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ABSTRACT 

 

 

 

The lignocellulose of industrial crops consists of three main polymers: 

cellulose, hemicellulose, and lignin.  The combination of these complex and 

heterogeneous polymers contributes to the recalcitrant structure of lignocellulose.  

Thus, it becomes a drawback for a group of hydrolytic enzymes which work 

synergistically to hydrolyse the lignocellulosic substrate including xylanase.  Hence, 

this study aimed to improve the catalytic efficiency of Aspergillus fumigatus RT-1 

xylanase (AfxynG1) on pretreated kenaf hydrolysis through protein engineering of 

amino acids that located near the substrate-binding site and at the N-terminal region.  

Molecular docking analysis revealed 5 subsites; -3, -2, -1, +1, and +2 and several of 

substrate-binding residues which distributed alongside the subsites.  Two putative 

binding residues of Phe 146 and Phe 30 and a putative secondary binding site of residue 

Tyr 7 were determined.  High-throughput and low-throughput screenings of 5000 

clones from error-prone PCR library which acted as fine tuner and 414 clones from 

site-saturation mutagenesis library were successfully performed to screen out three 

improved mutants; c168t, Q192H, and Y7L.  The site-directed mutagenesis was 

applied to construct double and triple mutants and this process resulted in only two 

improved mutants; c168t/Q192H and c168t/Q192H/Y7L.  The triple mutant 

c168t/Q192H/Y7L was the most stable enzyme in high temperature 60 and 70 °C and 

acidic pH 3-6, while the double mutant c168t/Q192H showed to contribute to the most 

effective hydrolysis reaction with a 7.6-fold increase in catalytic efficiency.  Mutant 

Y7L produced the highest sugar yield with 28 % increase in pretreated kenaf 

hydrolysis.  Overall, these improved mutants are feasible to be used synergistically 

with cellulases for bioconversion of lignocellulose into reducing sugar. 
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ABSTRAK 

 

 

 

Lignoselulosa yang diperolehi daripada tanaman industri terdiri daripada tiga 

jenis polimer utama: selulosa, hemiselulosa dan lignin. Gabungan polimer-polimer 

yang kompleks dan heterogen ini menyumbang kepada struktur rekalsitran 

lignoselulosa.  Maka, ia menjadi masalah bagi sekumpulan enzim hidrolitik yang 

bertindak secara sinergistik untuk menghidrolisis substrat lignoselulosa termasuk 

xilanase.  Oleh itu, kajian ini dijalankan adalah bertujuan untuk meningkatkan 

kecekapan pemangkinan xilanase daripada Aspergillus fumigatus RT-1 (AfxynG1) ke 

atas hidrolisis kenaf terawat melalui kejuruteraan protein terhadap asid amino yang 

terletak berhampiran tapak pengikat substrat dan di kawasan N-terminal. Analisis dok 

molekul mendedahkan 5 tapak pengikat substrat; -3, -2, -1, +1, dan +2 dan beberapa 

residu pengikat substrat yang teragih sepanjang tapak pengikat substrat.  Dua pengikat 

residu putatif iaitu Phe 146 dan Phe 30 serta satu residu tapak pengikat sekunder putatif 

Tyr 7 telah dikenalpasti.  Penyaringan pemprosesan tinggi dan rendah terhadap 5000 

klon daripada pustaka cenderung ralat PCR yang berperanan sebagai penala halus dan 

414 klon daripada pustaka mutagenesis tapak penepuan berjaya menyaring tiga mutan 

yang ditambahbaik; c168t, Q192H, dan Y7L.  Mutagenesis tapak terarah telah 

digunakan untuk membina mutan ganda dua dan ganda tiga yang mana proses ini 

menghasilkan hanya dua mutan ditambahbaik; c168t/Q192H dan c168t/Q192H/Y7L.  

