INTEGRATED SUSTAINABILITY ASSESSMENT FRAMEWORK WITH MITIGATION STRATEGY FOR PALM OIL MILL

NABILA FARHANA BINTI JAMALUDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

JULY 2020

DEDICATION

This thesis is dedicated to my father and mother, Jamaludin and Haziatul, this is for you the one who keep giving endless support since day one until today, for working hard to give me the best education and providing me with the time and resources to pursue my dreams. A special feeling of gratitude to my siblings, Nadiah, Nabil, Naufil, Naquib and Nazheef for being there for me throughout the entire doctorate program. All of you have been my best cheerleaders. To my beloved grandpa and grandma, I can't thank you enough for all of your thoughts and prayers all this time. To my husband, Muhd Fairis thank you for constantly being by my side, who was always there to lend a helping hand, for being my best friend and critique – I am very thankful. Alhamdulillah.

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my main supervisor, Dr. Zarina Ab. Muis for the continuous support of my PhD study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor for my PhD study.

I am also very thankful to my co-supervisor Prof. Ir. Dr. Haslenda Hashim for her encouragement, insightful comments, advices and motivation. Without her continuous support and interest, this thesis would not have been the same as presented here.

My sincere thanks also goes to my research colleagues of Process Systems Engineering Centre (PROSPECT) for the discussions and for the sleepless nights we were working together before deadline. I also would like to say thank you to my friends for their constant encouragement and support throughout this research work and for all the fun we have had in the last four years.

Lastly, thank you to my parents, siblings and husband, Muhd Fairis whose patience and understanding when the times got rough are much appreciated and duly noted.

ABSTRACT

Over the past decades, palm oil mills have been proven to be a profit-making industry. The rapid advancement of this industry poses many challenges from nongovernment organisations and society to ensure that the operation and production of the palm oil mills remain sustainable. Therefore, many palm oil industries are now committing to adhere to certification schemes to further improve their mill management towards sustainability and reduced greenhouse gas (GHG) emissions. However, the current palm oil certification scheme has several drawbacks and limitations that burden the industry. This study presents the development of an integrated palm oil mill carbon footprint and accounting (POMCFA) and a novel palm oil mill sustainability index (POMSI) framework that incorporates mitigation strategy selection tool. This framework enables millers to assess the carbon footprint and sustainability performance of their palm oil mills using one palm oil mill inventory. First, this study developed the POMCFA parameters and indicators to calculate the carbon emissions of the mill. This measurement was based on the carbon dioxide equivalent (CO2e). The parameters and indicators of POMCFA were then included as part of the POMSI database. Following that, the POMSI assessment was performed via the adoption of a proximity-to-target approach that measures the current sustainability performance of an industry relative to the policy targets. The POMCFA performance was obtained in terms of total CO2e and GHG profile. The POMSI performances were then translated into five rating systems to describe the sustainability performance levels of the industries i.e. excellent, good, fair, poor, and very poor. An industry-comparable performance was observed using a graphical method. Selected palm oil mills in Malaysia were used as case studies to demonstrate the applicability of the framework. Based on the result, it was found that several indicators of POMCFA and POMSI did not perform efficiently. By identifying the weak-performing indicators, profound recommendations for integrated improvement measures were proposed. In particular, a mitigation selection tool was developed to select the technology to improve upon the weaknesses in the model. Then, the POMCFA and POMSI scores were recalculated to evaluate the effectiveness of the proposed strategy on the sustainability performance and/or CO2e emission of the mill. This method enables the industry to continuously measure and keep track of emissions performance and sustainability practices. The assessments give the impetus for every mill to compete towards better improvement and to learn from each other, besides working to improve industry performance as a whole. In addition, the comprehensive assessment offered by the mitigation model in this study results in a better analysis; in turn, helping the relevant industries in making decisions to continuously improve performance with optimal decision solutions.

ABSTRAK

Sejak beberapa dekad yang lalu, kilang kelapa sawit telah dibuktikan sebagai suatu industri yang menguntungkan. Kemajuan pesat industri ini telah menimbulkan banyak kritikan daripada organisasi bukan kerajaan dan masyarakat untuk memastikan operasi dan pengeluaran kilang kelapa sawit kekal mampan. Oleh itu, banyak industri minyak sawit kini berusaha untuk mematuhi skim pensijilan dalam meningkatkan lagi pengurusan kilang ke arah kemampanan dan pengurangan kadar pelepasan gas rumah hijau (GHG). Walau bagaimanapun, skim pensijilan minyak sawit yang sedia ada mempunyai beberapa kekurangan dan batasan yang membebankan industri. Kajian ini memperlihatkan pembangunan jejak karbon kilang minyak sawit dan pengiraan (POMCFA) serta kerangka indeks kelestarian kelapa sawit (POMSI) baharu yang digabungkan dengan alat pemilihan strategi pemulihan. Rangka kerja ini membolehkan pengilang untuk menilai jejak karbon dan prestasi kelestarian kilang kelapa sawit mereka menggunakan satu inventori kilang minyak kelapa sawit. Pertama, kajian ini membangunkan parameter dan indikator POMCFA untuk mengira pelepasan karbon dari kilang tersebut. Pengukuran ini adalah berdasarkan karbon dioksida setara (CO2e). Parameter dan petunjuk POMCFA kemudian digunakan sebagai sebahagian daripada pangkalan data POMSI. Berikutan itu, penilaian POMSI dilakukan menggunakan kaedah pendekatan jarak dekat yang mengukur prestasi kemampanan semasa sesuatu industri dibandingkan dengan sasaran polisi. Prestasi POMCFA diperoleh dari segi jumlah CO2e dan profil GHG. Prestasi POMSI kemudiannya diterjemahkan ke dalam lima sistem penarafan untuk menggambarkan tahap prestasi kemampanan industri iaitu sangat baik, baik, memuaskan, kurang memuaskan, dan sangat kurang memuaskan. Prestasi industri yang setanding diperhatikan menggunakan kaedah grafik. Beberapa kilang minyak kelapa sawit yang dipilih di Malaysia telah digunakan sebagai kajian kes untuk menunjukkan kebolehgunaan kerangka kerja. Berdasarkan dapatan kajian, didapati beberapa penunjuk POMCFA dan POMSI ditahap kurang memuaskan. Dengan mengenal pasti penunjuk yang lemah, cadangan yang mendalam bagi langkah penambahbaikan yang bersepadu telah dicadangkan. Alat pemilihan strategi pemulihan juga telah dihasilkan untuk memilih teknologi yang sesuai untuk memperbaiki kelemahan penunjuk tersebut. Kemudian, skor POMCFA dan POMSI dikira semula untuk menilai keberkesanan strategi pemulihan yang dicadangkan mengenai prestasi kemampanan dan / atau pelepasan CO2e di kilang. Kaedah ini membolehkan industri untuk terus mengukur dan menjejaki prestasi pelepasan dan amalan kemampanan yang dipraktikkan. Penilaian ini memberikan dorongan kepada setiap kilang untuk bersaing ke arah lebih baik dan belajar antara satu sama lain selain berusaha untuk meningkatkan prestasi industri secara keseluruhan. Di samping itu, penilaian komprehensif yang ditawarkan oleh model strategi pemulihan dalam kajian ini menghasilkan analisis yang lebih baik; seterusnya, membantu industri yang berkaitan membuat keputusan untuk terus meningkatkan prestasi dengan penyelesaian keputusan yang optimum.

TABLE OF CONTENTS

TITLE

DE	DECLARATION		
DE	DEDICATION		
AC	KNOWLEDGEMENT	v	
AB	STRACT	vi	
AB	STRAK	vii	
TA	BLE OF CONTENTS	viii	
LIS	T OF TABLES	xiii	
LIS	T OF FIGURES	XV	
LIS	T OF ABBREVIATIONS	xvii	
LIS	T OF SYMBOLS	xxiii	
LIS	T OF APPENDICES	XXV	
CHAPTER 1	INTRODUCTION	1	
1.1	Background of Study	1	
1.2	Problem Statement	5	
1.3	Research Objectives	8	
1.4	Scope of Study	8	
1.5	Significance of Study	9	
1.6	Organisation of Thesis	10	
CHAPTER 2	LITERATURE REVIEW	13	
2.1	Introduction	13	
2.2	Overview of Palm Oil industry in Malaysia	13	
	2.2.1 The Importance of Palm Oil	15	

- 2.2.2 Global and Malaysia Palm Oil Industry Market Analysis
 2.2.3 Controversy Faced by Palm Oil Industry
 18
- 2.3 Vegetable Oil Sustainable Assessment 19

	2.3.1	Sustainal	ble Agriculture Network (SAN)	20
	2.3.2	Unilever	Sustainable Agriculture Code	21
	2.3.3	Internation Certificat	onal Sustainability and Carbon ion (ISCC)	22
2.4	Curren	nt Sustaina	bility Assessment for Palm Oil	24
	2.4.1	Roundtal	ole Sustainable Palm Oil (RSPO)	24
	2.4.2	Indonesia	a Sustainability Palm Oil (ISPO)	28
	2.4.3	Malaysia	Sustainability Palm Oil (MSPO)	29
	2.4.4	Rainfores Agricultu	st Alliance (RA) - Sustainable are Network (SAN)	32
	2.4.5	National Programi	Level Corporate GHG Reporting ne (MYCarbon)	32
	2.4.6	Mapping Gap	of Current Assessment and Research	33
2.5	Quant	itative App	proaches in Sustainability Assessment	33
	2.5.1	Carbon A	Assessment	34
		2.5.1.1	Low Carbon Assessment	34
		2.5.1.2	Carbon Footprint	35
	2.5.2	Index As	sessment	37
		2.5.2.1	Sustainability Index	38
		2.5.2.2	Environment-Sustainability Index	41
		2.5.2.3	Economy-Sustainability Index	43
		2.5.2.4	Social-sustainability index	43
	2.5.3	Summary	of Quantitative Assessment	46
2.6	Mitiga Indust	ation Optionry	ons to Reduce Impacts of Palm Oil	47
2.7	Mitiga	ation Strate	egy Selection Decision Analysis	52
2.8	Applie	cation of C	ptimisation	55
	2.8.1	MILP in	Process System and Engineering	58
2.9	Overa	ll Researcl	ı Gap	60
CHAPTER 3	RESE	CARCH M	ETHODOLOGY	63
3.1	Introd	uction		63

3.2	Part 1: Accou	Developm nting (PO	nent of Palm Oil Mill Carbon Footprint MCFA)	63
	3.2.1	Plant Fan	niliarisation	63
	3.2.2	Identifies Source	Indicators, Parameters of the GHGs	65
	3.2.3	GHGs M	apping	65
	3.2.4	Collectin Data for I	g Monthly Consumption or Emission Each Mapped Stream	66
	3.2.5	GHGs Ad	ccounting	66
3.3	Part 2 Result	: Palm Oi and Analy	il Mill Carbon Footprint Accounting ysis	67
	3.3.1	GHG Em	ission Profile Result and Analysis	67
	3.3.2	Report G	eneration	68
3.4	Part 3 Devel	: Palm Oi opment	I Mill Sustainability Index (POMSI)	68
	3.4.1	Identify Aspect	POMSI Indicator, Parameter and	68
		3.4.1.1	Aspect: Environment	73
		3.4.1.2	Aspect: Economy	74
		3.4.1.3	Aspect: Social	75
	3.4.2	Input Val	lue for Calculations	79
		3.4.2.1	Data Collection	79
		3.4.2.2	Standard or Target Value Establishment	79
		3.4.2.3	Low Benchmark	80
		3.4.2.4	Determination of Weightage	80
	3.4.3	Evaluatio	on Against Standard Calculation	81
	3.4.4	Index Ca	lculation	86
3.5	Part 4	: POMSI R	Result and Analysis	88
3.6	Part 5 for PC	Integrated	d Mitigation Strategy Selection Model d POMSI	90
	3.6.1	Identifica POMCFA	ation of Integrated Hotspot for A and POMSI	91
	3.6.2	Model De	evelopment	92

	3.6.2.1 Superstructure for Model Development	92
	3.6.2.2 Mathematical Equations	93
	3.6.3 Recalculation Score of POMCFA and POMSI Assessment Score	95
CHAPTER 4	ASSESSMENT OF PALM OIL MILL – POMCFA AND POMSI	97
4.1	Introduction	97
4.2	Part 1: POMCFA Development	97
	4.2.1 General Practice of Palm Oil Mill Plant Familiarisation	97
	4.2.2 Identify Indicators, Parameters and Aspect of the Carbon Source	100
	4.2.3 Carbon Mapping	100
	4.2.4 Monthly Consumption or Generation of Data for Each Stream	101
	4.2.5 Carbon Footprint Accounting	104
4.3	Part 2: POMCFA Result and Analysis, Hotspot Identification and Improvement	104
4.4	Part 3: Development of the Palm Oil Mill Sustainability Index (POMSI)	111
	4.4.1 Indicator, Parameter and Aspect Identification	111
	4.4.2 Input Value	114
	4.4.3 Indicator Score	119
	4.4.4 Parameter, Aspect and Index Score	121
4.5	Part 4: POMSI Result and Analysis	123
4.6	Summary	131
CHAPTER 5	ASSESSMENT OF PALM OIL MILL – DEVELOPMENT OF AN INTEGRATED ANALYSIS OF POMCFA AND POMSI TOWARDS A MITIGATION STRATEGY	133
5.1	Introduction	133
5.2	Identification of an Integrated Hotspot for POMCFA and POMSI	133
53	Model Development	135
2.0		

