liquid membrane and internal phase were emulsified 

and dispersed into the external phase to be treated. The experimental work consisted 

of four major parts which were ELM component formulation, stability study of ELM 

in batch process, screening of parameters and optimization of chromium removal 

efficiency by response surface methodology (RSM) in continuous operation process 

and recovery of the chromium at optimum process conditions. The results show that 

the favourable conditions for liquid membrane formulation are 0.04 M TOMAC as a 

carrier, palm oil as a diluent and 0.1 M thiourea in 0.1 M sulfuric acid as a stripping 

agent. The best condition of stable water-in-oil (W/O) emulsion was obtained at 7000 

rpm of homogenizer speed, 5% (w/v) Span 80 as surfactant and 1 minute of 

emulsifying time. Meanwhile, the most stable water-in-oil-in-water (W/O/W) 

emulsion obtained during the continuous process operation was at 350 rpm agitation 

speed, pH<5 of external phase and 1 to 5 of treat ratio. The optimization results by 

RSM show that 99% of chromium was extracted at 2.83 minutes of retention time, 

342 rpm rotational speed and 1 to 5 of treat ratio. As a conclusion, about 81% of less-

toxic chromium (III) has been recovered into the internal phase using 2.0 M thiourea 

in 2.0 M sulfuric acid as the stripping agent. The favourable process condition of the 

formulated membrane study was satisfactory and is suitable to treat wastewater as 

low as 20 ppm up to 200 ppm of chromium concentrations. This study reveals that 

CELM is a simple process and practical technology to remove chromium (VI) from 

industrial wastewater while solving the environmental problem simultaneously.  
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ABSTRAK 

Pada masa kini, penggunaan proses emulsi membran cecair (ELM) sebagai 

teknologi pemisahan alternatif bahan larut telah diberi penekanan disebabkan proses 

pengoperasiannya yang mudah bagi pengekstrakan dan pelucutan secara serentak. 

Perkara yang paling penting bagi menjayakan proses ELM adalah formulasi 

membran cecair dan kestabilan emulsi. Kajian ini dijalankan untuk mengkaji 

formulasi membran cecair untuk menurunkan kromium (VI) kepada kromium (III) 

daripada air sisa buangan penyaduran menggunakan proses ELM berterusan 

(CELM). Sistem membran cecair terdiri daripada tiga fasa cecair iaitu luaran (air sisa 

buangan penyaduran), membran cecair organik dan fasa dalaman. Membran cecair 

dan fasa dalaman telah diemulsi dan diserakkan ke dalam fasa luaran yang akan 

dirawat. Eksperimen ini terdiri daripada empat bahagian utama iaitu formulasi ELM, 

kajian kestabilan ELM dalam proses berkelompok, penyaringan pembolehubah dan 

pengoptimuman kecekapan penyingkiran kromium dengan menggunakan kaedah 

sambutan permukaan (RSM) dalam operasi proses berterusan dan perolehan semula 

ion kromium pada keadaan optimum. Hasil kajian menunjukkan bahawa keadaan 

yang bersesuaian bagi formulasi membran cecair adalah 0.04 M TOMAC sebagai 

pembawa, minyak sawit sebagai bahan pencair dan 0.1 M thiourea dalam 0.1 M asid 

sulfurik sebagai agen pelucutan. Keadaan terbaik bagi kestabilan emulsi air-dalam-

minyak (W/O) diperolehi pada 7000 rpm kelajuan penghomogen, 5% (w/v) Span 80 

sebagai surfaktan dan 1 minit masa pengemulsian. Sementara itu, emulsi air-dalam-

minyak-dalam-air (W/O/W) yang paling stabil semasa operasi proses berterusan 

adalah pada 350 rpm kelajuan pengadukan, pH<5 bagi fasa luaran dan nisbah 

rawatan 1 kepada 5. Keputusan pengoptimuman oleh RSM menunjukkan bahawa 

99% kromium telah diekstrak pada 2.83 minit tempoh penahanan, 342 rpm kelajuan 

pengadukan dan nisbah rawatan 1 kepada 5. Kesimpulannya, sebanyak 81% 

kromium (III) yang kurang toksik telah berjaya diperoleh ke dalam fasa dalaman 

pada 2.0 M thiourea dalam 2.0 M asid sulfurik sebagai agen pelucutan. Keadaan 

proses yang sesuai untuk membran yang telah diformulasikan adalah memuaskan 

dan sesuai untuk merawat air sisa pada kepekatan kromium serendah 20 ppm hingga 

200 ppm. Kajian ini menunjukkan bahawa CELM adalah satu proses mudah dan 

merupakan teknologi yang praktikal untuk menyingkirkan kromium (VI) daripada air 

sisa buangan industri sekaligus menyelesaikan masalah persekitaran.
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Heavy metal ions can be found naturally in the environment, however 

nowadays, their concentration is getting higher due to the increase of industrial 

wastewater. Thus, discharging wastewater containing heavy metals into the water 

bodies directly without any treatment can pose severe effects to the environment as 

well as public health. Meanwhile, rapid industrialization and urbanization in 

Malaysia has alarmingly increased the amount of toxic heavy metals entering the 

environment. According to the World Health Organization (WHO), metals that are 

deemed among the most toxic existed in the industrial wastewater are chromium 

(Cr), zinc, lead, nickel, iron, aluminium, copper, cobalt, mercury, and cadmium [1]. 

 

 

There are several sources of wastewater that contribute to Cr pollution such 

as wood preservatives, plants producing industrial inorganic chemicals and pigments, 

textile dyeing, leather tanning, aluminum conversion coating operations, 

electroplating, and mining [2]. Above all, electroplating processes create significant 

amounts of wastewater containing heavy metals (Cr) from a numerous of 

applications. These include milling and etching, anodizing-cleaning, conversion-

coating, electroless depositions, and electroplating [3]. Consequently, it is essential 

to treat heavy metals-contaminated wastewater prior to its release to the 

environment. Furthermore, instead of removing the heavy metals from electroplating 

wastewater, a study on metal recovery is significantly important. Therefore, it 

requires more efficient techniques for the recovery process. In principal, the recovery 

process has several incentives such as reduction in the volume and toxicity of the 

waste effluents, recovery of valuable/monetary metal and saving of disposal costs. 