Mutan ganda tiga c168t/Q192H/Y7L ialah enzim yang paling stabil pada keadaan suhu 

tinggi 60 dan 70 °C dan pH berasid 3-6 manakala mutan ganda dua c168t/Q192H telah 

menyumbang kepada reaksi hidrolisis paling efektif dengan 7.6 kali ganda 

peningkatan dalam kecekapan pemangkinan.  Mutan Y7L menghasilkan gula tertinggi 

iaitu sebanyak 28 % peningkatan dalam hidrolisis kenaf terawat.  Secara 

keseluruhannya, semua mutan yang ditambahbaik ini boleh digunakan secara sinergi 

dengan selulase untuk biopenukaran lignoselulosa kepada gula penurun. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 According to the “green chemistry” evolution concept, efficient utilization of 

raw materials is applied on to minimize waste by avoiding the use of toxic and/or 

hazardous substances that can lead to health, safety and environmental issues 

(Sheldon, 2014).  Therefore, to exploit these raw materials in a sustainable approach 

by an economical and friendly manner, then biorefinery comes into the picture 

(Arevalo-Gallegos et al., 2017).  A lignocellulose biorefinery plan manages to produce 

various value-added biochemical products like ethanol, ethylene, sorbitol, xylitol, 

furfural, etc (Iqbal, Kyazze and Keshavarz, 2013).  Examples of lignocellulosic 

biomasses are industrial crops which have dominated 89.5% of agricultural land in 

Malaysia (Arshad, 2017).  Besides palm oil, rubber, and cocoa, kenaf has emerged as 

one of the potential industrial crops since 2000 for production of fibres, polymer 

composite, and paper (Cheng, Haque Akanda and Nyam, 2016; Alkbir et al., 2016; 

Ashori, 2006). 

 

 

 Lignocellulose is composed of three main polymers which are cellulose (40-

60 % of the total dry weight), hemicellulose (20-40 %) and lignin (10-25 %).  These 

polymers are the root cause of the lignocellulose recalcitrance according to the high 

crystallinity and polymerization degree of cellulose (Lee, Hamid and Zain, 2014), 

heterogeneity of hemicellulose (Gírio et al., 2010) and highly aromatic contained 

lignin (Schoenherr, Ebrahimi and Czermak, 2018).  Thus, the degradation of 

lignocellulosic biomass is very complex and requires synergistic action of 
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hemicellulases, cellulases and ligninolytic enzymes (Andlar et al., 2018).  The second 

most abundant polymer of hemicellulose has a random and amorphous structure 

comprises xylan, galactomannan, glucuronoxylan, arabinoxylan, glucomannan and 

xyloglucan (Isikgor and Becer, 2015; Baeyens et al., 2015).  Thus, complete 

degradation of hemicellulosic polysaccharides requires the cooperation of multiple 

hemicellulases including endo-xylanases, β-xylosidases, α-L-araninofuranosidases, α-

D-glucuronidases, and acetyl-xylan-esterases to break down xylan into linear 

xylooligosaccharides (Shallom and Shoham, 2003; Beg et al., 2001; Madadi, Tu and 

Abbas, 2017).   

 

 

 Xylanase as one of the hemicellulases are grouped into glycoside hydrolase 

(GH) 10 and 11 based on amino acid sequence homologies and hydrophobic cluster 

analysis of CAZy database (Henrissat, 1991).  GH11 xylanase has a lower molecular 

weight compared to the GH 10 family and it folds into a domain composed of two β-

sheets (A and B) packed parallel to each other and one α-helix.  The protein structure 

is similar to a partially closed right hand consisted of ‘thumb’, ‘palm’ and ‘fingers’ 

regions (Havukainen et al., 1996; Törrönen and Rouvinen, 1997) (Figure 1.1).  These 

regions are involved in substrate binding and catalysis and even in certain xylanase, 

they get assisted by the secondary binding site located in N-terminal region 

(Ludwiczek et al., 2007).  Due to the ability to hydrolyse the β-D-(1,4) xylosidic 

linkages in xylan, GH 11 xylanases have a great commercial interest in potential 

industrial applications of biorefinery.  However, the nature of “biomass recalcitrance’ 

of the lignocellulose is challenging for efficient hydrolysis by xylanase that leads to 

the increase of the enzyme costs but low yields sugar produced (Himmel et al., 2007; 

Visser et al., 2015).  
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Figure 1.1 Ribbon representation of Thermobacillus xylanilyticus xylanase (Tx-

Xyn) three-dimensional structure. The schematic protein is ‘color-ramped’ from the 

N-terminus (blue, N-ter) to the C-terminus (red, C-ter). The relevant regions of 

‘thumb’, ‘palm’ and ‘fingers’ are highlighted in frames, and the ‘knuckles’ in the 

fingers region is indicated by an arrow (Song et al., 2012). 