	5.3.1 Superstructure		135
	5.3.2 Mathematical Equation	ns	137
	5.3.2.1 Objective Fu	unctions and Constraints	137
	5.3.2.2 Data for Fac	ctor Changes	139
5.4	Results and Discussion		140
	5.4.1 Recalculation of POM	CFA and POMSI score	141
	5.4.2 Summary		144
CHAPTER 6	CONCLUSIONS AND REC	COMMENDATIONS	145
6.1	Conclusions		145
6.2	Recommendations		147
REFERENCES			149
LIST OF PUBL	CATIONS		183

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Carbon footprint assessment by using CO ₂ e approaches	35
Table 2.2	Some applications of index assessment	44
Table 2.3	Some of mitigation option to improve industry performance	48
Table 3.1	Expected POMSI aspect, parameter and indicator	70
Table 3.2	POMSI database checklist	76
Table 3.3	Proximity to Target (PTT) value	84
Table 3.4	Expected parameter score, parameter aggregation score and weightage value	87
Table 3.5	Expected aspect score and index value	88
Table 3.6	Rating based on the POMSI score	89
Table 3.7	FC selection	95
Table 4.1	List of parameters and indicators	100
Table 4.2	Stream division for each operation unit in general palm oil mill	101
Table 4.3	GHG mapping	102
Table 4.4	Monthly consumption or generation data, D of mill A (see appendix B for full data collection of mills A, B, C and D)	103
Table 4.5	Emission factor of each indicator at palm oil mill	104
Table 4.6	Total CO ₂ e and carbon emission profile for each indicator and parameter of mill A	107
Table 4.7	Total CO_2e and carbon emission profile for each indicator and parameter of mill B	108
Table 4.8	Total CO_2e and carbon emission profile for each indicator and parameter of mill C	109
Table 4.9	Total CO_2e and carbon emission profile for each indicator and parameter of mill D	110
Table 4.10	List of aspect, parameter and indicator	112
Table 4.11	Palm oil mill data and standard value collected	116

Table 4.12	The normalisation results based on PTT method of mills A, B, C and D	120
Table 4.13	Parameter score, parameter aggregation score and weightage value of mills A, B, C and D	122
Table 4.14	Aspect score and index value	122
Table 4.15	Palm oil mill rating score	124
Table 5.1	Full list of the mitigation strategy, m	136
Table 5.2	Summary of target indicator factor (Yn) for mill C	138
Table 5.3	Mitigation strategy cluster	138
Table 5.4	Output of the mitigation selection model	140
Table 5.5	Mitigation selection scenario	141

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 1.1	Major Oilseeds: Area in 2015 (Total is 274.4 million hectares) (Oil World 2016)	3
Figure 1.2	Global production of oils and fats in 2015 (Total is 179.6 million tons) (Oil World 2016)	3
Figure 1.3	Price comparison of selected vegetable oil (Abdullah, 2013)	4
Figure 2.1	Ideal area for growing palm oil (Green Palm Sustainability, 2015).	14
Figure 2.2	Vegetable oil yields per Ha per year (Fairhurst and Griffiths, 2014)	15
Figure 2.3	Global Palm Oil Production (Green Palm Sustainability, 2015)	17
Figure 2.4	Palm Oil Production in Malaysia (Awalludin et al., 2015)	17
Figure 2.5	The Production of Vegetable Oil (MPOB Statistics, 2017)	18
Figure 2.6	Number of elements in SAN, Unilever, ISCC Plus and EU standard per sustainability area	23
Figure 2.7	Division of each sustainability aspect in RSPO	26
Figure 2.8	Division of each RSPO Environment Criteria	26
Figure 2.9	Division of each RSPO Social Criteria	27
Figure 2.10	Division of each RSPO Management Criteria	27
Figure 2.11	Division of each RSPO Ethics Criteria	27
Figure 2.12	The process for MSPO to become a Malaysian Standard	30
Figure 3.1	Overall methodology of the research	64
Figure 3.2	The POMSI concept	69
Figure 3.3	Location of indicator	72
Figure 3.4	Proximity-to-Target Concept (Ahamad et al., 2015)	82
Figure 3.5	Index calculation	88
Figure 3.6	Example of the web chart used in this study (going towards outer ring indicates better performance, going down to the inner ring indicates bad performance)	89

Figure 3.7	Integrated mitigation strategy selection model framework	91
Figure 3.8	General model superstructure	92
Figure 4.1	Palm oil mill flowchart	99
Figure 4.2	Unit operation and stream emission profile of mill A	107
Figure 4.3	Unit operation and stream emission profile of mill B	108
Figure 4.4	Unit operation and stream emission profile of mill C	109
Figure 4.5	Unit operation and stream emission profile of mill D	110
Figure 4.6	Palm oil mill process flow diagram	114
Figure 4.7	Summary of parameter weightage distribution	119
Figure 4.8	Detailed parameter score for palm oil mill A	127
Figure 4.9	Detailed parameter score for palm oil mill B	127
Figure 4.10	Details parameter score for palm oil mill C	128
Figure 4.11	Detailed parameter score for palm oil mill D	128
Figure 4.12	Web chart indicator analysis of palm oil mill A (%)	129
Figure 4.13	Web chart indicator analysis of palm oil mill B (%)	129
Figure 4.14	Web chart indicator analysis of palm oil mill C (%)	130
Figure 4.15	Web chart indicator analysis of palm oil mill D (%)	130
Figure 5.1	Integrated result of POMCFA and POMSI of mill C	134
Figure 5.2	Superstructure of mitigation strategies for the indicator	136
Figure 5.3	Scenario 1: Changes in mill C's POMCFA and POMSI performance when both mitigation actions are applied	142
Figure 5.4	Scenario 2: Changes in mill C's POMCFA and POMSI performance when biogas mitigation is applied	143
Figure 5.5	Scenario 3: Changes in mill C's POMCFA and POMSI performance when the wet scrubber mitigation is applied	143

LIST OF ABBREVIATIONS

AHP	-	Analytic Hierarchy Process
AMDAL	-	Analisis Mengenai Dampak Lingkungan
AMPL	-	A Mathematical Programming Language
ArcGIS	-	Aeronautical Reconnaissance Coverage Geographic Information System
ASPID	-	Analysis and Synthesis of Parameters Under Information Deficiency
BOD	-	Biological Oxygen Demand
BP	-	Best Performance
сСРО	-	Crude Palm Oil
СКРО	-	Crude Kernel Palm Oil
cKR	-	Kernel
cLO	-	Losses
СО	-	Carbon Monoxide
COD	-	Chemical Oxygen Demand
COST	-	Overall Cost
CPLEX	-	IBM ILOG CPLEX Optimization Studio
СРО	-	Crude Palm Oil
CSPI	-	Composite Sustainable Performance Index
CSR	-	Corporate Social Responsibility
cTC	-	Total Cost
DEFRA	-	Department for Environment, Food and Rural Affairs
DOE	-	Department of Environment
DP	-	Diesel Used for Process
DP	-	Diesel Used for Process
DUC	-	Dust Concentration
DV	-	Diesel Used for Vehicle in Mill
ECO	-	Engagement with Contractor or Vendor
EEM	-	Engagement with Employees
EFB	-	Empty Fruit Bunch Disposed

EG	-	Electric Used by The Mill from Grid
EG	-	Electric Used by The Mill from Grid
ELECTRE	-	Elimination and Choice Translating Reality
ELO	-	No of Engagement Per Year with Local Community
EPA	-	Environmental Protection Agency
EPI	-	Environment Performance Index
EQI	-	Environment Quality Index
ET	-	Electric Used by The Mill from Turbine
EU RED	-	European Union Renewable Energy Directive
FAR	-	Fatality Rate
FAR	-	Fatality Rate
FC	-	Factor Changes
FELDA	-	Federal Land Development Authority
FFB	-	Fresh Fruit Bunch
FRIM	-	Forest Research Institute Malaysia
FRR	-	Frequency Rate
FRR	-	Frequency Rate
GAMS	-	General Algebraic Modeling System
GAP	-	Good Agriculture Practice
GDP	-	Gross Domestic Product
GHG	-	Greenhouse Gas
GIPS	-	Green Industrial Performance Scorecard
GRI	-	Global Reporting Initiatives
HDI	-	The Human Development Index
IBM	-	International Business Machines Corporation
IC	-	Investment Cost
IC	-	Investment Cost
Icsd	-	Composite Sustainable Development Index
INCAM	-	Integrated Carbon Accounting and Mitigation
IR	-	Incident Rate
IR	-	Incident Rate
IRE	-	Integrated Resource-Efficient

ISCC	-	International Sustainability and Carbon Certification
ISDI	-	Indicators of Sustainable Development for Industry
ISP	-	Indicators of Sustainable Production
ISPO	-	Indonesian Sustainable Palm Oil
IT	-	Industry Target
KEL	-	Kernel Losses Per FFB
KER	-	Kernel Extraction Rate
KS	-	FFB From Known Source
LC	-	Level of Consensus
LCA	-	Life Cycle Analysis
LCC	-	Low Carbon Cities
LCCI	-	Low Carbon Indicator
LINDO	-	Linear, Interactive, And Discrete Optimizer
LP	-	Linear Programming
MATLAB	-	Matrix Laboratory
MCAR	-	Malaysia Clean Air Regulations
MCDA	-	Multi-Criteria Decision Analysis
MESMIS	-	Evaluation of Natural Resource Management Systems
MILP	-	Mixed Integer Linear Programming
MINLP	-	Mixed Integer Nonlinear Programming
MOSTI	-	Ministry of Science, Technology And Innovation
MPL	-	Mathematical Programming Language
MPOB	-	Malaysian Palm Oil Board
MPOC	-	Malaysian Palm Oil Council
MRE	-	Mixed Raw Effluent
MRE	-	Palm Oil Mill Effluent
MSGAP	-	Malaysian Standard Good Agricultural Practice
MSGMP	-	Malaysian Standard Good Manufacturing Practice
MSPO	-	Malaysian Sustainable Palm Oil
MSW	-	Municipal Solid Waste
MYCARBON	-	National Level Corporate Ghg Reporting Programme
nAQ	-	Air Quality (Boiler Emission)

nAS	-	Air Surrounding (Only in Johor)
nDIC	-	Diesel Consumption
nEC	-	Electric Consumption
NGO	-	Non-Government Organisations
NID A1*	-	Nitrogen Dioxide Point A1
NID A2*	-	Nitrogen Dioxide Point A2
NLP	-	Nonlinear Programming
NRE	-	Ministry of Natural Resources and The Environment
nWas	-	Waste
nWC	-	Water Consumption
nWW	-	Waste Water
nWWQ	-	Waste Water Quality of Effluent (Final Discharge)
O&G	-	Oil and Grease Content
OER	-	Oil Extraction Rate (Oer)
OIL	-	Oil Losses Per FFB
OSHA	-	Occupational Safety and Health Act
PC	-	Production Cost
PC	-	Production Cost
PFD	-	Process Flow Diagram
PH <*	-	pH Less Than 7
PH >*	-	pH More Than 7
POMCFA	-	Palm Oil Mill Carbon Footprint and Accounting
POME	-	Palm Oil Mill Effluent
POMSI	-	Palm Oil Mill Sustainability Index
PORIM	-	Palm Oil Research Institute of Malaysia
PRC	-	People's Republic of China
PROMETHEE	-	Preference Ranking Organization Method for Enrichment of Evaluations
PS	-	FFB from Peat Soil
PTT	-	Proximity to Target
QCP	-	Quadratic Constrained Programming Solver
QP	-	Quadratic Programming Solver
RA	-	Rainforest Alliance