Moreover, these wastes will cause a lot of environmental problems if they are 

directly discharged into the natural water system.  
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Several conventional treatment processes have been used in metal ions 

extraction from industrial wastewater such as precipitation, solvent extraction, ion 

exchange, adsorption, and electrochemical recovery. These techniques, however, are 

not effective due to unsuccessful fulfilment to the regulation levels for technical, 

economic, and environmental reasons [4-8]. Conventionally, precipitation is the most 

used method to extract heavy metals. Among the existed precipitation techniques, 

sulphide, and hydroxide precipitations are the two preferred techniques that are 

presently been utilized with, and by far the most commonly used technique is 

hydroxide precipitation. But, as not all metal hydroxide completely precipitated at a 

single pH, this technique does not guarantee a total compliance for a variety of 

metals existing in the waste stream [9]. Many researchers found that emulsion liquid 

membrane (ELM) extraction has a great potential to overcome the problem. ELM is 

also reported as an advanced technique for separating and concentrating metals. This 

process gives less chemical consumption, energy saving, fast, and simple operation 

[10]. [4][5][6][7][8] [9] [10]. 

 

 

Conventionally, the membrane phase of liquid membrane is formed by 

organic diluents derived from petroleum resources, and thus is toxic, non-renewable, 

and could be extremely expensive due to the limited resources. Environmental 

aspects are frequently connected to the concept of sustainable development, which 

has become a common goal and from time to time a demand in the industrial sector. 

Recently, liquid membrane was improved to ―green liquid membrane‖ through the 

usage of environmental friendly diluents. Plant oils (for instance coconut or palm oil) 

can be used as non-toxic and biodegradable diluents as an alternative of common 

organic diluents such as kerosene, toluene and benzene. It has the capability to 

reduce the amount of common toxic and hazardous chemicals used in liquid 

membrane formulation. Yet, among the nine types of commercially available 

vegetable oils in India, Venkateswaran and Palanivelu [11] found that palm oil is the 

best green oil based on LM. In addition, palm oil has been found to work well for the 

extraction of Cr (VI) using ELM [12] and the extraction of phenol in supported 

liquid membranes (SLM) [11]. Therefore, competitive vegetable oils are used as 

alternative and renewable organic diluent as they are non-toxic and readily available.  



 

 

3 

 

The implementation of small laboratory batch process is unpractical at the 

industrial scale as hundreds or even thousands of process cycles would be necessary 

for commercial purposes. The solution to this problem is to use a continuous mode. 

Consequently, ELM can be operated in both batch and continuous modes [13]. 

Currently, ELM has difficulties for commercialize processes and still operate in 

batch process and laboratory scale due to the membrane instability encountered as 

reported by Kislik [13]. On the other hand, upgrading all or parts of a process from 

batch to continuous yields many benefits such as 24 hour production, less retention 

time, more cost-effective owing to constant extraction and recovery of targeted 

solutes, having less total operating cost for large scale as well as higher recovery rate 

compared to the batch process [14]. 

1.2 Problem Statement 

The strong release of Cr ions into the environment by several manufacturing 

industries will not simply contaminate the wastewater but the nature as well. 

Meanwhile, wastewater treatment is crucial in ensuring safer and healthier 

environment. Hexavalent Chromium, Cr (VI) is broadly found in electroplating 

wastewater. It is mostly presents in the form of oxyanions such as bichromate 

(HCrO4
−
), dichromate (Cr2O7

2−
) or chromate (CrO4

2−
) which are reliant on the pH 

[15]. According to the provisional guideline by WHO, the permitted concentration 

value for Cr in drinking water is 0.05 ppm [1]. In addition, based on Environmental 

Quality (Industrial Effluent) Regulations, 2009 (Malaysia), plating industries need to 

pre-treat the wastewater prior to discharge in accordance with discharge limits for 

industrial effluent [16]. Therefore, a cost-effective recovery process for Cr (VI) is a 

great concern due to its growing importance in the environmental protection 

problems. On the other hand, studies on Cr reduction are significantly important in 

order to find suitable alternative of Cr removal from industrial wastewater [17]. As 

Cr (VI) is known as human carcinogen, it is vital to evaluate the oxidation-reduction 

characteristics of Cr (VI) species [18]. Although Cr (VI) can be reduced to trivalent 

state, detailed information on this in workplace environments is limited. The most 

common conventional method for Cr (VI) removal is Cr (VI) reduction to Trivalent 



 

 

4 

 

Chromium, Cr (III) followed by precipitation of Cr (OH)3 with lime at pH 9-10 [19]. 

In principal, reduction offers several incentives for example disposal costs 

decrement, recovery of valuable/monetary Cr, and low toxicity of waste effluents. 

However, precipitation possesses solid waste disposal disadvantage [19]. Therefore, 

it requires more efficient techniques for removal and reduction of Cr (VI) to Cr (III). 

Meanwhile, the study on Cr (VI) reduction to Cr (III) has been studied by Maxcy et 

al. [20]. Excellent performance for Cr (VI) reduction to Cr (III) was attempted using 

thiourea in strongly acidic medium. Besides that, thiourea also has been applied as 

reducing agent for gold and silver [21]. Therefore, in order to focus on metal 

reduction toxicity and recovery, it is requires more efficient techniques for removal 

and reduction of Cr (VI) to Cr (III).  

 

 

In order to solve the problem, ELM which is one of the configurations in 

liquid membrane technology was chosen in this present work due to several 

advantages such as less energy requirement, both extraction and stripping occurred 

simultaneously in one single-step operation, less chemical consumption, ease of 

functioning, large mass transfer interfacial area, and low cost factor. ELM allows a 

highly selective transport and efficient enrichment of solute ions through a very thin 

liquid membrane with suitable tailor made liquid membrane (LM) formulation. In 

this study, palm oil as a green based diluent is formulated with suitable carrier and 

stripping agent to selectively extract the Cr (VI) from real electroplating wastewater.  