 

 

 

 

 To encounter the problem of inefficiency and low yields in enzymatic 

hydrolysis of lignocellulosic biomass, the catalytic efficiency of xylanase is needed to 

be increased first before performing cooperation action with cellulases (Morone and 

Pandey, 2014; Berlin et al., 2005).  As a solution, protein engineering can be applied 

on using one of the approaches that are rational design which is more suitable for the 

improvement of activity, stability or substrate specificity of the target enzyme.  Plus, 

it encounters the problem of large clone libraries needed by random mutagenesis which 

causes a troublesome for high-throughput screening (Chica, Doucet and Pelletier, 

2005; Martinez and Schwaneberg, 2013).  However, researchers discovered that the 

most successful strategy is the combination of random and focused mutagenesis 

(Packer and Liu, 2015).  For instances, the combination of N-terminal region 

replacement and site-directed mutagenesis at the cord of xylanase has significantly 

improved the specific activity (5.3-fold increase), substrate affinity and catalytic 

efficiency (Li et al., 2017).  Another study by Hoffmam et al., 2016 showed that the 
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fusion of a carbohydrate-binding module from GH 6 resulted in 65 % increase of 

catalytic efficiency of GH11 xylanase and led to the 17 % increase of sugar release 

from pretreated sugarcane bagasse hydrolysis.  Plus, error-prone PCR mutagenesis in 

combination with site saturation mutagenesis at H179 residue improved kcat/Km of 

xylanase to 3.46-fold (Wang et al., 2013).   

 

 

 Previously, one of the potential GH11 xylanase isolated from Aspergillus 

fumigatus RT-1, afxynG1 (GenBank accession no: GQ458016) showed a great 

thermostability by retaining 70% of its activity after 30 minutes incubation at 70°C 

compared to its optimum temperature at 50°C (Abdul Wahab, Jonet and Illias, 2016).  

However, the sugar produced from the hydrolysis of the lignocellulosic substrate is 

very low.  Thus, it is necessary to improve the catalytic efficiency of AfxynG1 for 

better hydrolytic performance.  The main focus of this study is to improve the catalytic 

efficiency of AfxynG1 using protein engineering for producing a better yield of sugar.  

Error-prone PCR, site-saturation and site-directed mutagenesis approaches led to the 

amino acid substitutions of AfxynG1 within the N-terminal region and substrate 

binding site of the AfxynG1.  The result showed that the mutations acquired increased 

catalytic efficiency (kcat/KM) and improved thermostability and acid stability.  

Therefore, the production of total reducing sugar was enhanced up to 28.6 % from 

pretreated kenaf hydrolysis.  In consequences, these mutants have a great potential in 

lignocellulosic biomass saccharification for large industrial applications. 

 

 

 

 

1.2 Problem Statement and Gap of the Study 

 

 

The recalcitrance of lignocellulose structure becomes a drawback for 

enzymatic hydrolysis due to the complex and heterogeneous structure of cellulose, 

hemicellulose and, lignin.  A previous study used two-step pretreatment process 

involves calcium hydroxide (Ca(OH)2), and peracetic acid (PPA) had successfully 

removing a major part of the lignin layer and maintaining most of the hemicellulose 
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of kenaf (Wan Azelee et al., 2014).  This hemicellulose part is ready to be degraded 

by hydrolytic enzymes for fermentable sugar production.  