RSPO	-	Roundtable Sustainable Palm Oil
RTRS	-	Round Table Responsible Soy
SAM	-	Sulfuric Acid Mist
SAM	-	Sustainability Assessment Model
SAN	-	Sustainable Agriculture Network
SD	-	Sustainable Development
SDFI	-	Sustainable Dairy Farming Index
SDS	-	Sulfur Dioxide So ₂
SDS A1*	-	Sulfur Dioxide SO2 Point A1
SDS A2*	-	Sulfur Dioxide SO2 Point A2
SIRIM	-	Standard and Industrial Research Institute of Malaysia
SM	-	Safety Meeting
SMART	-	Simple Multi Attribute Rating Technique
sOAC	-	Occupational Accident Case
sOPD	-	Occupational Poisoning and Disease Case
SR	-	Severity Rate
SR	-	Severity Rate
sRF	-	Risk Factor
sSA	-	Safety
sSE	-	Stake Holders Engagements
SUS	-	Suspended Solid
SV	-	Site Verification of Known FFB Source
SWA	-	Simple Weighted Addition Method
TNB	-	Tenaga Nasional Berhad
TOC	-	Total Organic Carbon
TON	-	Total Nitrogen
TOPSIS	-	Technique for Order Preference by Similarity to Ideal Solution
TOS	-	Total Solid
TSP A1*	-	Total Suspended Particulate Point A1
TSP A2*	-	Total Suspended Particulate Point A2
UOW	-	Use of Water
USD	-	United States Dollar

UTM	-	Universiti Teknologi Malaysia
VC	-	Variable Cost
VC	-	Variable Cost
VSD	-	Variable Speed Drive
WA	-	Weighted Average
WIN QSB	-	Windows Quantitative Systems for Business

LIST OF SYMBOLS

aCO_2e	-	Amount of CO ₂ e emitted for each consumption
$A_{j,l}$	-	Aspect score of the j^{th} mill, i^{th} indicator
C_m	-	Total cost of m th mitigation options
D	-	Monthly consumption or generation
EFCO ₂ e	-	Carbon dioxide equivalent emission factor
F _{mn}	-	Factor changes of the mitigation option, m^{th} , to the indicator, n^{th}
IC_m	-	Investment cost of m th mitigation options
I_j	-	Index score of the <i>j</i> th mill
$max_{(m_{ij})}$	-	Lowest benchmark value of m_{ij} data set
m_{ij}	-	Data value of the <i>j</i> th mill, <i>i</i> th indicator
$min_{(m_{ij})}$	-	Lowest benchmark value of m_{ij} data set
n_{k1}	-	Number of 'not important' of k th parameter
n_{k2}	-	Number of 'least important' of k th parameter
n_{k3}	-	Number of 'less important' of kth parameter
n_{k4}	-	Number of 'important' of k th parameter
n_{k5}	-	Number of 'most important' of k th parameter
No of $indicator_k$	-	No of indicator in k th parameter
otCO ₂ e	-	Overall total CO ₂ e Emission
PAS _{j,k}	-	Parameter Aggregation Score of the j^{th} mill, k^{th} parameter
PC_m	-	Production cost of m th mitigation options
$P_{j,k}$	-	Parameter score of the j^{th} mill, k^{th} parameter
PTT_{ij}	-	Normalized value for j^{th} mill, i^{th} indicator
tCO_2e_i	-	Total CO ₂ e Emission for Indicator
tCO_2e_p	-	Total CO ₂ e Emission for Parameter
tCO_2e_s	-	Total CO ₂ e Emission for Stream
tCO_2e_{uo}	-	Total CO ₂ e Emission for Unit Operation
t_i	-	Target value of the i^{th} indicator
VC_m	-	Variable cost of m th mitigation options

W_n	-	Weightage of the indicator, n th
Weightage _k	-	Weightage of k th parameter
W _{sumj}	-	Weighted sum of each Parameter
W _{total}	-	Total weight of parameter included
X_m	-	Binary variable for the m th mitigation options
Y_n	-	Requirement set by n th indicator

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Sample of Questionnaire	164
Appendix B	Monthly Consumption of Mill A, B, C and D	166
Appendix C	Emission Data, CO ₂ e for Each Indicator and Stream for Mill A, B, C and D	170
Appendix D	Total CO ₂ e for Indicator, Parameter and GHGs Profile for Mill A, B, C and D	174
Appendix E	Total CO ₂ e for Each Stream, Unit Operation and GHGs Profile for Mill A, B, C and D	176
Appendix F	Technology Review Used in Case Study	178
Appendix G	GAMS Script for Mill C's Case Study	181

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Criticisms toward palm oil sustainability practices have risen significantly among consumers and NGOs. Major palm oil consumers such as Starbucks and Ferrero Corp. require the palm oil production process to be practised in a balanced environmental, economic, and socially-acceptable manner so that their products will continue to be accepted in the current market (Mazzoni, 2014). The importance of the issue of sustainability in the industry truly increased when the European Parliament decided to ban the use of palm oil in their biofuels by 2020, citing sustainable concerns (Hannah Ellis-Petersen, 2018). This action has put more pressure on the industry to not only produce sustainable palm oil but to create a platform to stand up against the accusations made towards palm oil.

In the palm oil arena, Malaysia has served as a role model for its neighbouring countries such as Indonesia, The Philippines, and Thailand (Awalludin *et al.*, 2015). Global production is soaring, as palm oil is the highest-yielding vegetable oil crop (Giller *et al.*, 2017). The vast 85% majority of palm oil in the world comes from Malaysia and Indonesia, which have increased the total capacity of palm oil mill by 128% over the last decade to 58 million tonnes per year. Its 28% global trade dominance of palm oil in the vegetable oil market in 2013 propelled Malaysia to become the world's second-largest palm oil producer (Chow, 2019).

This advancement, however, comes at a cost. In particular, the public and consumer concerns of the sustainability of palm oil have increased (Alang Mahat, 2012). This issue is a constant debate among governments, the industry, and its consumers (Singh *et al.*, 2007). In addition, people are also questioning the amount of

greenhouse gas (GHG) emissions originating from palm oil mills. Therefore, the issue of sustainability has serious implications for the palm oil industry. At the same time, based on EPA (2014) statistics, greenhouse gas emissions totalled 6,870 million metric tonnes of carbon dioxide equivalent, contributing 82% of total GHGs with 77% coming from industries and the electricity and transportation sectors. The responsibility to ensure the sustainability issues now seem to be pointed towards palm oil-producing countries, particularly Malaysia and Indonesia, the largest palm oil producers in the world.

The sustainability issue can threaten Malaysia's economy, as the palm oil industry contributes 5% to 7% of the country's gross domestic product (GDP), raking in a yearly average of RM64.24 billion in export revenue for the last five years. The industry has also created jobs for about 650,000 farmers and has increased the potential for foreign labourers. In fact, this industry is the 4th largest contributor to Malaysia's economy. The ban on palm oil will affect the country's productive resources, economy, and production.

In reality, of all the vegetable oils, palm oil is the most efficient, producing up to 30% more product for the amount of land needed for the plantation (Oil World, 2017). Palm oil yield is ten times more than other crops. From Figure 1.1, it can be seen that with only 6.6% of land use, the palm oil crop can produce up to 38.7% palm oil output, as shown in Figure 1.2. Because of the crop efficiency, the palm oil price is much lower than other vegetable oils, as shown in Figure 1.3. However, due to mass production and a huge demand, palm oil has been painted as the culprit in the degradation of the environment, economy, and social.

As a major palm oil producer, Malaysia needs to respond to the above issue; the industry must measure its move towards sustainable practices (Azapagic and Perdan, 2000) and assess the carbon emissions of palm oil mills not only to counter the stigma towards palm oil practices but also to remain competitive in the market.

Figure 1.1 Major Oilseeds: Area in 2015 (Total is 274.4 million hectares) (Oil World 2016)

Figure 1.2 Global production of oils and fats in 2015 (Total is 179.6 million tons) (Oil World 2016)

Figure 1.3 Price comparison of selected vegetable oil (Abdullah, 2013)

In current practice, applying for certification schemes is the main way to demonstrate the performance of the palm oil mill carbon release and sustainability practices. Another approach was given by Malaysia's National Corporate GHG Reporting Programme (MYCarbon), which proposes a national standard for emission measurement and calculation. However, carbon-related assessments entail more drawbacks that could shift the problem, e.g. reductions in carbon accounting are obtained at the expense of an increase in other sustainability impacts.

The closest things to a comprehensive measurement are the Roundtable on Sustainable Palm Oil (RSPO), the Indonesian Sustainable Palm Oil (ISPO) certification, and the International Sustainability and Carbon Certification (ISCC). Malaysia is also paving the way with its national certification standard, the Malaysian Sustainable Palm Oil (MSPO) scheme. However, these schemes still have limitations, as they require qualitative assessment and non-measurable valuation, making it difficult for the palm oil industry to conduct analysis and identify weaknesses in performance (Lim and Biswas, 2018).

The issue becomes more complicated because the industries are obligated to submit various reports to different bodies such as the RSPO for sustainability certification and MYCarbon for the carbon emission reports. With the absence of a systematic tool, industries face difficulties gathering and analysing data. For example, one of the largest palm oil producers in Malaysia, Federal Land Development Authority (FELDA), pulled out from applying for the RSPO in 2016 due to the difficulty to comply with the procedure of the certification schemes (Ooi, 2016). Furthermore, in 2013, only 38% of palm oil production are certified sustainable by these schemes (King and Mike, 2013).

To maintain a commitment to sustainable practices, a comprehensive assessment is a must for the valuation of an advanced mitigation plan to help reduce and overcome any shortcomings that mills face. A systematic decision support tool that evaluates possible alternatives to overcome weaknesses in operations could assist decision-makers to arrive at optimal solutions. As contended by Hjorth and Bagheri (2006) "There is an emerging understanding that the quality of a decision making process is absolutely critical for the achievement of an effective product in the decision". However, an assessment tool that offers mitigation strategies to improve decision-making regarding operational weaknesses is yet to be established.

1.2 Problem Statement

Palm oil demand is constantly expanding year by year because of its high yield ability and lower cost. The industry is estimated to produce more than 50 billion kilograms of palm oil every day. However, with such a large amount, debate on whether palm oil is sustainably produced has emerged. Palm oil production is, moreover, criticised for its high GHG impact. At the mill level, two main sources of GHG emissions are present, namely due to the fossil fuel consumption and methane emission from the palm oil mill effluent (POME) in open anaerobic lagoons (although only the latter is significant at the supply chain level (Hosseini and Wahid, 2015).

The responsibility for this issue seems to point towards palm-oil producing countries, particularly Malaysia and Indonesia, which are the world's largest palm oil producers. The issue has become increasingly vital for the industry, as major palm oil consumers such as Starbucks and Ferrero Corporation have stated that they will only use certified palm oil in their production by 2015. To make it worse, the European Parliament has planned to ban the use of palm oil in their biofuels by 2020 (Hannah Ellis-Petersen, 2018). A ban on palm oil, one of Malaysia's major exports, will affect the country's productive resources, economy, and production. Malaysia is the world's second-largest palm oil producer, so it needs to keep track of sustainability practices starting from the miller, transporter, and the refiner to the end-user, not only to counter the perception towards palm oil practices but also to remain competitive in the market.

Currently, applying for certification schemes is the main method to assess the performance of carbon emissions and sustainability practices of palm oil mills. The more commonly used carbon reporting methods in Malaysia are MYCarbon and ISCC while related international sustainability certification schemes include RSPO, ISPO, etc. Recently, Malaysia is also paving the way with its own national certification standard, the MSPO scheme. However, carbon-related assessments are a poor representative of a comprehensive analysis (Laurent *et al.*, 2012) while sustainability-related schemes still have limitations, as they involve qualitative assessment and non-measurable valuation, making it difficult for the industries to conduct analyses and identify weaknesses in the mill performance (Lim and Biswas, 2018).

With the absence of a systematic tool, industries face difficulties gathering and analysing data and the issue becomes more complicated because the industries are obligated to submit various reports to different bodies such as sustainability certifications to RSPO and carbon emission reports to MYCarbon. To reflect their commitment to maintaining sustainable practices, an advanced mitigation planning tool is necessary. A systematic selection tool for identifying appropriate mitigation strategies to target specific weaknesses will be able to assist decision-makers to arrive at an optimal solution to their problems. However, an assessment offering a mitigation strategy decision tool to improve decision-making regarding operational weaknesses is yet to be established. The limitations of the current palm oil assessment are listed below:

Carbon footprint accounting has limitations in representing a comprehensive assessment and may result in an inaccurate selection of further mitigation strategies.

The current assessment is subjective and does not provide specific guidelines to be followed. Besides, there is an unsystematic data collection process for the palm oil industry, making the assessment process tougher. Therefore, the palm oil industry needs a systematic quantitative assessment tool to manage its data efficiently and facilitate its assessments.

The palm oil industry lacks a self-assessment tool to measure its sustainability performance. This self-assessment is important as a preparation before the certification assessment. Thus, a sustainability index method will help profile the sustainability of the industry besides highlighting the potential improvement in sustainable performance via a graphical method.

A stand alone assessment requires the industry to implement different assessment systems to assess different parameters such as sustainability and carbon emissions with each assessment costing a huge amount. Thus, an integrated assessment system will help reduce the cost of measuring different parameters.