 

 

On the other hand, the industries also generate huge volume of hazardous 

wastewater and require proper disposal and treatment. Instead of batch treatment, the 

continuous operation is more suitable for treatment of large volume of wastewater. 

Several studies for continuous ELM has been done and demonstrated as an effective 

alternative technology for separation and purification processes for metal extraction 

[22-23]. However, there is drawback such as big possibility of re-emulsification for 

Oldshue-Rushton type extraction column, poor mass transfer efficiency for spray 

column and deficiency of mixing due to the disc limitation for rotating disc contactor 

(RDC). Although few methods had been established for the continuous ELM 

processes, improvements on the processes as well as their design are still required 
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especially in studying the purpose of scale-up and practical applications in the 

industries. 

 

 

The key obstacle in employing this method for industrial separations is the 

stability of emulsion. Thus, the result of the emulsion droplets and globule size 

distribution was investigated in the ELM stability study. Also, the investigation on 

emulsion stability using CELM was done by manipulating the total volume level 

based on height to diameter ratio (H/D). Based on the literature review, there were no 

researches reported for the stability study using CELM process.  

 

 

To the best of our knowledge, this thesis reports, for the first time, a detailed 

investigation on the Cr (VI) reduction to Cr (III) in CELM process from real rinse 

electroplating wastewater. The investigation was carried out to study the formulation 

and stability of the emulsion liquid membrane and also to establish optimum 

condition for Cr extraction and recovery in CELM process. Hence, this technology is 

expected to be suitable and relevant in treating Cr ions present in the real rinse 

electroplating wastewater. 

1.3 Objectives of the Research 

 The main purpose of this research is to study the feasibility of using 

continuous emulsion liquid membrane (CELM) process to extract and recover Cr 

from real rinse electroplating wastewater with selected LM formulation. The 

following are the objectives of this research. 

 

i. To formulate suitable liquid membrane for Cr (VI) reduction to Cr (III) 

from real rinse electroplating wastewater in ELM process. 

ii. To investigate the ELM stability for water-in-oil (W/O) and water-in-oil-

in-water (W/O/W) emulsion in a batch process. 

iii. To set-up the bench scale of CELM and to study the effect of parameters 

on emulsion stability and extraction performance in the continuous 

extractor using response surface methodology (RSM) method. 
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iv. To establish optimum process condition for Cr extraction and recovery in 

CELM process. 

1.4 Research Scopes 

In liquid membrane formulation, the study focused on the selection of liquid 

membrane components for Cr extraction from real rinse electroplating wastewater. 

Electroplating wastewater was characterized in terms of anionic and ionic content, 

pH, density, and viscosity. Then, a screening process was carried out using liquid-

liquid extraction to determine the suitable types of carriers, diluents and stripping 

agents for Cr ions extraction. During the experiments, different types of carriers 

(acidic, basic and solvating) were used and the amounts of Cr extracted were 

recorded, while the other parameters were fixed. After finding the most suitable 

carrier for Cr, the carrier concentrations were varied in order to find the best 

concentration of carrier to extract the Cr. At the same time, several stripping agents 

(basic, acidic and chelating) were screened out to extract the loaded carrier-Cr 

complexes. Span 80 was used as surfactant while corn oil, chloroform, toluene, 

kerosene, and palm oil were used as diluents. Then, the liquid membrane formulation 

was developed for Cr extraction and recovery and the mass transfer mechanism of Cr 

extraction was determined in the second objective. 

 

 

The third objective was achieved by conducting the batch ELM system. 

There are three main components which are liquid membrane phase (consists of 

diluent, carrier and surfactant), external phase (feed phase), and internal phase 

(stripping solution). Several affecting parameters for ELM stability, swelling and 

breakage were identified in this objective. Investigation on the stability of primary 

water-in-oil (W/O) emulsion was carried out by manipulating the emulsifying times 

(1 to 10 minutes), homogenizer speeds (5000 to 13500 rpm) and the concentrations 

of surfactant (1 to 7% (w/v)) during the emulsification stage. 1-Octanol was used as 

the phase modifier in this study. Besides that, the stability of water-in-oil-in-water 

(W/O/W) was also studied by varying agitation speed (200 to 500 rpm), contact time 

(1 to 7 minutes), treats ratio of emulsion to external phase (1:3 to1:10) and pH of the 
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external phase solution. The influence of these parameters on the emulsion droplets 

and globules size distribution was determined under the microscope. 

 

 

Next, the possibility of continuous ELM as promising technique for Cr 

extraction and recovery was investigated. The optimum conditions of liquid 

membrane formulation and process conditions of batch system were used as a guide 

to set up a continuous process. Then, the CELM rig was set-up and configures as 

well as the investigation of its stability was done by manipulating the total volume 

level in continuous extraction vessel based on the height to diameter ratio (H/D). 

 

 

 After obtaining the stable CELM process condition, the extraction of Cr in 

the continuous emulsion liquid membrane process was tested. Several factors 

affecting the extraction and recovery of Cr were investigated in the fifth objective. In 

order to screen the factors affecting the extraction efficiency, the design matrix was 

used in the 2
6-3 

fractional factorial design. Six process parameters which are retention 

time (1 to 10 minutes), rotational speed (150 to 450 rpm), modifier concentration (1 

to 5% (w/v)), treat ratio (1:3 to 1:10), carrier concentration (0.04 to 0.5 M) and 

stripping agent concentration (0.1 to 1.0 M) were studied in this research to screen 

the most significant parameters. Then, optimization of the selected parameters from 

the screening process was proceeded with 3 parameters considered such as treat ratio, 

rotational speed, and retention times. The optimum conditions were obtained using 

RSM. Finally, the Cr recovery was investigated. A few parameters have been studied 

on their effect of recovery process such as acidic thiourea and H2SO4 concentrations 

in the internal phase and external feed phase concentration. 