 

 

Multiple hydrolysis enzymes are required to function synergistically in 

saccharification of the lignocellulosic biomass for biorefinery industry.  One of the 

main enzymes involved is xylanase which is still lack of study compared to the 

cellulases.  The most studied xylanases concerning lignocellulosic degradation are 

involved in a mixture or synergism with other hydrolytic enzymes (Jia et al., 2015; 

Yang et al., 2015).  Besides, the genetic modification for xylanase improvements are 

more focus on the high temperature and extreme pH tolerance (Li et al., 2015; 

Boonyapakron et al., 2017) but the catalytic enhancement is still very little.  In the 

meantime, only one study was focus to improve the catalytic efficiency of xylanase 

towards natural substrate hydrolysis (Song et al., 2012).  

 

 

Thus, the main target of this study is to improve the catalytic efficiency of the 

xylanase to produce a higher yield of sugar from the lignocellulosic substrate 

hydrolysis.  The knowledge regarding substrate binding and catalysis of the xylanase 

must be explored to enable the genetic modification of the suitable amino acid 

residues.  Furthermore, the enhancement of thermostability and pH stability is required 

to prepare a high potential enzyme for industrial use.  

 

 

 

 

1.3 Objectives of the Study 

 

 

 The objectives of this research are stated as below; 

 

1) To identify substrate binding residues that involve and important for 

substrate binding and catalysis of AfxynG1 
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2) To improve the catalytic efficiency of AfxynG1 for hydrolysis of pretreated 

kenaf and biochemically characterise the AfxynG1 mutants 

 

 

 

 

1.4 Scopes of the Study 

 

 

 This study focuses on the improvement of catalytic efficiency of a GH11 

xylanase from A. fumigatus RT1 (AfxynG1) using directed evolution of epPCR, site 

saturation and site-directed mutagenesis.  The epPCR acts as a fine tuner to select 

potential residues for SSM following two strategies: 1) residues that shared by more 

than one mutant and 2) residues which near to catalytic and substrate binding site.  The 

second strategy needs structural information using molecular docking to identify the 

substrate-binding residues.  All of the clones from epPCR and SSM libraries undergo 

high-throughput and low-throughput screening towards pretreated kenaf hydrolysis to 

isolate the potential mutants.  Multiple mutants from three single improved mutants 

are constructed employing site-directed mutagenesis and screened towards pretreated 

kenaf.  All of the final mutants are expressed and partially purified for biochemically 

characterised and kinetic determination.  The reducing sugar produced from pretreated 

kenaf hydrolysis for each mutant was compared. 
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APPENDICES 

 

 

 

APPENDIX A 

 

 

 

 

Medium, solutions and buffers preparation 

 

 

 

 

Appendix A1: Medium Preparation 

 

 

1. Luria Bertani (LB) medium   100 ml 

 Bacto-tryptone    1 g 

 Bacto-yeast extracts    0.5 g 

 NaCl      0.5 g 

To make LB agar, the same ingredient used with addition 1.5 g agar before 

autoclaving. 

 

 

2. TSS Reagent      40 ml 

 Bacto-tryptone     0.4 g 

 Bacto-yeast extract     0.2 g 

 NaCl       0.2 g 

 Polyethylene glycol (PEG)    4.0 g 

 Dinethyl sulfoxide     2.0 ml 

MgCl2       0.194 g 
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Appendix A2: Autoinduction medium 

 

 

1. Luria-Bertani for Autoinduction (LBA) medium  

Composition: 1% w/v tryptone, 0.5% yeast extract, 0.1% NaCl 

 

For 1 liter LBA medium 

1) The following ingredients were dissolved in 950 ml distilled water: 10 g tryptone, 

5 g yeast extract, 1 g NaCl . 

2) Distilled water was added to bring the volume to 1 liter 

3) The solution was autoclaved for 15 min at 121 °C 

4) The solution has cooled to ~ 55 °C before used. 

 

 

2. 20X NPS stock solution 

Composition: 0.5 M (NH4)2SO4, 1 M KH2PO4, 1 M Na2HPO4. 