This study introduced the index concept to systematically develop a database and a self-assessment tool for the palm oil industry that highlights the necessary improvements required based on graphical results. Although various sustainability assessment schemes have been introduced, the literature indicates a lack of an integrated assessment with quantifiable results. This study proposes the development of an integrated framework incorporating sustainability and carbon footprint assessment using an index method. This system will provide the palm oil industry with a systematic database, besides assisting the industry to perform its own assessment and improve upon identified weaknesses.

The absence of integrated assessment and analysis, it would be impossible to develop a mitigation selection tool. Studies on the development of a mitigation selection tool for the palm oil sector is somehow still scarce. Therefore, this study proposes the development of a new framework to integrate the quantitative assessment of carbon footprint and sustainability, including a mitigation selection model to help provide optimal alternatives for identified weaknesses.

1.3 Research Objectives

Based on the problem statements, the main objective of this work is to develop a framework that integrates carbon footprint accounting, sustainability performance assessment, and a mitigation strategy selection tool for palm oil mill. There are three objectives for completing this framework:

- 1. To develop a method for the palm oil mill carbon footprint and accounting assessment (POMCFA).
- 2. To develop a method to assess palm oil mill sustainability performance (POMSI).
- 3. To develop a mathematical model formulated as a Mixed Integer Linear Programme (MILP) for integrated mitigation measures.

1.4 Scope of Study

To achieve the research objectives, the scope of work was delineated as follows:

- 1. A method to calculate carbon footprint and accounting was developed for the palm oil mill industry.
 - (a) All the indicators, criteria, and regulations are limited to the palm oil mill only.
 - (b) To identify applicable carbon footprint indicators for palm oil mills
 - (c) To perform an analysis and propose improvements of POMCFA
- 2. A method to assess sustainability performance was developed for the palm oil mill industry.

- (a) The sustainability database was structured based on three aspects environment, economy, and social.
- (b) Data collection was limited to palm oil agencies (ex: MPOB, DOE, FELDA), palm oil mill operations, processes, and management.
- (c) To establish a sustainability index and an assessment calculation method for palm oil mills
- 3. The mitigation selection model for the carbon and sustainability assessment:
 - (a) Optimal mitigation planning that corresponds to the minimum cost are determined while maintaining or enhancing CO₂ emissions and the sustainability performance score.
 - (b) The mitigation proposed was based on a literature study but limited to environmental and economic aspects.
 - (c) The model was coded in General Algebraic Modelling System (GAMS) software.
 - (d) Analysis was performed and improvements was proposed by considering the integrated parameters of POMCFA and POMSI

1.5 Significance of Study

This study involved the integration of carbon accounting and sustainability index assessments for a palm oil mill into one single framework.

- 1. The framework enables a comprehensive assessment to quantify and monitor carbon footprint, to assist the palm oil industry to collect, analyse, and transform sustainability data into meaningful information with respect to standard regulations.
- 2. Industries can convince other parties of their carbon level and sustainable practices in compliance with the standard.

- 3. A standard framework also enables the industry to monitor its sustainability performance and carbon footprint as an internal benchmark or to compare it with other palm oil producers.
- 4. From the analysis of the framework, the industries will be able to identify weaknesses in sustainability and carbon emissions simultaneously.
- 5. An integrated analysis of the assessment can provide a bigger picture of the current practice and help the management arrive at more accurate decisions.
- 6. A decision tool for alternative improvements was also developed to help decision-makers obtain more effective solutions regarding the problem.

1.6 Organisation of Thesis

Chapter 1 provides the introduction and background of the palm oil industry, addresses the issues of current assessments in the palm oil sector. It also presents the problem statement, research goal, scope of study, and significance of study.

Chapter 2 provides a background on the palm oil industry including an overview of the palm oil industry, general sustainability assessments, and current palm oil sustainability assessments. Quantitative approaches to sustainability assessment are also discussed. Previous studies on mitigation strategy selection models are also presented.

Chapter 3 represents an overview of the methodology for the study to achieve the research objectives. The methodology contains five parts, which are the development of palm oil mill carbon footprint and accounting (POMCFA), the POMCFA results and analysis, the development of a palm oil mill sustainability index (POMSI), the POMSI results, and the analysis and integrated mitigation strategy selection model for POMCFA and POMSI. Chapter 4 presents a case study of the application of POMCFA and POMSI for the sustainability assessment of a palm oil mill but without considering the mitigation strategy yet. This study was conducted in a palm oil mill in Malaysia in 2015.

Last but not least chapter 5 shows case study 2 which considers the solution for improving the performance of POMCFA and POMSI using the mitigation strategy model by suggesting the optimal selection to fix identified hotspots. This case study is an extension of the first case study presented in Chapter 4; it adds the selection of the mitigation strategy for the identified hotspot for both assessments.

Lastly, chapter 6 concludes the key contributions of this research and provides recommendations for possible future work.

REFERENCES

- Ab Muis, Z., Hashim, H., Manan, Z.A. and Taha, F.M., 2010. Optimization of Biomass Usage for Electricity Generation with Carbon Dioxide Reduction in Malaysia. *Journal of Applied Sciences*, 10(21), pp.2613–2617.
- Abdullah, R., 2013. An analysis on trends of vegetable oil prices and some factors affecting CPO price. *Oil Palm Industry Economic Journal*, 13(2).
- Adnan, H., 2014. Standard for sustainability. *The Star*. Available at: https://www.thestar.com.my/business/business-news/2014/03/08/standardfor-sustainability-the-malaysian-sustainable-palm-oil-mspo-standard-pavesthe-way-for-ou#mfT0rDM2CeQVhqar.99.
- Ahamad, R. et al., 2015. *Environmental Performance Index for Malaysia 2014* 1st ed. Ahamad, R., (ed.), Penerbit UTM Press, Universiti Teknologi Malaysia.
- Ahmad, M.Z., Hashim, H. and Yunus, N.A., 2015. Optimal Solvent Design for CO 2 Capture Process. *Chemical Engineering Transactions Vol.*, 45, pp.1135–1140.
- Alang Mahat, S., 2012. The Palm Oil Industry From The Perspective of Sustainable Development: A Case Study of Malaysian Palm Oil Industry. *Ritsumeikan Asia Pacific University Japan*, (September), p.14. Available at: http://rcube.ritsumei.ac.jp/bitstream/10367/4738/1/51210600.pdf.
- Amin, N.A.S. and Talebian-Kiakalaieh, A., 2018. Reduction of CO2emission by INCAM model in Malaysia biomass power plants during the year 2016. Waste Management, 73, pp.256–264.
- Awalludin, M.F., Sulaiman, O., Hashim, R. and Nadhari, W.N.A.W., 2015. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. *Renewable and Sustainable Energy Reviews*, 50, pp.1469–1484. Available at: http://dx.doi.org/10.1016/j.rser.2015.05.085.
- Azapagic, A., 2004. Developing a framework for sustainable development indicators for the mining and minerals industry. *Journal of Cleaner Production*, 12(6), pp.639–662.
- Azapagic, A. et al., The Sustainability Metrics, Warwickshire.

- Azapagic, A. and Perdan, S., 2000. Sustainable Development Indicators of Sustainable Development for Industry. *Process Safety and Environmental Protection*, 78(4),pp.243–261.Availableat: http://www.sciencedirect.com/science/article/pii/S0957582000708834.
- Barma, M.C. et al., 2017. A review on boilers energy use, energy savings, and emissions reductions. *Renewable and Sustainable Energy Reviews*, 79(May), pp.970–983. Available at: http://dx.doi.org/10.1016/j.rser.2017.05.187.
- Basiron, Y., 2015. CEO of MPOC: The Added Value of MSPO. The Oil Palm.
- Bell, D.E., Raiffa, H. and Tversky, A., 1988. Descriptive, normative, and prescriptive interactions in decision making. In: Bell, D.E., Raiffa, H. and Tversky, A., (eds.) *Decision making: Descriptive, normative, and prescriptive interactions*. Cambridge University Press, pp. 9–30.
- Béné, C. et al., 2019. Global map and indicators of food system sustainability. *Scientific data*, 6(1), p.279.
- Biegler, L.T., Coleman, T.F., Conn, A. and Santosa, F.N., 1997. *Large-Scale Optimization with Applications*, Springer-Verlag, New York.
- Bowen, F. and Wittneben, B., 2011. Carbon accounting: Negotiating accuracy, consistency and certainty across organisational fields. *Accounting, Auditing & Accountability Journal*, 24(8), pp.1022–1036.
- Buede, D.M. and Maxwell, D.T., 1995. Rank disagreement: A comparison of multicriteria methodologies. *Multi Criteria Decision Analysis*, 4, pp.1–21.
- Chand, P., Sirohi, S. and Sirohi, S.K., 2015. Development and application of an integrated sustainability index for small-holder dairy farms in Rajasthan, India. *Ecological Indicators*, 56, pp.23–30. Available at: http://dx.doi.org/10.1016/j.ecolind.2015.03.020.
- Chandran, M.R., 2014. Sustainability in the Malaysian palm oil industry M.R. Chandran - The Malaysian Insider. , (March). Available at: http://www.themalaysianinsider.com/sideviews/article/sustainability-in-themalaysian-palm-oil-industry-m.r.-chandran.
- Chavalparit, O., 2006. *Clean Technology for the Crude Palm Oil Industry in Thailand*. Wageningen University.

- Chavalparit, O., Rulkens, W.H., Mols., A.P.J. and Khaodhair, S., 2006. Options For Environmental Sustainability f The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems. *Environment, Development* and Sustainability, 8(2), pp.271–287.
- Chen, S.M., Cheng, S.H. and Lan, T.C., 2016. Multi criteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values. *Information Sciences*, 367, pp.279–295.
- Chiew, Y.L. and Shimada, S., 2013. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer A case study of Malaysia. *Biomass and Bioenergy*, 51, pp.109–124.
- Chin, M.J. et al., 2013. Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective. *Renewable and Sustainable Energy ReviewsRenewable and Sustainable Energy Reviews*, 26, pp.717–726.
- Chow, E., 2019. Book Now Update 1-Malaysia's Jan palm oil stocks ease from highest on record. , pp.1–6.
- Chungsiriporn, J., Prasertsan, S. and Bunyakan, C., 2006. Minimization of water consumption and process optimization of palm oil mills. *Clean Technologies and Environmental Policy*, 8(3), pp.151–158.
- Cihat Onat, N., Gumus, S., Kucukvar, M. and Tatari, O., 2016. Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. *Sustainable Production and Consumption*, 6, pp.12–25.
- Cox, L. and Blaszczak, R., 1999. Nitrogen oxides (NOx) why and how they are controlled,
- CPLEX, I.C., 1999. 6.5: User's Manual, CPLEX Optimization. Inc., Incline Village, NV.
- Crohn, D.M. and Thomas, A.C., 1998. Mixed-integer programming approach for designing land application systems at a regional scale. *Journal of Environmental Engineering*, 124(2), pp.170–177.
- Daliman, S. et al., 2017. Implementation of Open Source GIS to Palm Oil Tree Plantation Database: A Case Study in Bukit Kerayong and Bukit Rajah Estate. *Journal of Tropical Resources and Sustainable Science*, 5, pp.2462–2389. Availableat:http://www.jtrss.org/JTRSS/volume5/JTRSS-23-04-17-MAK3/5-3-121-127.pdf [Accessed: 28 March 2019].

- Damjan, K. and Peter, G., 2005. A model for integrated assessment of sustainable development. *Resources Conservation and Recycling*, 43(2), pp.189–208.
- DEDE, 2006. Best Practice Guide on Eco-efficiency in Oil Palm Industry,
- DEDE, 2007. Best Practice Guide on Waste to Energy in Oil Palm Industry, Bangkok.
- DEFRA, 2018. 2018 Government GHG Conversion Factors for Company Reporting,
- Diaz, S. and Bandoni, A., 1996. A Mixed Integer Optimization Strategy for a Real Large Scale Chemical Plant. *Computers and Chemical Engineering*, 20(5), pp.531–545.
- Du, D.Z., Pardalos, P.M. and Wu, W., 2008. *History of Optimization* Encycloped. Floudas, C. and Pardalos, P., (eds.), Springer.
- Eggleston, H., 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. *Forestry*, 5(OVERVIEW), pp.1–12. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
- Enström, A. et al., 2018. Introducing a new GHG emission calculation approach for alternative methane reduction measures in the wastewater treatment of a palm oil mill. *Environment, Development and Sustainability*, pp.1–12.
- EPA, 2003a. Air Pollution Control Technology Fact Sheet: Fabric Filter-pulse-jet Cleaned Type (Referred as Baghouses),
- EPA, 2003b. Air Pollution Control Technology Fact Sheet Cyclones,
- EPA, 2003c. Air Pollution Control Technology Factsheet Dry Electrostatic Precipitator,
- EPA, 2003d. Air Pollution Control Technology Factsheet Thermal Incinerator,
- EPA, 2005a. Multipollutant Pollution Control Technology Options for Coal-fired Power Plant,
- EPA, 2005b. Using Non-Thermal Plasma to Control Air Pollutants,
- Esty et al., 2006. Pilot 2006 Environmental Performance Index,
- Fairhurst, T. and Griffiths, W., 2014. Oil palm: best management practices for yield intensification. *International Plant Nutrition Institute (IPNI)*.
- Feil, A.A., de Quevedo, D.M. and Schreiber, D., 2015. Selection and identification of the indicators for quickly measuring sustainability in micro and small furniture industries. *Sustainable Production and Consumption*, 3(June), pp.34–44. Available at: http://dx.doi.org/10.1016/j.spc.2015.08.006.
- GAMS, 2010, General Algebraic Modelling System [Online]. Available at: www.gams.com.