1.5 Significance of Study 

 Liquid membrane (LM) separation provides a promising method in the 

extraction of various solutes from aqueous solution. The main advantage of this 

process compared to conventional processes is the extraction and 

recovery/enrichment of the solute ion which occured simultaneously in one single 

stage operation. Furthermore, it has some attractive features such as high efficiency, 
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simple operations, larger interfacial area, reduced operation costs due to less 

chemicals consumption and selectively extract the solute. In this research, CELM 

was used to extract Cr from real rinse electroplating wastewater. Cr is used 

extensively in electroplating and numerous industries due to its stability which helps 

to protect materials from degradation by the environment. However, as its form can 

vary, it can exist in its toxic form; thus pose hazard to the environment. Therefore, 

removal and recovery of Cr from wastewater has become a great concern and 

significance. Optimized condition of Cr recovery in CELM process may benefit the 

manufacturing industries due to its simple and cost-effective technology. 

1.6 Thesis Outline 

 This thesis contains 5 chapters, presenting the research in sequential order. 

Chapter One introduces the brief research background, problem statement, research 

objectives, and research scopes. Chapter Two provides the detailed reviews on 

researches related to the Cr process in electroplating and their alternatives in 

extracting and recovering ELM components and future development of ELM 

process. Chapter Three described the methodology that was involved in this study. 

All results and discussions about the findings are presented in Chapter Four. Chapter 

Five stated the general conclusion and suggestions for future work. 
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 Appendix B Quantitative Analysis Report: Standard of AAS 
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Appendix C Result of Experiment for the Liquid Membrane Component 

Selection 

The general equation of extraction and stripping as state in Equations (C.1) and 

(C.2): 

           ( )  =  
[  ] (  ) [  ] (  )

[  ] (  )
       (C.1) 

          ( ) =  
[  ]  (  )

[  ] (   )
    ,     (C.2) 

Where, 

[Cr]i(aq) is the initial chromium concentration in aqueous phase (ppm) 

[Cr]f(aq) is the chromium concentration in aqueous phase after extraction (ppm) 

[Cr]fs(aq) is the chromium concentration in aqueous phase after stripping (ppm) and 

[Cr]i(org) is the chromium concentration in the organic phase after extraction (ppm) 

Table C1 Extraction of chromium using different types of carrier from rinse 

electroplating wastewater (Experimental conditions: [Carrier] = 0.1 M, [Cr] = 38.35 

ppm, Aqueous : Organic = 10 mL : 10 mL, Agitation speed = 320 rpm, Extraction 

time = 18 hrs, T = 25±1 ºC, Diluent = Palm oil) 

Types Carrier 
[Cr]initial 

(ppm) 

[Cr]final 

(ppm) 

% 

Extraction 

Acidic D2EHPA 38.35 26.59 31 

Acidic Cyanex 302 38.35 20.34 47 

Acidic Cyanex 272 38.35 28.86 25 

Basic TOMAC 38.35 0.058 100 

Basic TOA 38.35 37.59 2 

Basic TDA 38.35 33.57 12 

Solvating TOPO 38.35 27.87 27 

Solvating TBP 38.35 37.67 2 
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Table C2 Effect of carrier concentration in chromium extraction (Experimental 

conditions: [Cr] = 38.35 ppm, Aqueous : Organic = 10 mL : 10 mL, Agitation speed 

= 320 rpm, Extraction time = 18 hrs, T = 25±1 ºC, Diluent = Palm oil) 

Concentration TOMAC 

(M) [Cr]initial (ppm) [Cr]final (ppm) 

% 

Extraction 

0.1 38.35 0.3733 99 

0.05 38.35 0.3453 99 

0.04 38.35 0.2146 99 

0.03 38.35 1.873 95 

0.02 38.35 18.81 51 

0.01 38.35 34.1 11 

0.005 38.35 37.95 1 

0 38.35 37.08 0 

Table C3 Loq D and Log [TOMAC] for TOMAC concentration 

Concentration  

TOMAC (M) 

[Cr]initial 

(ppm) 

[Cr]final 

(ppm) 

D = 

[  ]          [  ]      

[  ]     
 

Log D Log 

[TOMAC] 

0.05 38.35 0.35 99 1.99 -1.30 

0.04 38.35 0.21 99 1.99 -1.40 

0.03 38.35 1.87 19 1.28 -1.52 

0.01 38.35 34.10 0.12 -0.91 -2 

0.005 38.35 37.95 0.01 -1.99 -2.30 
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Table C4 Screening process using different types of stripping agent for 

extraction of chromium from aqueous solution (Experimental conditions: [Stripping 

agent] = 0.1 M, [Cr] = 38.35 ppm, Aqueous : Organic = 10 mL : 10 mL, Agitation 

speed = 320 rpm, Extraction time = 18 hrs, T = 25±1 ºC, Diluent = Palm oil) 

Types Stripping agent [Cr]mi [Cr]mf [Cr]s % Stripping 

Basic NaOH 38.04 22.17 27.14 71 

Basic Na2CO3 38.04 26.71 11.33 30 

Basic NaCL 38.04 36.23 1.809 5 

Basic (NH4)2CO3 38.04 37.07 0.9746 3 

Acidic HCl 38.04 37.42 0.6232 2 

Acidic H2SO4 38.04 28.04 10 26 

Acidic Thiourea in H2SO4 38.04 4.54 33.5 88 

Chelating Thiourea 38.04 38.04 0 0 

Table C5 Screening process using different concentration of acidic thiourea for 

extraction of chromium from aqueous solution (Experimental conditions: [Cr] = 38 

ppm, Aqueous : Organic = 10 mL : 10 mL, Aagitation speed = 320 rpm, Extraction 

time = 18 hrs, T = 25±1 ºC, Diluent = Palm oil, [H2SO4] = 0.1 M) 

Thiourea (M) [Cr]mi (ppm) [Cr]mf (ppm) [Cr]s % Extraction 

0.01 38.04 36.88 1.16 100 

0.03 38.04 22.50 15.54 99 

0.05 38.04 21.56 16.48 99 

0.1 38.04 4.54 33.5 99 

0.15 38.04 13.26 24.78 95 

0.2 38.04 21.56 16.48 51 
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Table C6 Loq D and Log [Thiourea] for thiourea concentration 