 

For 1 liter 20 X NPS stock solution: 

1) The following ingredients  in sequence in beaker; stir until all were dissolved in 

900 ml distilled water:  

Component 1 liter Conc. at 1 x 

dH2O 900 ml  

(NH4)2SO4 66 25 mM 

KH2PO4 136 50 mM 

Na2HPO4 142 50 mM 

 

2) Distilled water was added to bring the volume to 1 liter 

3) The solution was autoclaved for 15 min at 121 °C 

4) The solution has to be cooled to ~ 55 °C before used. 

 

 

3. 50 X 5052 Stock solution 

Composition (5052= 0.5% glycerol, 0.05% glucose, 0.2%  ɑ-lactose) 

 

For 1 liter 50 X 5052 stock solution: 



160 
 

1) The following ingredients  in sequence in beaker; stir until all were dissolved in 

900 ml distilled water:  

Component 1 liter 

Glycerol (weight in beaker) 250 g 

H2O 730 ml 

Glucose 25 g 

ɑ-lactose 100 g 

 

 

4. 1000X trace metals mixture stock solution 

(100 ml in ~50 mM HCl) 

 

1) All metal stock solutions were prepared in miliQ H2O, except for FeCl3, which is 

dissolved in ~0.1M HCl, as noted in the table below. Combine the metal solutions 

as in the table below: 

Component Volume MW 1 X concentration 

H2O 36 ml - - 

0.1 M FeCl3.6H2O 

yellow 

(dissolved in  ~0.1M 

HCl) 

50 ml 270.30 50 µM Fe 

1 M CaCl2 2 ml 110.99 20 µM Ca 

1M MnCl2.4H2O 1 ml 197.91 10 µM 

1 M ZnSO4.7H2O 1 ml 287.56 10 µM Zn 

0.2 M CoCl2.6H2O pink 1 ml 237.95 2 µM Co 

0.1 M CuCl2.2H2O blue 2 ml 170.486 2 µM Cu 

0.2 M NiCl2.6H2O green 1 ml 237.72 2 µM Ni 

0.1 M Na2MoO4.2H2O 2 ml 241.98 2 µM Mo 

0.1 M Na2SeO3.5H2O 2 ml 263.03 2 µM se 

0.1 M H2BO3 2 ml 61.83 2 µM H3BO3 

 

2) The stock solutions of the individual metals were autoclaved, except for 0.1 M 

FeCl2 in 1/100 volume of concentrated HCl. 

3) For Na2SeO3, a brief precipitate appeared upon  addition, which redissolved 

rapidly. 

4) The stock were stored at room temperature. 
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5. MgSO4 stock solution 

Composition: 1 M MgSO4 

 

For 100 ml of 1M MgSO4 stock solution: 

1) The MgSO4.7H2O powder was weight to 24.65 g  and dissolved in 100 ml distilled 

water. 

2) The solution was filtered using a sterile 0.2 µm nylon syringe filter and keep in a 

sterile vial. 

3) The solution was stored in room temperature prior to use. 

 

 

6. LBA-5052 medium 

1) Contains glucose to supress expression while growing to high density, lactose to 

induce expression when glucose and glycerol exausted. NB metals should be added 

before addition of NPS to avoid precipitation. 

2) The following ingredients were dissolved in ~ 928 ml LBA: 

Component 1 liter 

LBA ~ 928 ml 

1 M MgSO4 1 ml 

1000 X metals (use 0.1 x) 100 µl 

50 x 5052 20 ml 

20 x NPS 50 ml 

Ampicillin (100 mg/ml) 1 ml 
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Appendix A3: Antibiotic and solutions for enzyme expression 

 

 

1. Ampicillin stock solution 

Composition: 100 mg/ml ampicillin. 

 

For 10 ml ampicillin stock solution: 

1) The ampicillin  powder was weight to 1 g  and dissolved in 10 ml distilled water. 

2) The solution was filtered using a sterile 0.2 µm nylon syringe filter and keep in a 

sterile vial. 

3) The solution was stored in -20 °C prior to use. 

 

 

2. IPTG stock solution  

Composition: 0.5 M IPTG 

 

For 10 ml IPTG solution: 

1) The IPTG powder was weight to 1.19 g  and dissolved in 100 ml distilled water. 