- Von Geibler, J. et al., 2016. Integrating resource efficiency in business strategies: A mixed-method approach for environmental life cycle assessment in the single-serve coffee value chain. *Journal of Cleaner Production*, 115, pp.62–74. Available at: http://dx.doi.org/10.1016/j.jclepro.2015.12.052.
- Giller, K.E. et al., 2017. Yield gaps in oil palm: A quantitative review of contributing factors. *European Journal of Agronomy*, 83, pp.57–77. Available at: https://www.sciencedirect.com/science/article/pii/S1161030116302131 [Accessed: 25 March 2019].
- Gillespie, P. and Harjanthi, R.S., 2012. ISPO, RSPO: Two sides of the same coin? *Indonesia: The Jakarta Post.*
- Grafakos, S., Enseñado, E.M. and Flamos, A., 2017. Developing an integrated sustainability and resilience framework of indicators for the assessment of lowcarbon energy technologies at the local level. *International Journal of Sustainable Energy*, 36(10), pp.945–971.
- Green Palm Sustainability, 2015, *GreenPalm :: Which countries grow and produce palm oil?* [Online]. Available at: https://greenpalm.org/about-palm-oil/where-is-palm-oil-grown-2 [Accessed: 27 March 2019].
- Green Palm Sustainability, Why is palm oil important? [Online].
- GRI, 2016. Gri 101: Foundation 2016. *GRI Standards*, GRI101(1), p.29. Available at: www.globalreporting.org.
- Grossmann, IIgnacio E., 1985. Mixed-integer programming approach for the synthesis of integrated process flowsheets. *Computers and Chemical Engineering*, 9(5), pp.463–482.
- Grossmann, I.E., Quesada, I., Raman, R. and Voudouris, T.V., 1996. *Mixed-Integer Optimization Techniques for the Design and Scheduling of Batch Processes*, Springer-Verlag Berlin Heidelberg.
- Hacking, T. and Guthrie, P., 2008. A Framework for Clarifying the Meaning of Triple Bottom-Line, Integrated, and Sustainability Assessment. *Environmental Impact Assessment Review*, (28), pp.73–89.
- Hannah Ellis-Petersen, 2018. How palm oil ban has made the EU a dirty word in Malaysia | World news | The Guardian. *The Guardian*, pp.1–4. Available at: https://www.theguardian.com/world/2018/apr/26/how-palm-oil-ban-hasmade-the-eu-a-dirty-word-in-malaysia.
- Hannah, K., 2017. Who's using sustainable palm oil? Eco-Business.

- Hashim, H. et al., 2015. An Integrated Carbon Accounting and Mitigation Framework for Greening the Industry. *Energy Procedia*, 75, pp.2993–2998.
- Hashim, H., Bakar, S.M.A. and Lim, J.S., 2014a. Green industry for low carbon economy: Palm oil green assessment tool. *Energy Procedia*, 61, pp.2759– 2762. Available at: http://dx.doi.org/10.1016/j.egypro.2014.12.299.
- Hashim, H., Bakar, S.M.A. and Lim, J.S., 2014b. Green industry for low carbon economy: Palm oil green assessment tool. *Energy Procedia*, 61, pp.2759–2762.
- Hashim, H., Ramlan, M.R. and Wang, Y.C., 2017. A New Framework for Carbon Accounting and Mitigation for Greening the Industry,
- Haswan, F., 2017. No Title. Decision Support System For Election Of Members Unit Patients Pamong Praja.
- Hjorth, P. and Bagheri, A., 2006. Navigating towards sustainable development: A systems dynamics approach. *Futures*, 38(1), pp.74–92.
- Horak, J. et al., 2017. PAH emissions from old and new types of domestic hot water boilers. *Environmental Pollution*, 225, pp.31–39. Available at: https://www.sciencedirect.com/science/article/pii/S0269749116314658 [Accessed: 2 January 2019].
- Hosseini, S.E. and Wahid, M.A., 2015. Pollutant in palm oil production process. Journal of the Air and Waste Management Association, 65(7), pp.773–781.
- Humbert, S. et al., 2009. Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). *Journal of Cleaner Production*, 17(15), pp.1351–1358. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0959652609001474 [Accessed: 18 March 2017].
- Indrani, C., Kumar, R.S., Raghunathan, S. and Chandrasekaran, S., 2013. Construction of environmental performance index and ranking of states. *Current Science*, 104(4), pp.435–439.

IPCC, 2014. IPCC2014.pdf,

- ISCC, 2016. International Sustainability and Carbon Certification. , (November). Available at: http://www.iscc-system.org/.
- ISPO, About us Indonesia Sustainable Palm Oil (ISPO) [Online].

- Jamaludin, N.F. et al., 2018. A sustainability performance assessment framework for palm oil mills. *Journal of Cleaner Production*, 174, pp.1679–1693. Available at: https://doi.org/10.1016/j.jclepro.2017.11.028 [Accessed: 3 January 2019].
- Jamaludin, N.F., Ab Muis, Z. and Hashim, H., 2019. An Integrated Carbon Footprint Accounting and Sustainability Index for Palm Oil Mills. *Journal of Cleaner Production*, 225, pp.496–509.
- Jasiński, D., Meredith, J. and Kirwan, K., 2016. A comprehensive framework for automotive sustainability assessment. *Journal of Cleaner Production*, 135, pp.1034–1044.
- Jeswani, H.K., Azapagic, A., Schepelmann, P. and Ritthoff, M., 2010. Options for broadening and deepening the LCA approaches. *Journal of Cleaner Production*, 18(2), pp.120–127.
- Julio, A. de L.-F., Claudia, G.-A. and Richart, V.-R., 2018. A MILP approach for optimal storage vessels layout based on the quantitative risk analysis methodology. *Process Safety and Environmental Protection*, 120, pp.1–13.
- Kaewmai, R., H-Kittikun, A. and Musikavong, C., 2012. Greenhouse gas emissions of palm oil mills in Thailand. *International Journal of Greenhouse Gas Control*, 11, pp.141–151. Available at: http://dx.doi.org/10.1016/j.ijggc.2012.08.006.
- Kaewmai, R., H-Kittikun, A., Suksaroj, C. and Musikavong, C., 2013. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand. *Environmental Science and Technology*, 47(21), pp.12417–12425.
- Kaly, U. et al., 1999. Environmental Vulnerability Index (EVI) to summarise national environmental vulnerability profiles,
- Kim, M.H., 2013. Formation of N2O in NH3-SCR DeNOxing Reaction with V2O5/TiO2-Based Catalysts for Fossil Fuels-Fired Power Stations. *Korean Chemical Engineering Research*, 51(2), pp.163–170.
- King, B. and Mike, H., 2013, Only 38 % of Palm Oil Production by RSPO Members Certified Sustainable [Online].
- Klaarenbeeksingel, F.., 2009. Greenhouse Gas Emissions from Palm Oil Production: Literature review and proposals from the RSPO Working Group on Greenhouse Gases,
- Knoepfel, I., 2001. Dow Jones Sustainability Group Index: A Global Benchmark for Corporate Sustainability. *Corporate Environmental Strategy*, 8(1), pp.6–15.

- Kocis, G.R. and Grossmann, I.E., 1989. A modelling and decomposition strategy for the minlp optimization of process flowsheets. *Computers and Chemical Engineering*, 13(7), pp.797–819.
- Kumaran, S. and Suparyono, M.H., 2019. Malaysian Sustainable Palm Oil. *The Planter*, 95(1117), pp.239–249.
- Kuntom, A., May, C.Y. and Din, A.K., 2014. Malaysian Sustainable Palm Oil (MSPO) Certification: Current Status. *International Palm Oil Sustainability Conference*.
- Laurent, A., Olsen, S.I. and Hauschild, M.Z., 2012. Limitations of carbon footprint as indicator of environmental sustainability. *Environmental Science and Technology*, 46(7), pp.4100–4108. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&N EWS=N&AN=2012196279.
- Lee, Y.J. and Huang, C.M., 2007. Sustainability index for Taipei. *Environmental Impact Assessment Review*, 27(6), pp.505–521.
- Lim, C.I. and Biswas, W., 2018. Sustainability assessment for crude palm oil production in Malaysia using the palm oil sustainability assessment framework. *Sustainable Development*, 2016(June), pp.1–17.
- Lim, J.S., Manan, Z.A., Wan Alwi, S.R. and Hashim, H., 2013. A multi-period model for optimal planning of an integrated, resource-efficient rice mill. *Computers and Chemical Engineering*, 52, pp.77–89. Available at: http://dx.doi.org/10.1016/j.compchemeng.2012.12.007.
- LINDO, 2010. LINDO System. Available at: www.lindo.com.
- Lopez-Pena, A., Perez-Arriaga, I. and Linares, P., 2012. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain. *Energy Policy*, 50, pp.659–668.
- MacRae, R.J., Hill, S.B., Henning, J. and Mehuys, G.R., 1989. Agricultural Science and Sustainable Agriculture: A Review of the Existing Scientific Barriers to Sustainable Food Production and Potential Solutions. *Biological Agriculture* and Horticulture, 6, pp.173–219.

- Manik, Y., Leahy, J. and Halog, A., 2013. Social life cycle assessment of palm oil biodiesel: a case study in Jambi Province of Indonesia. *The International Journal of Life Cycle Assessment*, 18(7), pp.1386–1392. Available at: http://agris.fao.org/agris-search/search.do?recordID=US201400158864 [Accessed: 26 May 2019].
- Mao, N., Song, M. and Deng, S., 2016. Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort. *Applied Energy*, 180, pp.536–545.
- Margaret, B., 2015. Starbucks says it now serves "99 percent ethically sourced coffee." So what does that mean? *Tree Hugger*.
- Mazzoni, M., 2014, 3p Weekend: 10 Companies Committed to Sustainable Palm Oil [Online]. Available at: https://www.triplepundit.com/story/2014/3p-weekend-10-companies-committed-sustainable-palm-oil/43111 [Accessed: 25 March 2019].
- Mendoza-Covarrubias, C., Romero, C.E., Fernando, H.-R. and Hans, A., 2011. N2O Formation in Selective Non-catalytic NOx Reduction Processes. *Journal of Environmental Protection*, 2(8), pp.1095–1100.
- Ming, H., 2019. Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. *Resources, Conservation & Recycling*, 150.
- Mohd Azmi, N.I.L., Ahmad, R. and Zainuddin, Z.M., 2017. MILP model for integrated balancing and sequencing mixedmodel two-sided assembly line with variable launching interval and assignment restrictions. *IOP Conf. Series: Journal of Physics: Conf. Series* 890. 2017
- Moiz, A., Kawasaki, A., Koike, T. and Shrestha, M., 2018. A systematic decision support tool for robust hydropower site selection in poorly gauged basins. *Applied Energy*, 224, pp.309–321.
- Motaz, K. and Shehab, M., 2005. An Interactive GAMS-based Model Management System for Economy Wide Analysis. , (March 2005).
- MPOB, 2014. Palm Oil Industry. *Mpob*, pp.1–5. Available at: http://www.palmoilworld.org/about_malaysian-industry.html.
- MPOB Statistics, M.P.O.B.S., 2017. The Malaysian Palm Oil Facts,

- MPOC, 2012, The Oil Palm Tree [Online]. Available at: http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx# [Accessed: 26 March 2019].
- Munier, N., 2005. *Introduction to Sustainability Road to a Better Future*, Springer, Dordrecht.
- Murphy, D.J., 2014. The Future of Oil Palm as a Major Global Crop: Opportunities and Challenges. *Journal of Oil Palm Research*, 26(1), pp.1–24.
- Musikavong, C. and Gheewala, S.H., 2017. Assessing ecological footprints of products from the rubber industry and palm oil mills in Thailand. *Journal of Cleaner Production*, 142, pp.1148–1157. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0959652616312653 [Accessed: 18 March 2017].
- MYCARBON, 2014. MYCarbon GHG Reporting Guidelines. *Ministry of Natural Resources and Environment (NRE), Malaysia.*
- Ness, B., Urbel-Piirsalu, E., Anderberg, S. and Olsson, L., 2007. Categorising tools for sustainability assessment. *Ecological Economics*, 60(3), pp.498–508.
- Nijkamp, P., Rietveld, P. and Voogd, H., 2009. Case Study: A Multi-Objective Planning Model for Regional Economic - Environmental - Energy Interactions. *Multicriteria Evaluation in Physical Planning*, 185(1).
- Novák, V., Perfilieva, I. and Močkoř, J., 1999. *Mathematical principles of fuzzy logic* Dordrecht:,
- Oil World, 2017, *Palm Oil Statistics* [Online]. Available at: https://www.oilworld.biz/t/statistics/commodities.
- Oliver, B., 2013. Palm oil production: what are the social and environmental impacts? *The Guardian*.
- Ooi, T.C., 2016. FGV, Felda Group pullout from RSPO certs "done in settlers" best interest' Group. *New Straits Times*, pp.5–8.
- Parker, D. and Mobey, A., 2004. Action Research to Explore Perceptions of Risk in Project Management. *International Journal of Productivity and Performance Management*, 53(1), pp.18–32.
- Patel, P., 2015. Zero discharge of Palm Oil Mill effluent through Outdoor flash evaporation at standard Atmospheric conditions. *Oil Palm Bulletin*, pp.14–24.
 Available at: http://palmoilis.mpob.gov.my/publications/OPB/opb71-prashant.pdf [Accessed: 2 January 2019].