Thiourea 

concentration 

(M) 

[Cr]mi 

(ppm) [Cr]mf 

(ppm) 

[Cr]s 

(ppm) 

D = 

[  ]          [  ]      

[  ]     
 

Log D Log 

[Thiourea] 

0.01 38.04 36.88 1.16 0.03 -1.50 -2 

0.03 38.04 22.50 15.54 0.69 -0.16 -1.52 

0.1 38.04 4.54 33.5 7.38 0.87 -1 
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Appendix D Result of Experiment for the Stability Study 

Table D1 Volume of internal phase broken at different observation period using 

different homogenizer speed (Experimental result: [TOMAC] = 0.004 M, [Acidic 

Thiourea] = 0.1 M, [1-Octanol] = 5% (w/v), [Span 80] = 3% (w/v), Emulsifying time 

= 3 minutes) 

Homogenizer speed (x1000 rpm) 

Times to broke, minutes 

1 10 60 

5 42 50 50 

6 10 20 20 

6.5 10 10 40 

7 0 0 20 

Table D2 Effect of homogenizer speed on W/O emulsion viscosity 

(Experimental conditions: [TOMAC] = 0.004 M, [Acidic Thiourea] = 0.1 M, [1-

Octanol] = 5% (w/v), Aqueous : Organic = 5 mL : 5 mL, Span 80 concentration = 

3% (w/v), Emulsifying time = 3 minutes and T = 25±1 ºC) 

Homogenizer Speed Average Droplet Size (µm) Viscosity (cP) 

5000 25.88 138 

6000 15.05 139 

6500 7.38 142 

7000 4.64 158 
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Table D3 Volume of internal phase broken at different observation period using 

different surfactant concentration (Experimental result: [TOMAC] = 0.004 M, 

[Acidic Thiourea] = 0.1 M, Emulsifying time = 3 minutes, [1-Octanol] = 5% (w/v), 

and T = 25±1 ºC). 

Span 80 (M) 
Times to broke, minutes 

10 60 120 

1 50 50 50 

2 50 50 50 

3 0 20 45 

4 0 10 30 

5 0 0 3 

 

Table D4 Effect of Span 80 concentration on liquid membrane and W/O 

emulsion viscosity (Experimental conditions: [TOMAC] = 0.004 M, [Acidic 

Thiourea] = 0.1 M, [1-Octanol] = 5% (w/v), Aqueous : Organic = 5 mL : 5 mL, 

Emulsifying time = 3 minutes and T = 25±1 ºC). 

Span 80 concentration  

(% (w/v)) 

LM viscosity 

(cP) 

W/O emulsion viscosity 

(cP) 

1 84.0 134.5 

2 85.5 140.7 

3 87.2 154.1 

4 87.2 156.0 

5 87.6 162.1 

6 88.2 781.4 
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Table D5 Volume of internal phase broken at different observation period using 

different emulsifying time ([TOMAC] = 0.004 M, [Acidic Thiourea] = 0.1 M, [Span 

80] = 5% (w/v), Homogenizer Speed = 7000 rpm, [1-Octanol] = 5% (w/v) and T = 

25±1 ºC). 

Emulsifying time (min) 
Times to broke, minutes 

10 60 120 

1 0 0 0 

2 0 2 10 

3 0 1 12 

4 0 20 50 

 

Table D6 Effect of emulsifying time on W/O emulsion viscosity (Experimental 

conditions: [TOMAC] = 0.04 M, [Acidic Thiourea] = 0.1 M, [1-Octanol] = 5% 

(w/v), Aqueous : Organic = 5 mL : 5 mL, Span 80 concentration = 5% (w/v)). 

Emulsifying time 

(min) 

Average Droplet Size 

(µm) 

Emulsion viscosity 

(cP) 

1 3.09 100.4 

2 3.16 124.3 

3 3.22 154.5 

4 4.39 162.8 

Table D7 Favorable condition from primary emulsion stability study 

Parameter Best condition 

Homogenizer speed 7000 rpm 

Emulsifying time 3 min 

Surfactant concentration 5% (w/v) Span 80 
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Table D8 Effect of agitation speed on W/O/W and emulsion stability in Cr 

extraction (Experimental conditions: [TOMAC] = 0.004 M, [Acidic thiourea] = 0.1 

M, Aqueous : Organic = 5 mL : 5 mL, Treat ratio = 1:3, Span 80 concentration = 5% 

(w/v), Emulsifying time = 1 minute, Homogenizer speed = 7000 rpm, Contact time = 

3 minutes, and Initial pH of waste = 3). 

Agitation Speed (rpm) Breakage (%) 

150 40 

250 20 

350 10 

450 20 

Table D9 Effect of contact time on W/O/W and emulsion stability in chromium 

extraction (Experimental conditions: [TOMAC] = 0.004 M, [Acidic thiourea] = 0.1 

M, Aqueous : Organic = 5 mL : 5 mL, Treat ratio = 1:3, Span 80 concentration = 5% 

(w/v), Emulsifying time = 1 minute, Homogenizer speed = 7000 rpm, Agitator speed 

: 350 rpm, and Initial pH of waste = 3). 

Contact Time (min) Breakage (%) 

1 20 

3 7 

5 18 

7 30 
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Table D10 Effect of treat ratio on W/O/W emulsion stability in chromium 

extraction (Experimental conditions: [TOMAC] = 0.004 M, [Acidic thiourea] = 0.1 

M, Aqueous : Organic = 5 mL : 5 mL, Agitation speed = 350 rpm, Span 80 

concentration = 5% (w/v), Emulsifying time = 1 minute, Homogenizer speed = 7000 

rpm, Contact time = 3 minutes, and Initial pH of waste = 3). 