2) The solution was filtered using a sterile 0.2 µm nylon syringe filter and keep in a sterile 

vial. 

The solution was stored in -20 °C and thawed prior to use 
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Appendix A4: Solutions for Molecular Works 

1. 50X TAE Electrophoresis Buffer   2 L 

(2 M Tris, 50 mM EDTA)  

Tris base      484 g 

Glacial acetic acid     114.2 ml 

0.5 M EDTA, pH 8.0     200 ml 

To make 1X TAE 20 L, add 400 ml 50X Buffer into 19.6 L of distilled water. 

 

 

2. 10X TE Buffer     100 ml 

Tris base      100 mM 

EDTA, pH 8.0      10 mM 

To make 1X TE Buffer, dilute 1 ml of 10X TE Buffer with 9 ml of distilled 

water. 

 

 

3. Tris-Cl, pH 8.0     500 ml  

Tris       60.57 g 

Add 350 ml distilled water and adjust pH to 8.0 with concentrated HCl 

(approximately 21 ml, but start with less).  Let it cool to room temperature and 

make final adjustment to the pH.  Autoclavable. 

 

 

4. 0.5 M EDTA, pH 8.0     500 ml 

EDTA       93.05 g 

Dissolve in 350 ml distilled water.  Place on a magnetic stirrer and stir 

vigorously.  Adjust the pH to 8.0 by adding approximately 10 g NaOH pellets.  

The disodium salt of EDTA will not go into solution until the solution is adjusted 

to approximately pH 8.0.  Bring to 500 ml total volume with distilled water.  

Filter and sterilize by autoclaving.  
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Appendix A5: Working Solutions for SDS-PAGE 

1. Acrylamide Mix Stock Solution   100 ml 

30% (w/v) Acrylamide 

0.8% (w/v) Bis-acrylamide 

 

 

2. 10% SDS      100 ml 

Sodium dodecyl sulfate    10 g 

Distilled water      100 ml 

Store at room temperature. 

 

 

3. 10% Ammonium persulfate    5 ml 

Ammonium persulfate     0.5 g 

Distilled water      5 ml 

Stable for months in a capped tube in refrigerator. 

 

 

4. 10% Separating Gel     5 ml 

Distilled water      1.9 ml 

30% Acrylamide mix     1.7 ml 

1.5 M Tris-HCl, pH 8.8    1.3 ml 

10% SDS      0.05 ml 

10% Ammonium persulfate    0.05 ml 

TEMED      0.002 ml 
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5. 5% Stacking Gel     5 ml 

Distilled water      3.4 ml 

30% Acrylamide mix     0.83 ml 

1 M Tris-HCl, pH 6.8     0.63 ml 

10% SDS      0.05 ml 

10% Ammonium persulfate    0.05 ml 

TEMED      0.005 ml 

 

 

6. Tris-glycine Electrophoresis Buffer   1 L 

Tris        3 g 

Glycine      14.4 g 

SDS        1 g 

Use distilled water to make 1 liter solution.  pH should be approximately 8.3. 

 

 

7. 5X Sample Buffer     10 ml 

1 M Tris-HCl, pH 6.8     0.6 ml 

50% Glycerol      5 ml 

10% SDS      2 ml 

2-mercaptoethanol     0.5 ml 

1% Bromophenol blue    1 ml 

Distilled water     0.9 ml 

Stable for weeks in the refrigerator or for months at -20ºC. 

 

 

8. Staining Solution (Solution A)   1 L 

Methanol      450 ml 

Distilled water      450 ml 

Glacial acetic acid     100 ml 

Coomassie Blue R-250    1 g 
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9. Destaining Solution (Solution B)   1 L 

Distilled water      800 ml 

Methanol      100 ml 

Glacial acetic acid     100 ml 

 

 

 

 

Appendix A6: Working Solutions for Western Blot 

 

 

1. Blocking Solution      20 ml 

5% skimmed milk      1 g 

Add with 1X TBST until 20 ml      

 

 

2. 10X TBS      1 L 

Tris-base       24.2 g 

NaCl        80 g 

Adjust to pH 7.5 

 

 

3. 1X TBSTT (Ab 1:2000) 

1X TBS       200 ml 

Tween-20       100 μl 
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Appendix A7: pH Buffers  

1. Glycine-HCl (pH 3) 

0.2 M glycine    12.5 ml 

0.2 M HCl    2.85 ml 

Top up to 50 ml with ddH2O. 