- Pattanapongchai, A. Limmeechokchai, B., 2011. Least cost energy planning in Thailand: A case of biogas upgrading in palm oil industry. *Songklanakarin Journal of Science and Technology*, 33(6), pp.705–715.
- Pinzon, J.A., Vergara, P.P., Da Silva, L.C.P. and Rider, M.J., 2017. An MILP model for optimal management of energy consumption and comfort in smart buildings. 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 2017 Washington, DC, pp. 1–5.
- Potts, J. et al., 2014. The State of Sustainability Initiatives Review 2014 Ilnyckyj, R., Holmes, D. and Eve, R., (eds.), International Institute for Environment and Development, London.
- Qin, X.S. et al., 2008. A MCDM-based expert system for climate-change impact assessment and adaptation planning – A case study for the Georgia Basin, Canada. *Expert Systems with Applications*, 34(3), pp.2164–2179.
- Rajala, R., Westerlund, M. and Lampikoski, T., 2016. Environmental sustainability in industrial manufacturing: Re-examining the greening of Interface's business model. *Journal of Cleaner Production*, 115, pp.52–61. Available at: http://dx.doi.org/10.1016/j.jclepro.2015.12.057.
- Rivera, J.L. and Reyes-Carrillo, T., 2016. A life cycle assessment framework for the evaluation of automobile paint shops. *Journal of Cleaner Production*, 115, pp.75–87. Available at: http://dx.doi.org/10.1016/j.jclepro.2015.12.027.
- Robeco, S.A., 2013. S&P Dow Jones Indices. *Dow Jones Sustainability World Index Guide*, 12, p.1.
- Rosen, J., 2016. More companies are tracking carbon emissions is it helping? GreenBiz.
- Roser, M., Human Development Index (HDI) [Online].
- RSPO, 2013. Roundtable on Sustainable Palm Oil,
- RSPO, 2014. The Statutes of the Round Table of Sustainable Palm Oil,
- Ruitang, G. and Gao, X., 2009. Simultaneous removal of SO2 and NO2 by wet scrubbing using aqueous limestone slurry. In: *Electrostatic Precipitation*. pp. 602–605.
- Saaty, T.L., 1980. The Analytic Hierarchy Process, McGraw Hill, New York.
- Sacchidananda, M. and Debashis, C., 2007. Environment, Human Development and Economic Growth after Liberalisation: An Analysis of Indian States. *Development Economics Working Papers*, 22505.

- Sahimi, N.S., Turan, F.M. and Johan, K., 2017. Development of Sustainability Assessment Framework in Hydropower sector. *IOP Conference Series: Materials Science and Engineering*, 226(1), pp.8–14.
- Salvado, M.F., Azevedo, S.G., Matias, J.C.O. and Ferreira, L.M., 2015. Proposal of a sustainability index for the automotive industry. *Sustainability (Switzerland)*, 7(2), pp.2113–2144.
- Samsatli, S. and Samsatli, N.J., 2018. A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. *Applied Energy*, 220, pp.893–920. Available at: https://doi.org/10.1016/j.apenergy.2017.09.055.
- SAN, 2015. Certification Policy., 1, pp.1–15.
- SAN, 2010. Sustainable Agriculture Standard. Agriculture, 2010(July), p.49.
- SAN, 2017. Sustainable Agriculture Standard Version 1.2,
- Saswattecha, K., Kroeze, C., Jawjit, W. and Hein, L., 2015. Assessing the environmental impact of palm oil produced in Thailand. *Journal of Cleaner Production*, 100, pp.150–169. Available at: http://www.sciencedirect.com/science/article/pii/S0959652615002553 [Accessed: 10 April 2017].
- Saswattecha, K., Kroeze, C., Jawjit, W. and Hein, L., 2016. Options to reduce environmental impacts of palm oil production in Thailand. *Journal of Cleaner Production*,137,pp.370–393.Availableat:

http://dx.doi.org/10.1016/j.jclepro.2016.07.002.

- Schuchardt, F., Darnoko, D. and Guritno, P., 2002. Composting Of Empty Oil Palm Fruit Bunch (Efb) With Simultaneous Evapoaration Of Oil Mill Waste Water (Pome). 2002 International Oil Palm Conference. 2002 pp. 1–9.
- Schuchardt, F., Wulfert, K., Darnoko and Herawan, T., 2008. Effect of new palm oil mill processes on the efb and pome utilization. *Journal of Oil Palm Research*, pp.115–126.
- Serenella, S., Biagio, C. and Peter, N., 2015. A systemic framework for sustainability assessment. *Ecological Economics*, 119, pp.314–325.
- Singh, R.K., Murty, H.R., Gupta, S.K. and Dikshit, A.K., 2009. An overview of sustainability assessment methodologies. *Ecological Indicators*, 9(2), pp.189– 212.

- Singh, R.K., Murty, H.R., Gupta, S.K. and Dikshit, A.K., 2007. Development of composite sustainability performance index for steel industry. *Ecological Indicators*, 7(3), pp.565–588.
- Singh, R.P., Ibrahim, M.H., Esa, N. and Iliyana, M.S., 2010. Composting of waste from palm oil mill: A sustainable waste management practice. *Reviews in Environmental Science and Bio/Technology*, 9(4), pp.331–344.

Sivanandam, H., 2017. MSPO certification mandatory by 2019. The Star.

Smetschka, B. et al., 2019. Time Matters: The Carbon Footprint of Everyday Activities in Austria. *Ecological Economics*, 164.

Smith, G., 2015. Sustainable Agriculture Code 2015,

- SPOTT, 2016, Sustainable Palm Oil Transparency Toolkit Certification Schemes [Online].
- Srdjevic, B., Medeiros, Y.D.P. and Faria, A.S., 2004. An Objective Multi-Criteria Evaluation of Water Management Scenarios. *Water Resources Management*, 18(1), pp.35–54.
- Stechemesser, K. and Guenther, E., 2012. Carbon accounting: a systematic literature review. *Journal of Cleaner Production*, 36, pp.17–38. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0959652612000972 [Accessed: 20 March 2017].
- Sundararaj, A., 2014. GREEN: It starts with you. New Straits Times.

Tan, C.L., 2013. Count your carbon emissions. The Star.

Tan, K.P., Kanniah, K.D. and Cracknell, A.P., 2013. Use of UK-DMC 2 and ALOS PALSAR for studying the age of oil palm trees in southern peninsular Malaysia. *International Journal of Remote Sensing*, 34(20), pp.7424–7446. Availableat: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.822601

[Accessed: 28 March 2019].

- Tan, S. et al., 2017. A holistic low carbon city indicator framework for sustainable development. *Applied Energy*, 185, pp.1919–1930. Available at: http://dx.doi.org/10.1016/j.apenergy.2016.03.041.
- Tan, S.T. et al., 2015. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. *Energy Conversion and Management*, 102, pp.111–120. Available at: http://dx.doi.org/10.1016/j.enconman.2015.02.010.

- Tuzkaya, G., Ozgen, A., Ozgen, D. and Tuzkaya, U.R., 2009. Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach. *International Journal of Environmental Science & Technology*, 6(3), pp.477–490.
- U.S.-EPA, 2016. Climate Change Indicators: U.S. Greenhouse Gas Emissions. , p.1. Available at: https://www.epa.gov/climate-indicators/climate-changeindicators-us-greenhouse-gas-emissions.
- UNDP, U.N.D.P., 2013. National Corporate Green House Gas Reporting Programme (NCGRP) for Malaysia. , p.44.
- Valdez-Vazquez, I., del Rosario Sánchez Gastelum, C. and Escalante, A.E., 2017.
 Proposal for a sustainability evaluation framework for bioenergy production systems using the MESMIS methodology. *Renewable and Sustainable Energy Reviews*, 68, pp.360–369. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1364032116306463 [Accessed: 17 March 2017].
- Varun and Chauha, M.K., 2014. Carbon Footprint and Energy Estimation of the Sugar Industry: An Indian Case Study. *Clean Technologies and Environmental Policy*, pp.53–80.
- Veleva, V., Hart, M., Greiner, T. and Crumbley, C., 2001. Indicators of sustainable production. *Cleaner Production*, 9(5), pp.447–452.
- Velten, S., Leventon, J., Jager, N. and Newig, J., 2015. What is sustainable agriculture? A systematic review. *Sustainability (Switzerland)*, 7(6), pp.7833–7865.
- Wahid, M., 2010. Overview of the Malaysian Oil Palm Industry. *Malaysian Palm Oil Board*, pp.1–4.
- Wright, L.A., Kemp, S. and Williams, I., 2011. "Carbon footprinting": Towards a universally accepted definition. *Carbon Management*, 2(1), pp.61–72.
- Wu, T.Y., Mohammad, A.W., Jahim, J.M. and Anuar, N., 2009. A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME. *Biotechnology Advances*, 27(1), pp.40–52. Available at: http://dx.doi.org/10.1016/j.biotechadv.2008.08.005.
- Young, D.M., Scharp, R.A. and Cabezas, H.C., 2000. The Waste Reduction (War) Algorithm: Environmental Impacts, Energy Consumption, And Engineering Economics. *Waste Management*, 20(8), pp.605–615.

- Yusof, B. and Chan, K.W., 2004. The Oil Palm and Its Sustainability. *Journal of Oil Palm Research*, 16(1).
- Zahra Izadpanah, Mohamadabadi Roya, A. and Elham, S., Choosing the Best Optimization Software with the Multi-criteria Decision-making Approaches. *International Journal of Advance Robotics & Expert Systems (JARES)*, 1(2), pp.19–26.

Appendix A

Sample of Questionnaire

Invitation to Participate In Weight Assignment Survey for Palm Oil Mill Sustainability Index (POMSI) 2016

YBhg. Tan Sri/Dato' Seri/Professor/Assoc. Prof./Dr./Datuk/Dato/Datin/Tuan/Puan Felda Global Venture (FGV) with cooperation Universiti Teknologi Malaysia (UTM) has been developing the Palm Oil Mill Sustainability Index (POMSI) for Felda palm oil mill. POMSI represents a comprehensive performance system of palm oil mill on three important aspects: Environment, Economy and Social. The POMSI for Felda is constructed through the calculation and aggregation of 48 indicators reflecting Felda palm oil mill data. These indicators are combined into 22 parameters, each of which fit under one of three overarching objectives: Environment, Economy and Social. Calculation and aggregation of POMSI involve computation of proximity-to-target (PTT) score and weightage assigned to the parameters. While PTT score reflects how close a palm oil mill from the designated target or desired conditions of the mill, the weight assigned to each indicator reflects relative importance of the indicators as perceived by palm oil mill expert. Assigning weight to indicators is important for parameter because of different impact, importance and policy reason associated with each indicator.

We would like to invite you to kindly participate in a survey on how environmental experts in FELDA perceived relative importance of mill issues pertaining to POMSI. Results of the survey will form the basis for our team to decide on weightage of the indicators needed for calculation of POMSI for FELDA.

Thank you for participating.