Treat ratio  

(Emulsion : External phase) 

Breakage (%) 

1:2 40 

1:3 8 

1:5 8 

1:7 18 

Table D11 Effect of pH external phase on W/O/W emulsion stability in 

chromium extraction (Experimental conditions: [TOMAC] = 0.004 M, [Acidic 

thiourea] = 0.1 M, Aqueous : Organic = 5 mL : 5 mL, Agitation speed = 3, Span 80 

concentration = 5% (w/v), Emulsifying time = 1 minute, Homogenizer speed = 7000 

rpm, Contact time = 3 minutes, Treat ratio = 1:4, and Initial pH of waste = 3). 

pH Electroplating wastewater Breakage (%) 

1 8 

3 8 

5 9 

7 15 

9 20 
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Table D12 Favourable conditions for W/O/W emulsion stability toward 

chromium extraction 

Parameter Condition 

Agitation speed (rpm) 350 

Contact time (minutes) 3 

Treat ratio (emulsion : external 

phase) 

1:5 

pH external phase 3 
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Appendix E Prospect of Continuous Emulsion Liquid Membrane (CELM) 

Process 

Table E1 The liquid height-to-diameter ratio (H/D ratio) of the stirred tank 

reactor at different volumes tank 

Tank volume (mL) H H/D ratio 

750 6.63 0.55 

1000 8.84 0.74 

1250 11.05 0.92 

1500 13.26 1.11 

*Diameter = 12 cm 

Table E2 Effect of total extractor volume on emulsion stability (Experimental 

conditions: [TOMAC] = 0.022 M, [Acidic thiourea] = 0.1 M, Aqueous : Organic= 1 : 

1, Agitation speed= 350 rpm, Span 80 concentration = 5% (w/v), Emulsifying time = 

1 minute, Homogenizer speed= 7000 rpm, Retention time = 3 minutes, and Initial pH 

of waste = 3). 

Time 

Sample Total 

volume (mL) 

Initial Emulsion 

(mL) 

Final Emulsion 

(mL) 

ph 

after 

% 

breakage 

5 

750 

125 134 2.02 -7.2 

10 167 1.98 -33.6 

15 166 1.98 -32.8 

20 165 2.98 -32 

5 

1000 

167 172 2.37 -3.20 

10 169 2.4 -1.40 

15 175 2.27 -5.00 

20 174 3.27 -4.40 

5 

1250 

208 242 2.37 -20.16 

10 276 2.4 -36.48 

15 280 2.27 -38.4 

20 277 3.27 -36.96 

5 

1500 

250 300 2.2 -20 

10 340 2.14 -36 

15 341 1.98 -36.4 

20 345 2.98 -38 
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Table E3 Design Matrix for 2
6-3 

fractional factorial design and chromium 

extraction performance 

Std 

Order 

Run Order Blocks 
Variables % Extraction 

   X1 X2 X3 X4 X5 X6 
 

4 1 1 5 0.040 0.1 450 0.10 1 97.84 

2 2 1 5 0.004 0.1 150 0.10 5 91.05 

7 3 1 1 0.040 1.0 150 0.10 5 81.16 

1 4 1 1 0.004 0.1 450 0.25 5 100.00 

3 5 1 1 0.040 0.1 150 0.25 1 94.05 

5 6 1 1 0.004 1.0 450 0.10 1 94.63 

8 7 1 5 0.040 1.0 450 0.25 5 100.00 

6 8 1 5 0.004 1.0 150 0.25 1 100.00 
X1 : t(min), X2 : [TOMAC] (M), X3 : [Tu Acidic], X4 : Rotational speed (rpm), X5 : treat ratio 

(Emulsion : Feed), and X6  : [1-Octanol] (% (w/v)). All variables are in uncoded units. 

Table E4 Experimental validation (Experimental conditions: Emulsifying time 

= 1 minute, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, [Acidic 

thiourea] = 0.55 M, Aqueous : Organic = 1 : 1, Rotational speed = 300 rpm, 

Homogenizer speed = 7000 rpm, Retention time = 3 minutes). 

Extraction time (s) [Cr]i [Cr]f % Extraction 

0 41.81 41.8 0 

1 41.81 14.565 65.17 

2 41.81 8.378 79.96 

3 41.81 0.975 97.67 

5 41.81 0.308 99.26 

10 41.81 0.271 99.35 
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Table E5 Best Stability Conditions for Chromium Extraction by ELM 

Factors Symbols Screened 

value 

Chromium 

extraction (%) 

Error 

(%) 

Observed 

value 

Predicted 

value 

Retention time X1 3 

99 95 

 

 

 

4 

TOMAC 

concentration 

X2 0.022 

Acidic Thiourea  X3 0.55 

Rotational speed X4 300 

Treat ratio X5 0.175 

1-Octanol X6 3 

Table E6 Box-Behnken design (BBD) matrix together with experimental and 

predicted results of chromium removal percentage 

Run X5 

Treat ratio 

X4 

Rotational 

speed (RPM) 

X1 

Retention 

Time, min 

Removal (%) 

Experimental Predicted 

1 -1 0.142 -1 300 0 3 99.47 99.82 

2 +1 0.142 -1 300 0 3 82.11 82.11 

3 -1 0.142 +1 450 0 5 100.00 100.00 

4 +1 0.142 +1 450 0 1 96.58 96.58 

5 -1 0.100 0 300 +1 5 91.05 91.05 

6 +1 0.250 0 300 +1 5 100.00 100.00 

7 -1 0.250 0 450 -1 3 100.00 100.00 

8 +1 0.100 0 300 -1 1 94.47 94.47 

9 0 0.142 -1 300 +1 3 91.58 91.58 

10 0 0.142 +1 150 +1 5 100.00 100.00 

11 0 0.100 -1 450 -1 3 100.00 99.82 

12 0 0.142 +1 150 -1 1 100.00 100.00 

13 0 0.250 0 300 0 1 100.00 100.00 

14 0 0.250 0 150 0 3 92.11 92.11 

15 0 0.100 0 150 0 3 100.00 99.82 
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Table E7 Verification of optimized data for chromium extraction study 

Optimum condition 

Chromium extraction (%) 

Error 

(%) Observed 

value 

Predicted 

value 

Rotational speed 342 rpm 

99 100 1 Retention Time 170 s 

Treat Ratio 1:5 

Table E8 Experimental validation (Experimental conditions: Emulsifying time 

= 1 minute, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, [Acidic 

thiourea] = 0.55 M, Aqueous : Organic = 1 : 1, Rotational speed = 342 rpm, 

Homogenizer speed = 7000 rpm, Retention time = 170 s). 