 

 

2. Sodium acetate (pH 4) 

0.2 M acetic acid   164 ml 

0.2 M sodium acetate   36 ml 

Top up to 200 ml with ddH2O. 

 

 

3. Sodium acetate (pH 5) 

0.2 M acetic acid   59 ml 

0.2 M sodium acetate   141 ml 

Top up to 200 ml with ddH2O 

 

 

4. Sorensen phosphate (pH 6) 

0.2 M NaH2PO4   44 ml 

0.2 M Na2HPO4   6.2 ml 

Top up to 50 ml with ddH2O 

 

 

5. Sorensen phosphate (pH 7) 

0.2 M NaH2PO4   39 ml 

0.2 M Na2HPO4   61 ml 

Top up to 100 ml with ddH2O 
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6. Sorensen phosphate (pH 8) 

0.2 M NaH2PO4   5.3 ml 

0.2 M Na2HPO4   94.7 ml 

Top up to 100 ml with ddH2O 

 

 

7. Glycine -NaOH (pH 9) 

0.2 M NaOH    4.4 ml 

0.2 M glycine    25 ml 

Top up to 50 ml with ddH2O 

 

 

 

 

Appendix A8: DNS Assay Buffer 

Dinitrosalicylic acid (DNS) solution    1 L 

3,5-dinitrosalicylic acid     10 g 

Sodium potassium tartrate tetrahydrate   300 g 

2N NaOH       200 ml 

Add 3,5-dinitrosalicylic to 500 ml of reagent grade water.  Add slowly sodium 

potassium tartrate tetrahydrate and 2 N NaOH. Dilute to a final volume of 1 L with 

reagent grade water.  Protect from carbon dioxide and store no longer than 2 weeks. 
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Appendix A9: Protein Purification buffer 

 

 

1. Buffer A 

Composition: 20 mM sodium phosphate buffer (pH 7.4), 0.5 M NaCl, 30 mM imidazole 

2. Buffer B 

Composition: 20 mM sodium phosphate buffer (pH 7.4), 0.5 M NaCl, 300 mM 

imidazole 

 

 

3. Stripping buffer 

Composition: 20 mM sodium phosphate buffer (pH 7.4), 0.5 M NaCl, 50 mM EDTA 

 

 

4. Phenylmethylsulfonyl fluoride (PMSF) 

Composition: 10 mM PMSF. 

 

For 10 ml 10 mM PMSF: 

1) The PMSF powder was weight to 17.4 mg  and dissolved in 10 ml isopropanol 

2) The solution was filtered using  a strile 0.2 µm nylon syringe filter and keep in a sterile 

vial. 

3) The solution was aliquots of appropriate volume and stored in -20 °C prior to use. 

Note:The half-life of a 20 µM aqueous solution of PMSF is about 35 minutes at pH 8. 
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APPENDIX B 

 

 

 

XYLOSE STANDARD  

 

 

 

 

Plotting graph for xylose standard 

1) Prepare 1 mg/ml xylose stock in 50 mM sodium acetate buffer (pH 5).  Prepare 

different concentrations of xylose as stated below: 

Concentration (mg/ml) Volume of xylose(µl) Volume of buffer(µl) 

0 0 750 

0.05 37.5 712.5 

0.1 75 675 

0.15 112.5 637.5 

0.2 150 600 

0.25 187.5 562.5 

0.3 225 525 

0.35 262.5 487.5 

0.4 300 450 

0.45 337.5 412.5 

0.5 375 375 

 

2) Run the standard xylose as DNS assay of xylanase in triplicate. 