ASSOC. PROF. DR. HASLENDA BIN HASHIM

Faculty of Chemical Engineering, Process Systems Engineering Centre (PROSPECT) Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Skudai, Johor, MALAYSIA. Tel: 07-5535578 Mobile : 019-7956265 Email : haslenda@cheme.utm.my, haslenda@utm.my Kindly tick (/) your choice on the scale of importance where 1 represents not important and increase in importance up to 5 very important:

- 1 = not important
- 2 = less important
- 3 = not so important
- 4 = important
- 5 = very important

Demonsterne			Rating		
Parameters	1	2	3	4	5
Water Consumption					
Air Quality (Boiler					
Emission)					
Air Surrounding					
(only in johor)					
Waste					
Waste water					
Waste Water Quality					
of Effluent (final					
discharge)					
Diesel Consumption					
Electric					
Consumption					
FFB					
Kernel					
Losses					
Total Cost					
Risk Factor					
Safety					
Occupational					
Poisoning and					
Disease Case					
Occupational					
Accident Case					
Stake Holders					
Engagements					

Appendix B

Monthly Consumption of Mill A, B, C and D

Mill A

Unit Operation, uo	nit Operation, uo				rilization	stripping	dilution		se	peration o	f kernel a	nd shell fr	om nut		deoiled	removal of fibrous	brous crude oil removal of sludg tank o				e and solids from	
			to process												fiber	tailings	tank		(bil		
	.	TT T										Str	eam, s									
Parameter	Indicator	Umt	U1	S2	S3	S6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d	
Water Consumption	Use of fresh water	m3					0.16									0.16	0.16	0.16	0.16	0.16		
Air Quality (Boiler	Dust Concentration @ 12% CO2 +PM10 +PM2.5	g/Nm ³			0.01																	
Emission)	Sulfuric Acid Mist	g/Nm ³			0.0001																	
	Sulfur Dioxide SO ₂	g/Nm ³			0.0008																	
Waste	Empty fruit bunch	t				0.12																
Waste water	Palm Oil Mill Effluent	t		0.19				0.0116	0.032	0.010	0.007	0.003	0.00008	0.007							0.26	
	Diesel used for Process	L													0.3							
Diesel Consumption	Diesel used for Vehicle in mill	L	0.175																			
Electric Consumption	Electric used by the mill from grid	kwh	0.012																			

Mill B

Unit Operation, u	10		from gate to process inlet	st	erilization	stripping	dilution		sej	peration o	f kernel ar	nd shell fro	om nut		deoiled fiber	removal of fibrous tailings	crude oil tank	remova from oi	ıl of slud <u>ş</u> 1	ge and so	olids
											Str	eam, s									
Parameter	Indicator	Unit	U1	S2	S3	S6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
Water Consumption	Use of fresh water	m3					0.20									0.20	0.20	0.20	0.20	0.20	
Air Quality (Boiler	Dust Concentration @ 12% CO2 +PM10 +PM2.5	g/Nm ³			0.43																
Emission)	Sulfuric Acid Mist	g/Nm ³			0.0001																
	Sulfur Dioxide SO ₂	g/Nm ³			0.0001																
Waste	Empty fruit bunch	t				0.11															
Waste water	Palm Oil Mill Effluent	t		0.24				0.0147	0.040	0.012	0.009	0.003	0.00010	0.009							0.33
Diesel	Diesel used for Process	L													0.33						
Consumption	Diesel used for Vehicle in mill	L	0.17																		
Electric Consumption	Electric used by the mill from grid	kwh	0.02																		

Mill C

Unit Operation,	шо		from gate to process inlet	ster	rilization	stripping	dilution		sep	eration of	kernel an	d shell fro	om nut		deoiled fiber	removal of fibrous tailings	crude oil tank	removal oil	of sludge	and solid	s from
Daramatar	Indicator	Unit										Stream,	s								
rarameter	indicator	Omt	U1	S2	S3	S6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
Water Consumption	Use of fresh water	m3					0.17									0.17	0.17	0.17	0.17	0.17	
Air Quality	Dust Concentration @ 12% CO2 +PM10 +PM2.5	g/Nm ³			0.47																
(Boiler Emission)	Sulfuric Acid Mist	g/Nm ³			0.1																
	Sulfur Dioxide SO ₂	g/Nm ³			0.2000																
Waste	Empty fruit bunch	t				0.06															
Waste water	Palm Oil Mill Effluent	t		0.28				0.0171	0.047	0.014	0.010	0.004	0.00011	0.010							0.39
Diesel	Diesel used for Process	L													0.53						
Consumption	Diesel used for Vehicle in mill	L	0.17																		
Electric Consumption	Electric used by the mill from grid	kwh	0.06																		

Mill D

Unit Operation, uo			from gate to process inlet	ste	rilization	stripping	dilution	seperation	n of kerne	el and shel	l from nut				deoiled fiber	removal of fibrous tailings	crude oil tank	removal	of sludge a	and solids	s from oil
												Stream	I, S								
Parameter	Indicator	Unit	U1	S2	S3	S6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
Water Consumption	Use of fresh water	m3					0.18									0.18	0.18	0.17	0.17	0.17	
Air Quality (Boiler	Dust Concentration @ 12% CO2 +PM10 +PM2.5	g/Nm ³			0.019																
Emission)	Sulfuric Acid Mist	g/Nm ³			0.0002																
	Sulfur Dioxide SO ₂	g/Nm ³			0.0005																
Waste	Empty fruit bunch	t				0.05															
Waste water	Palm Oil Mill Effluent	t		0.25				0.0156	0.043	0.013	0.009	0.003	0.00010	0.009							0.35
	Diesel used for Process	L													0.4						
Diesel Consumption	Diesel used for Vehicle in mill	L	0.16																		
Electric Consumption	Electric used by the mill from grid	kwh	0.05																		

Appendix C

Emission Data, CO₂e for each Indicator and Stream for Mill A, B, C and D

Mill A

Aspect	Parameter	Symbol	rmbol Indicator Symbol Diesel Utilization Sterilization Stripping Dilution Seperation of Kernel and Shell fro										om Nut		Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Removal of Sludge and Solids from Oil					
					U1	S2	S 3	S 6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
	Water Consumption	nWC	Use of Fresh Water	UOW					0.0540									0.0539	0.0539	0.0537	0.0537	0.0537	
	Air Quality (Boiler	nAQ	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC			0.0077																
Ħ	Emission)		Sulfuric Acid Mist	SAM			0.0002																
me			Sulfur Dioxide SO ₂	SDS			0.0015																
ion	Waste	nWAS	Empty Fruit Bunch	EFB				0.1320															
Envi	Waste water	nWW	Palm Oil Mill Effluent	MRE		3.3718				0.2075	0.5719	0.1716	0.1258	0.0458	0.0014	0.1244							4.7138
	Diesel	- 00	Diesel used for Process	DP													0.9390						
	Consumption	nDIC	Diesel used for Vehicle in Mill	DV	0.5478																		
	Electric Consumption	nEC	Electric used by the Mill from Grid	EG	0.0067																		

Mill B

Aspect	Parameter	Symbol	Indicator	Symbol	Diesel Utilization	Steril	ization	Stripping	Dilution	S	eperati	on of K	ernel an	d Shell 1	from Nu	ıt	Deoile d Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remov	al of Slu fron	idge and n Oil	d Solids
					U1	S2	S 3	S 6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
	Water Consumption	nWC	Use of Fresh Water	UOW					0.0671									0.0670	0.0670	0.0667	0.0667	0.0667	
	Air Quality (Boiler	nAQ	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC			0.3311																
t	Emission)		Sulfuric Acid Mist	SAM			0.0002																
me			Sulfur Dioxide SO ₂	SDS			0.0002																
Lon	Waste	nWAS	Empty Fruit Bunch	EFB				0.1210															
Envi	Waste water	nWW	Palm Oil Mill Effluent	MRE		4.2796				0.2634	0.7259	0.2178	0.1597	0.0581	0.0017	0.1580							5.9828
	Diesel	- 010	Diesel used for Process	DP													1.0329						
	Consumption	nDIC	Diesel used for Vehicle in Mill	DV	0.5321																		
	Electric Consumption	nEC	Electric used by the Mill from Grid	EG	0.0112																		

Mill C

Aspect	Parameter	Symbol	Indicator	Symbol	Diesel Utilization	Sterili	zation	Stripping	Dilution	S	eperati	on of Ke	ernel an	d Shell I	from Nı	ıt	Deoile d Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remov	al of Slu fron	idge and 1 Oil	d Solids
					U1	S2	S 3	S 6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
	Water Consumption	nWC	Use of Fresh Water	UOW					0.0591									0.0590	0.0590	0.0588	0.0588	0.0588	
	Air Quality (Boiler	nAQ	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC			0.3619																
ŧ	Emission)		Sulfuric Acid Mist	SAM			0.1840																
me			Sulfur Dioxide SO ₂	SDS			0.3680																
iron	Waste	nWAS	Empty Fruit Bunch	EFB				0.0660															
Envi	Waste water	nWW	Palm Oil Mill Effluent	MRE		4.9929				0.3073	0.8469	0.2541	0.1863	0.0678	0.0020	0.1843							6.9800
	Diesel	- DIO	Diesel used for Process	DP													1.6589						
	Consumption	ndic	Diesel used for Vehicle in Mill	DV	0.5321																		
	Electric Consumption	nEC	Electric used by the Mill from Grid	EG	0.0337																		

Mill D

Aspect	Parameter	Symbol	Indicator	Symbol	Diesel Utilization	Sterili	zation	Stripping	Dilution	s	eperati	on of Ke	ernel an	d Shell 1	from Nu	t	Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remov	al of Slu fron	dge and n Oil	d Solids
					U1	S2	S 3	S 6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
	Water Consumption	nWC	Use of Fresh Water	UOW					0.0597									0.0596	0.0596	0.0594	0.0594	0.0594	
	Air Quality (Boiler	nAQ	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC			0.0146																
ŧ	Emission)		Sulfuric Acid Mist	SAM			0.0004																
mei			Sulfur Dioxide SO ₂	SDS			0.0009																
ron	Waste	nWAS	Empty Fruit Bunch	EFB				0.0572														L	
Envi	Waste water	nWW	Palm Oil Mill Effluent	MRE		4.5390				0.2794	0.7699	0.2310	0.1694	0.0616	0.0018	0.1675							6.3454
	Diesel	- DIO	Diesel used for Process	DP													1.2520						
	Consumption	NDIC	Diesel used for Vehicle in Mill	DV	0.5008																		
	Electric Consumption	nEC	Electric used by the Mill from Grid	EG	0.0281																		

Appendix D

Total CO2e for Indicator, Parameter and GHGs Profile for Mill A, B, C and D

Mill A

Aspect	Parameter	Symbol	Total CO ₂ e Emission for Indicator (kg)	Indicator	Symbol	Total CO₂e Emission for parameter (kg)
	Water Consumption	nWC	0.3230	Use of Fresh Water	UOW	0.3230
	Air Quality (Boiler	nAQ	0.0077	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC	0.0094
nent	Emission)		0.0002	Sulfuric Acid Mist	SAM	
uuo			0.0015	Sulfur Dioxide SO ₂	SDS	
nyi	Waste	nWAS	0.1320	Empty Fruit Bunch	EFB	0.1320
ш	Waste water	nWW	9.3340	Palm Oil Mill Effluent	MRE	9.3340
	Diesel		0.9390	Diesel used for Process	DP	1.4868
	Consumption	nDIC	0.5478	Diesel used for Vehicle in Mill	DV	
	Electric Consumption	nEC	0.0067	Electric used by the Mill from Grid	EG	0.0067

Mill B

Aspect	Parameter	Symbol	Total CO ₂ e Emission for Indicator (kg)	Indicator	Symbol	Total CO ₂ e Emission for parameter (kg)
	Water Consumption	nWC	0.4012	Use of Fresh Water	UOW	0.4012
	Air Quality (Boiler	nAQ	0.3311	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC	0.3315
lent	Emission)		0.0002	Sulfuric Acid Mist	SAM	
uuo.			0.0002	Sulfur Dioxide SO ₂	SDS	
nvi	Waste	nWAS	0.1210	Empty Fruit Bunch	EFB	0.1210
ш	Waste water	nWW	11.8470	Palm Oil Mill Effluent	MRE	11.8470
	Diesel		1.0329	Diesel used for Process	DP	1.5650
	Consumption	nDIC	0.5321	Diesel used for Vehicle in Mill	DV	
	Electric Consumption	nEC	0.0112	Electric used by the Mill from Grid	EG	0.0112

Mill C

Aspect	Parameter	Symbol	Total CO ₂ e Emission for Indicator (kg)	Indicator	Symbol	Total CO ₂ e Emission for parameter (kg)
	Water Consumption	nWC	0.3536	Use of Fresh Water	UOW	0.3536
	Air Quality (Boiler	nAQ	0.3619	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC	0.9139
lent	Emission)		0.1840	Sulfuric Acid Mist	SAM	
uno			0.3680	Sulfur Dioxide SO ₂	SDS	
nvii	Waste	nWAS	0.0660	Empty Fruit Bunch	EFB	0.0660
ш	Waste water	nWW	13.8215	Palm Oil Mill Effluent	MRE	13.8215
	Diesel		1.6589	Diesel used for Process	DP	2.1910
	Consumption	nDIC	0.5321	Diesel used for Vehicle in Mill	DV	
	Electric Consumption	nEC	0.0337	Electric used by the Mill from Grid	EG	0.0337