Extraction time (s) [Cr]i [Cr]f % Extraction 

0 41.81 41.8 0 

1 41.81 10.44 75.04 

2 41.81 6.498 84.46 

3 41.81 0.922 97.79 

5 41.81 0.429 98.97 

10 41.81 0.421 98.99 
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Appendix F Chromium Recovery Performance 

Table F1 Effect of H2SO4 acid concentration on chromium extraction 

(Experimental conditions: Emulsifying time = 1 minute, Rotational speed = 342 rpm, 

Aqueous : Organic = 1 : 1, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, 

[Thiourea] = 0.55 M, Homogenizer speed = 7000 rpm, Treat ratio = 1:5, Retention 

time = 170 s) 

H2SO4 concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

0.1 0 39.71 50.57 51.90 52.50 51.84 52.02 

0.55 0 72.81 90.72 98.11 99.08 99.06 99.08 

1 0 73.39 98.11 98.23 99.11 99.08 99.08 

2 0 86.56 98.69 98.75 99.37 99.37 99.37 

3 0 98.11 98.69 98.63 99.34 99.37 99.37 

Table F2 Effect of H2SO4 acid concentration on chromium recovery 

(Experimental conditions: Emulsifying time = 1 minute, Rotational speed = 342 rpm, 

Aqueous : Organic = 1 : 1, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, 

Homogenizer speed = 7000 rpm, [Thiourea] = 0.55 M, Treat ratio = 1:5, Retention 

time = 170 s) 

H2SO4 concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

0.1 0 23.38 23.60 26.38 27.77 27.56 27.81 

0.55 0 28.99 34.12 34.23 33.77 33.77 34.00 

1 0 33.18 36.53 45.85 43.98 44.90 43.98 

2 0 38.52 41.41 45.55 49.38 49.38 49.38 

3 0 35.31 35.23 37.83 29.54 29.16 29.16 
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Table F3 Effect of thiourea concentration on chromium extraction 

(Experimental conditions: Emulsifying time = 1 minute, Rotational speed = 342 rpm, 

Aqueous : Organic = 1:1, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, 

Homogenizer speed = 7000 rpm, Treat ratio = 1:5, Retention time = 170 s, [H2SO4] = 

2.0 M) 

Thiourea concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

0.1 0 39.71 91.64 98.63 98.63 98.63 98.75 

0.55 0 72.81 90.72 98.11 99.08 99.06 99.08 

1 0 98.69 98.23 98.11 99.08 99.14 99.14 

2 0 73.16 98.11 99.08 99.07 99.08 99.08 

3 0 79.57 87.60 90.07 91.46 92.90 90.88 

Table F4 Effect of thiourea concentration on chromium recovery (Experimental 

conditions: Emulsifying time = 1 minute, Rotational speed = 342 rpm, Aqueous : 

Organic = 1 : 1, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, 

Homogenizer speed = 7000 rpm, Treat ratio = 1:5, Retention time = 170 s, [H2SO4] = 

2.0 M) 

Thiourea concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

0.1 0 1.03 8.73 13.07 23.33 27.56 21.27 

0.55 0 39.13 38.14 37.39 43.80 44.29 43.92 

1 0 32.91 61.15 66.12 82.35 71.61 83.80 

2 0 72.47 85.30 82.06 84.43 81.43 86.74 

3 0 6.39 10.09 28.81 13.44 13.44 4.26 
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Table F5 Effect of initial feed concentration on chromium extraction 

(Experimental conditions: Emulsifying time = 1 minute, Span 80 concentration = 5% 

(w/v), [TOMAC] = 0.022 M, [Acidic thiourea] = 2.0 M thiourea in 2.0 M H2SO4, 

Aqueous : Organic = 1 : 1, Rotational speed = 342 rpm, Homogenizer speed = 7000 

rpm, Treat ratio = 1:5, Retention time = 170 s) 

Chromium concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

20 0 80.02 96.28 99.74 99.74 99.74 99.74 

40 0 71.51 90.68 98.62 98.62 98.66 98.62 

60 0 63.18 80.40 98.60 98.76 98.76 98.76 

80 0 61.95 75.11 98.71 98.71 98.95 98.95 

100 0 60.66 74.70 84.65 84.46 85.18 86.81 

200 0 28.40 36.84 47.08 49.41 49.99 48.29 

Table F6 Effect of initial feed concentration on chromium recovery 

(Experimental conditions: Emulsifying time = 1 minute, Rotational speed = 342 rpm, 

Aqueous : Organic = 1 : 1, Span 80 concentration = 5% (w/v), [TOMAC] = 0.022 M, 

Homogenizer speed = 7000 rpm, [Acidic thiourea] = 2.0 M thiourea in 2.0 M H2SO4, 

Treat ratio = 1:5, Retention time = 170 s) 

Chromium concentration (M) Extraction times (min) 

0 1 2 3 5 10 15 

20 0 67.01 97.72 95.54 96.27 95.68 95.54 

40 0 69.12 78.71 89.17 76.98 79.00 78.60 

60 0 49.76 49.84 51.06 51.54 58.41 60.96 

80 0 36.29 41.32 39.63 39.69 44.42 45.87 

100 0 28.74 34.51 41.02 37.21 37.28 36.94 

200 0 14.26 16.49 18.73 12.53 10.82 6.92 
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Table F7 Recovery of chromium in internal phase 

External/Feed phase 

(ppm) 

Internal/recovery phase 

(ppm) 

Enrichment ratio 

20 191.08 9.55 

40 330.11 7.86 

60 365.77 6.10 

80 366.98 4.59 

100 369.41 3.69 

200 138.45 0.69 

Table F8 CELM performance summary 

Parameters Properties 

Treat ratio 1:5 

Extractor volume 1000 mL 

Emulsion Flow rate (mL/min) ~167 

External phase Flow rate (mL/min) ~833 

Total treated wastewater in 10 minutes (mL) ~8330 
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Appendix G Sauter Mean Diameter 

The Sauter mean diameter of the dispersed phase droplets/globules is defined as 

follows: 

 

   = ( ∑  
 ) ( ∑  

 )       (D1) 

 

Where, Dp is the diameter of each droplet. When the emulsion liquid membrane is in 

the extractor, the size of the emulsion globules in the extractor can be obtained by 

photography. Then, Sauter mean diameter is calculated by its definition. For 

determining the size of emulsion droplet of W/O emulsion, the procedures are 

followed. 