3) Record the readings of OD at 540 nm and convert the xylose concentration to 

µmol as stated below: 

 

 

 

 

 

 

 



171 
 

Xylose concentration 

(mg/ml) 

Xylose in µmol Readings of at OD 

540 

0.00 0.00 0.00 

0.05 0.25 0.07 

0.10 0.50 0.27 

0.15 0.75 0.52 

0.20 1.00 0.72 

0.25 1.25 0.98 

0.30 1.50 1.17 

0.35 1.75 1.38 

0.40 2.00 1.59 

0.45 2.25 1.73 

0.50 2.50 2.01 

 

4) Plotting the graph of xylose (µmol) vs OD at 540 nm. 

 

 
 

5) Use the equation from the graph for calculation of xylanase enzyme activity as 

1U of enzyme is defined as the amount of enzyme releasing 1 µmol xylose per 

min. 

 

 

y = 0.8306x - 0.0886
R² = 0.9961
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APPENDIX C 

 

 

 

BSA STANDARD 

 

 

 

 

Plotting graph for xylose standard 

1) Prepare 2.5 µg/ml BSA stock in 50 mM sodium acetate buffer (pH 5.0) and 

prepare a set concentration of BSA as stated below: 

BSA concentration (µg/ml) Volume of BSA (µl) Volume of buffer (µl) 

0.001 0.2 99.8 

0.002 0.4 99.6 

0.003 0.6 99.4 

0.004 0.8 99.2 

0.005 1.0 99.0 

0.006 1.2 98.8 

0.007 1.4 98.6 

0.008 1.6 98.4 

0.009 1.8 98.2 

0.01 2.0 98.0 

 

2) 100 ml BSA at varied concentration is mixed with 100 ml Bradford reagent at 

RT in the 96-flat bottom plate. The mixture is equally mixed by pipetting. The 

triplicate mixture is prepared for each of BSA concentration. 

3) The colorimetric readings are measured by multiwell plate reader immediately at 

595 nm absorbance. 

4) Record the readings as stated in the table below: 
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BSA concentration (µg/ml) OD readings at 595 nm 

0.001 0.0983 

0.002 0.1190 

0.003 0.1537 

0.004 0.1770 

0.005 0.1830 

0.006 0.1850 

0.007 0.1985 

0.008 0.2160 

0.009 0.2230 

0.01 0.2447 

 

5) Plotting the graph of BSA concentration (µg/ml) vs OD at 595 nm. 

 

 

6) Use the equation from the graph for calculation of concentration of xylanase  

 

 

 

 

 

 

 

 

y = 14.686x + 0.099
R² = 0.9467
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APPENDIX D 

 

 

 

KINETIC PARAMETER MICHAELIS-MENTEN 

 

 

 

 

The derivation of the Michaelis–Menten equation assumes that a slow, product forming 

reaction follows the rapid, reversible formation of an enzyme–substrate complex: 

    

    Equation E11 

 

Where, E is the enzyme, S is the substrate and P is the product.  The Michaelis–Menten equation 

is then derived by using the steady-state approximation for the ES complex: specifically the 

concentration of the enzyme–substrate complex is assumed to change much more slowly than the 

concentration of the substrate, so the rate equation takes the form.   

        

    

     Equation E12 

 

 

Where, Km is the Michaelis constant and Vmax is the maximum velocity of the reaction 

achieved when the enzyme active sites in the sample are all complexed with substrate all 

the time, and [P] is the concentration of product at any given time during the time course.  

The relationship between the Km and the unitary rate constants in the reaction scheme is: 

 

 Equation E13     
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Taking the reciprocal of both sides of the Michaelis–Menten equation gives the 

Lineweaver–Burk equation that is often used to graphically analyse enzyme kinetic data.  

The equation is: 

 

   Equation E14 

 

This relationship was used to estimate Vmax and Km values.   

 

 

Figure D1: Plot of rate of reaction versus the substrate concentration. 

 

The Michaelis-Menten constant (Km) and maximum velocity of substrate hydrolysis 

(Vmax) were determined from the Lineweaver-Burk plot 
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Figure D2: The Lineweaver-Burk plot and kinetic parameters determination. 
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