Mill D

Aspect	Parameter	Symbol	Total CO ₂ e Emission for Indicator (kg)	Indicator	Symbol	Total CO ₂ e Emission for parameter (kg)
	Water Consumption	nWC	0.3570	Use of Fresh Water	UOW	0.3570
	Air Quality (Boiler	nAQ	0.0146	Dust Concentration @ 12% CO ₂ +PM10 +PM2.5	DUC	0.0159
nent	Emission)		0.0004	Sulfuric Acid Mist	SAM	
uno			0.0009	Sulfur Dioxide SO ₂	SDS	
nvii	Waste	nWAS	0.0572	Empty Fruit Bunch	EFB	0.0572
ш	Waste water	nWW	12.5650	Palm Oil Mill Effluent	MRE	12.5650
	Diesel		1.2520	Diesel used for Process	DP	1.7528
	Consumption	nDIC	0.5008	Diesel used for Vehicle in Mill	DV	
	Electric Consumption	nEC	0.0281	Electric used by the Mill from Grid	EG	0.0281

Appendix E

Total CO2e for each Stream, Unit Operation and GHGs Profile for Mill A, B, C and D

Mill A

Unit Operation, uo	Diesel Utilization	Sterili	ization	Stripping	Dilution		Seper	ation of K	ernel and	l Shell fro	m Nut		Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remova	l of Sludg C	e and Sol Iil	ids from
Total CO ₂ e for each Operation Unit, (kg)	0.554	3.:	381	0.132	0.054				1.248				0.939	0.054	0.054		4.8	375	
Stream, s	U1	S2	S3	S6	S10b	S11b	S11b S11h S11i S11j S11k S11L S11m							S12	S13	S14	S14b	S14c	S14d
Total CO ₂ e for each Stream, (kg)	0.5545	3.3718	0.0094	0.1320	0.0540	0.2075	0.5719	0.1716	0.1258	0.0458	0.0014	0.1244	0.9390	0.0539	0.0539	0.0537	0.0537	0.0537	4.7138

Mill B

Unit Operation, uo	Diesel Utilization	Sterili	zation	Stripping	Dilution		Seper	ation of K	ernel and	l Shell fro	om Nut		Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remova	ll of Sludg O	e and Sol iil	ids from
Total CO ₂ e for each Operation Unit, (kg)	0.543	4.6	511	0.121	0.067				1.585				1.033	0.067	0.067		6.1	183	
Stream, s	U1	S2	S 3	S 6	S10b	S11b S11h S11i S11j S11k S11L S11m						S11p	S12	S13	S14	S14b	S14c	S14d	
Total CO₂e for each Stream, (kg)	0.5433	4.2796	0.3315	0.1210	0.0671	0.2634	0.7259	0.2178	0.1597	0.0581	0.0017	0.1580	1.0329	0.0670	0.0670	0.0667	0.0667	0.0667	5.9828

Mill C

Unit Operation, uo	Diesel Utilization	Sterili	ization	Stripping	Dilution		Seper	ation of K	(ernel and	l Shell fro	om Nut		Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remova	I of Sludg O	e and Sol iil	ids from
Total CO ₂ e for each Operation Unit, (kg)	0.566	5.9	907	0.066	0.059				1.849				1.659	0.059	0.059		7.1	156	
Stream, s	U1	S2	S 3	S6	S10b	S11b	S11h	S11i	S11j	S11k	S11L	S11m	S11p	S12	S13	S14	S14b	S14c	S14d
Total CO ₂ e for each Stream, (kg)	0.5658	4.9929	0.9139	0.0660	0.0591	0.3073	0.8469	0.2541	0.1863	0.0678	0.0020	0.1843	1.6589	0.0590	0.0590	0.0588	0.0588	0.0588	6.9800

Mill D

Unit Operation, uo	Diesel Utilization	Sterili	ization	Stripping	Dilution		Seper	ation of K	ernel and	l Shell fro	om Nut		Deoiled Fiber	Removal of Fibrous Tailings	Crude Oil Tank	Remova	ll of Sludg O	e and Soli il	ids from
Total CO ₂ e for each Operation Unit, (kg)	0.529	4.	555	0.057	0.060	1.681								0.060	0.060		6.5	524	
Stream, s	U1	S2	S 3	S6	S10b	S11b S11h S11i S11j S11k S11L S11m							S11p	S12	S13	S14	S14b	S14c	S14d
Total CO ₂ e for each Stream, (kg)	0.5289	4.5390	0.0159	0.0572	0.0597	0.2794	0.7699	0.2310	0.1694	0.0616	0.0018	0.1675	1.2520	0.0596	0.0596	0.0594	0.0594	0.0594	6.3454

Appendix F

Technology Review used in Case Study

	Mitigation	Main	Cost	(\$/ton		Total						Indica	ator, n						References
	technology, m	treatment	CPO/	year)		Cost, C _m	Emiss	ion						Consu	imption of	r produc	tion	Yield	
			IC _m	PC m	VC _m	TCm	CH4	N2O	SO2	NOX	VOC	СО	PM	EFB	Fiber	EG	DIP	СРО	
1	EFB combustion		61.3	34. 6	44.7	140.6	- 0.00 5	-0.15											(Saswattecha et al., 2016)
2	EFB pellets production		9.3	25. 3	- 44.4	-9.8								0.9					(Chiew and Shimada, 2013; Chavalparit <i>et</i> <i>al.</i> , 2006)
3	EFB composting plant		2	1.9	-5.3	-1.4								0.9					(Singh <i>et al.</i> , 2010)
4	Ethanol production	treatment	258. 7		- 231. 5	27.2													(Chiew and Shimada, 2013)
5	Pellets production		9.3	25. 3	- 44.4	-9.8													(Chavalparit et al., 2006; Chiew and Shimada, 2013)
6	Composting plant		2	1.9	-5.3	-1.4													(Schuchardt <i>et al.</i> , 2008; Schuchardt <i>et</i> <i>al.</i> , 2002)

7	Selective catalytic reduction		2.5	1.5		4		-0.08	0	0.8							(Kim, 2013)
8	Selective non catalytic reduction	NO _x control	1.9	1.1		3		-0.08	0).4							(Mendoza- Covarrubias <i>et al.</i> , 2011)
9	Low NOx burner	combusti on	0.6	0.4		1			0	0.3							(Cox and Blaszczak, 1999)
10	Non thermal plasma		3.6	0.9		4.5			0).9							(EPA, 2005a; EPA, 2005b)
11	Oil recovery from decanter				-42	-42										0.055	(Chavalparit, 2006; DEDE, 2006)c
12	Oil recovery from fiber	Oil extractio			-7.6	-7.6										0.01	(Chavalparit, 2006; DEDE, 2006)c
13	Oil recovery from EFB	improve ment			-3.8	-3.8										0.05	(Chavalparit, 2006; DEDE, 2006)c
14	Oil recovery from POME		0.4	0.2	-3.9	-3.3										0.05	(Chavalparit, 2006; DEDE, 2006)c
15	Cyclones	PM	0.4	0.2		0.6						0.8					(EPA, 2003b)
16	Baghouse	control for fiber	0.3	0.1		0.4						0.99					(EPA, 2003a)
17	Electrostatic precipitator	combusti on	1.1	0.6		1.7						0.99					(EPA, 2003c)
18	Biogas plant		8.2	5.8	-3.8	10.2	0.50							0.5	0.5		(Kaewmai <i>et al.</i> , 2013)
19	Biogas plant upgrading with bioreactor	POME treatment	7.5	5.8	-2.6	10.7	0.50							0.5	0.5		(Pattanapong chai, A. Limmeechok chai, 2011)

20	Pre heating fiber	Pre- heating fiber	0.1	0.1	-3.9	-3.7							0.5		(DEDE, 2007)
21	Wet scrubber	S ₂ O control for fiber combusti on	0.5	0.4		0.9		0.9	0.65	0.74		0.85			(Ruitang and Gao, 2009)
22	Thermal incinerator	VOC control for fiber combusti on	0.3	0.1		0.4				0.99	0.89	0.88			(EPA, 2003d)

Adapted from (Saswattecha et al., 2016)

Appendix G

GAMS Script for Mill C's Case Study

variable

Totcost total cost for mitigation selected ;

binary variable

- x1 mitigation option by EFB combustion
- x2 mitigation option by EFB pellets production
- x3 mitigation option by EFB composting plant
- x4 mitigation option by Ethanol production
- x5 mitigation option by Pellets production
- x6 mitigation option by Composting plant
- x7 mitigation option by Selective catalytic reduction
- x8 mitigation option by Selective non catalytic reduction
- x9 mitigation option by Low NOx burner
- x10 mitigation option by Non thermal plasma
- x11 mitigation option by Oil recovery from decanter
- x12 mitigation option by Oil recovery from fiber
- x13 mitigation option by Oil recovery from EFB
- x14 mitigation option by Oil recovery from POME
- x15 mitigation option by Cyclones
- x16 mitigation option by Baghouse
- x17 mitigation option of electrostatic precipitator
- x18 mitigation option of biogas plant
- x19 mitigation option of biogas plant upgrading with bioreactor
- x20 mitigation option by Pre heating fiber
- x21 mitigation option by Wet scrubber
- x22 mitigation option by Thermal incinerator;

equation

- eq1 objective function
- eq2 standard requirement for ch4

- eq3 standard requirement for so2
- eq4 standard requirement for PM
- eq5 standard requirement for EG
- eq6 standard requirement for DIP
- eq7 cluster of EFB treatment
- eq8 cluster of NOx control for fiber combustion
- eq9 cluster of Oil extraction improvement
- eq10 cluster of PM control for fiber combustion
- eq11 cluster of POME treatment
- eq12 cluster of Pre-heating fiber
- eq13 cluster of S2O control for fiber combustion
- eq14 cluster of VOC control for fiber combustion

eq15;

- eq1.. Totcost =e= 140.6*x1 9.8*x2 1.4*x3 + 27.2*x4 9.8*x5 1.4*x6 + 4*x7 + 3*x8 + 1*x9 + 4.5*x10 - 4.2*x11 - 7.6*x12 - 3.8*x13 - 3.3*x14 + 0.6*x15 + 0.4*x16 + 1.7*x17 + 10.2*x18 + 10.7*x19 - 3.7*x20 + 0.9*x21 + 0.4*x22;
- eq2.. 0.09*0.5*x18 + 0.09*0.5*x19 0.09*0.005*x1 = g = 0.045;
- eq3.. 0.09*0.9*x21 = g = 0.009;
- eq4.. 0.09*0.85*x21 + 0.09*0.88*x22 + 0.09*0.8*x15 + 0.09*0.99*x16 + 0.09*0.99*x17 = g=0.009;
- eq5.. 0.09*0.5*x18 + 0.09*0.5*19 =g=0.045;
- eq6.. 0.09*0.5*x18 + 0.09*0.5*x19 = g=0.045;
- eq7.. x1 + x2 + x3 + x4 + x5 + x6 = l = 1;
- eq8.. x7 + x8 + x9 + x10 = l = 1;
- eq9.. x11 + x12 + x13 + x14 = l=1;
- eq10.. x15 + x16 + x17 = l = 1;
- eq11.. $x_{18} + x_{19} = l = 1;$
- eq12.. x20 =l=1;
- eq13.. x21 =l=1;
- eq14.. x22 =l=1;
- eq15.. $x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{20}$
- =e=0;

model process /all/;

solve process using MIP minimizing TotCost;

LIST OF PUBLICATIONS

Journal with Impact Factor

- Jamaludin, N. F., Hashim, H., Muis, Z., Zakaria, Z. Y., Jusoh, M., Yunus, A., & Abdul Murad, S. M. (2018). A sustainability performance assessment framework for palm oil mills. Journal of Cleaner Production, 174, 1679 – 1693. https://doi.org/10.1016/j.jclepro.2017.11.028 . (Q1, IF: 6.352)
- Jamaludin, N. F., Hashim, H., Muis, Z. (2019). An Integrated Carbon Footprint Accounting and Sustainability Index for Palm Oil Mills. Journal of Cleaner Production, 225, 496 – 509 (Q1, IF: 6.352)

Indexed Journal

- Jamaludin, N. F., Hashim, H., Muis, Z. Ahamad, R (2016). Environmental index for palm oil mill. Chemical Engineering Transactions, 52, 1177-1182 (Indexed by SCOPUS)
- Jamaludin N.F., Hashim H., Muis Z.A., Ho W.S., 2017, Sustainability framwork for palm oil mill, Chemical Engineering Transactions, 56, 7-12 DOI:10.3303/CET175600 (Indexed by SCOPUS)