 

Reagents: 

Membrane phase: Palm oil as diluents with 0.004 M TOMAC as carrier and 5% 

(w/v) Span 80 as surfactant 

Stripping phase: 0.1 M thiourea in 0.1 M H2SO4 

 

The emulsion was made similarly to the previous methods. A Stereomicroscope with 

colour camera was used to snap emulsion picture with is direct connected to 

computer. A few repeating step should be done until a clearly emulsion picture 

observed in the computer monitor. A small scale was also recorded in the microscope 

focus area. For obtaining more exact result, the caption picture was analyzed with 

image analyzer. Around 40 of clear droplets were calculated according to Equation 

D1.  



 

 

202 

 

 

Figure G1 Example of microscope image of the primary emulsion for 

determination of droplet size. 
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Table G1 Size of emulsion droplets at different emulsifying time (Experimental conditions: [Cyanex 302] = 0.1 M, [Stripping phase] = 1.0 

M thiourea in 1.0 M H2SO4, [Span 80] = 5% (w/v), Aqueous : Organic = 5 mL : 5 mL, Homogenizer speed = 12000 rpm, Agitation speed = 250 

rpm, Mixing time = 5 minutes, and T = 26 ºC) 

Emulsifying time 

1 min 2 min 3 min 4 min 

Diameter Dp^3 Dp^2 Diameter Dp^3 Dp^2 Diameter Dp^3 Dp^2 Diameter Dp^3 Dp^2 

2.27 11.77 5.17 1.60 4.07 2.55 1.80 5.86 3.25 1.60 4.12 2.57 

2.40 13.78 5.75 1.88 6.61 3.52 1.90 6.86 3.61 1.90 6.83 3.60 

2.43 14.30 5.89 1.93 7.22 3.74 2.74 20.51 7.49 1.98 7.78 3.93 

2.47 15.09 6.11 1.95 7.43 3.81 3.01 27.29 9.06 2.22 10.88 4.91 

2.68 19.26 7.19 2.04 8.51 4.17 3.02 27.67 9.15 2.36 13.21 5.59 

2.68 19.26 7.19 2.07 8.90 4.29 3.20 32.70 10.23 2.82 22.40 7.95 

2.68 19.26 7.19 2.67 19.13 7.15 3.54 44.41 12.54 2.84 22.93 8.07 

2.73 20.43 7.47 2.96 25.95 8.77 3.59 46.40 12.91 2.85 23.11 8.11 

2.85 23.14 8.12 2.98 26.58 8.91 3.63 47.75 13.16 2.91 24.53 8.44 

2.85 23.14 8.12 3.08 29.17 9.48 3.63 47.75 13.16 3.17 31.89 10.06 

2.90 24.37 8.41 3.22 33.28 10.35 3.76 53.30 14.16 3.52 43.75 12.42 
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Table G1 Continued 

Emulsifying time 

1 min 2 min 3 min 4 min 

Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter 

2.95 25.64 8.69 3.72 51.64 13.87 3.80 54.66 14.40 3.54 44.41 12.54 

3.00 26.92 8.98 3.81 55.11 14.48 3.84 56.79 14.77 3.68 49.79 13.53 

3.00 26.92 8.98 2.01 8.13 4.04 3.99 63.36 15.89 3.68 49.79 13.53 

3.00 26.92 8.98 2.11 9.36 4.44 1.27 2.03 1.60 3.74 52.41 14.00 

3.06 28.55 9.34 2.19 10.56 4.81 1.75 5.40 3.08 3.75 52.55 14.03 

3.13 30.55 9.77 2.37 13.39 5.64 1.95 7.43 3.81 4.02 64.85 16.14 

3.23 33.63 10.42 2.68 19.26 7.19 2.13 9.65 4.53 4.02 64.85 16.14 

3.23 33.63 10.42 2.76 21.07 7.63 2.21 10.80 4.89 4.42 86.06 19.49 

3.23 33.63 10.42 2.77 21.37 7.70 2.24 11.29 5.03 4.46 88.54 19.87 

3.24 33.98 10.49 2.80 21.93 7.83 2.29 12.01 5.25 4.58 96.12 20.98 

3.24 33.98 10.49 2.83 22.56 7.98 2.47 15.09 6.11 4.59 96.97 21.11 

3.39 38.98 11.50 2.85 23.09 8.11 2.56 16.87 6.58 4.73 105.65 22.35 
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Table G1 Continued 

Emulsifying time 

1 minute 2 minutes 3 minutes  4 minutes 

Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter Diameter 

3.39 38.98 11.50 3.22 33.28 10.35 2.66 18.79 7.07 4.79 110.09 22.97 

3.41 39.71 11.64 3.72 51.64 13.87 2.76 21.02 7.62 4.98 123.74 24.83 

3.49 42.69 12.21 3.81 55.11 14.48 3.20 32.70 10.23 5.64 179.20 31.79 

3.58 45.74 12.79 4.01 64.55 16.09 3.54 44.41 12.54 5.68 183.42 32.28 

3.60 46.51 12.93 4.35 82.50 18.95 3.59 46.40 12.91 5.99 214.94 35.88 

Sauter mean diameter = 3.09 Sauter mean diameter = 3.17 Sauter mean diameter = 3.22 Sauter mean diameter = 4.39 

 

 




