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ABSTRACT

The adequacy of uremic toxins removal on hemodialysis treatment is essential
to be achieved for kidney failure disease patient, as poor removal leads to heart failure,
hypertension, and stroke. The combination of adsorption and diffusion process has
become very advantageous for hemodialysis membrane. By this mechanism, the urea
as water soluble uremic toxins (WSUT) and p-cresol as protein-bounded uremic toxins
(PBUT) could be removed at one time. Therefore, this study aimed to develop the
novel imprinted zeolite by p-cresol (1ZC) then incorporated into polyethersulfone
(PES) and poly(vinyl pyrollidone) (PVP) to produce hollow fiber mixed matrix
membrane (HF-MMM). 1ZC was synthesized from sodium aluminate, NaOH, H>O
and SiO; through aging and hydrothermal process with an initial composition of
10Si02:Al,03:4Na>,0:180H,0 by using imprinting technology and p-cresol as a
template. Based on the properties and performance achieved, 1ZC could increase the
selectivity to adsorb p-cresol 4.30 times greater compared to synthesized Zeolite Y
(ZeoY-S). Adsorption study proved that 1ZC could adsorb p-cresol 2.5 and 3.5 times
higher than ZeoY-S and commercialized zeolite Y (ZeoY-C), respectively. This is
because the pore size of 1ZC had been successfully printed to p-cresol. The Brunauer-
Emmet-Teller and transmission electron microscopy characterization proved that
imprinting process was successfully applied. The investigation by isotherm and
kinetics models showed that 1ZC was sensitive to attract the adsorbate, classifying it
as having a strong adsorption behavior. Accordingly, the 1ZC is very promising to be
applied as adsorbent in hemodialysis treatment. In the second phase, 1ZC as p-cresol’s
adsorbent was incorporated into PES-based polymeric membrane with small addition
of PVP to produce HF-MMM by using dry/wet spinning process. The effect of air gap
distance between spinneret and coagulant bath and percentage loading for PES, PVP,
and 1ZC were studied and optimized to obtain the best performance of HF-MMM. The
40 cm of air gap distance, 16 wt.% of PES, 2 wt.% of PVP, and 1 wt.% of I1ZC loading
were able to produce superior hemodialysis membrane. These optimized parameters
showed sufficient uremic toxins removal i.e. 60.74% of urea, 52.35% of p-cresol in
phosphate buffer saline solution and 66.29% of p-cresol in bovine serum albumin
solution for 4 hours permeation by using dialysis system. These HF-MMMs also
achieved pure water flux of 67.57 Lm2h™bar? and bovine serum albumin rejection of
95.05%. Therefore, this membrane has been proven to be able to clean up WSUT and
PBUT through an one-step process. Moreover, as compared neat PES membrane,
MMM was able to remove p-cresol 186.22 times higher. Then, capability of I1ZC to
adsorb p-cresol decreased to around 69% by changing the form of adsorbent from
powder to composite in the membrane. By leaching study, it was obtained that
percentage of zeolite leaching was less than 1 mgL* and categorized safe. In the final
phase of the study, the HF-MMM developed was evaluated in terms of
biocompatibility test, that is hemocompatiblity by using protein adsorption, platetels
adhesion, blood clotting time test, activated partial thromboplastin time, prothrombin
time, and cytotoxicity evaluation by using 3-(4,5-dimethylthiazol-2yl)-5(3-
carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT assays). From the
biocompatibility evaluation HF-MMM was observed to possess less protein
adsorption, less activated state of the adhered platelets, non-toxic quality for red blood
cells, and can prolong the clotting time and percentage of viability for more than 60%.
These results proved that HF-MMM developed is safe for hemodialysis application.
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ABSTRAK

Proses pembuangan toksin uremik pada rawatan hemodialisis yang mencukupi
sangat penting bagi pesakit yang mengalami kegagalan fungsi buah pinggang, kerana
ianya akan menyebabkan kegagalan fungsi jantung, tekanan darah tinggi, dan strok.
Gabungan proses penjerapan dan peresapan telah memberi banyak faedah pada proses
hemodialisis. Urea sebagai toksin uremik larut air (WSUT) dan p-cresol sebagai toksin
uremik yang terikat dengan protein (PBUT) boleh dibuang sekaligus dengan mekanisme
ini. Oleh itu, kajian ini bertujuan untuk membangunkan zeolit dengan teknik cetakan khas
bagi p-cresol (1ZC) yang kemudian digabungkan dengan polietersulfon (PES) dan
poli(vinilpirolidone) (PVP) untuk menghasilkan membran matriks campuran (HF-MMM).
I1ZC disintesis daripada natrium aluminat, NaOH, H,O dan SiO, melalui proses penuaan
dan hidrotermal, dengan komposisi awal 10SiO,: Al,O3: 4Na,O: 180H,0 menggunakan
teknologi pencetakan dengan p-cresol sebagai templat. Berdasarkan ciri-ciri dan prestasi
yang dicapai, 1ZC dapat meningkatkan kadar jerapan p-cresol sehingga 4.30 kali lebih
tinggi daripada zeolite yang disintesis (ZeoY-S). Manakala, melalui proses penjerapan,
1ZC terbukti dapat menjerap p-cresol masing-masing pada 2.5 dan 3.5 kali ganda lebih
tinggi daripada ZeoY-S dan zeolit yang dikomersialkan (ZeoY-C). Hal ini adalah
disebabkan oleh saiz liang 1ZC yang telah berjaya dicetak kepada p-cresol. Pencirian
Brunauer-Emmet-Teller dan mikroskop penghantaran elektron telah membuktikan
bahawa proses pencetakan telah berjaya dilaksanakan. Kajian berdasarkan model isoterma
dan kinetik menunjukkan bahawa 1ZC adalah penjerap yang sensitif dan boleh
diklasifikasikan sebagai mempunyai sifat penjerapan yang kuat. Oleh yang demikian, 1ZC
adalah sesuai untuk digunakan sebagai penjerap di dalam rawatan hemodialisis. Dalam
fasa kedua, 1ZC sebagai penjerap p-cresol telah dimasukkan ke dalam membran polimer
berasaskan PES dengan penambahan kecil PVP bagi menghasilkan HF-MMM dengan
menggunakan proses pemutar kering/basah. Kesan jarak jurang udara antara spinneret dan
tempat pembekuan serta peratusan muatan untuk PES, PVP, dan IZC telah dikaji dan
dioptimumkan bagi memperoleh prestasi terbaik. Jarak 40 cm jarak udara, 16% PES, 2%
PVP, dan 1% IZC mampu menghasilkan membran hemodialisis yang unggul. Parameter
yang telah dikaji menunjukkan pembuangan toksin uremik yang mencukupi iaitu 60.74%
urea, 52.35% p-cresol dalam larutan garam fosfat dan 66.29% p-cresol dalam larutan
albumin serum bovine selama 4 jam dengan menggunakan sistem dialisis. HF-MMM ini
juga boleh mencapai kelajuan fluks air pada takat 67.57 Lm?h™bar? dan penolakan
albumin serum bovine sebanyak 95.05%. Oleh itu, membran ini terbukti dapat membuang
WSUT dan PBUT sekaligus. Selain itu, perbandingan di antara membran PES dan MMM,
MMM mampu membuang p-cresol 186.22 kali lebih tinggi. Keupayaan 1ZC untuk
menjerap p-cresol berkurang sekitar 69% apabila dicampurkan dalam membran komposit
jika dibandingkan dengan dalam bentuk serbuk. Dapatan daripada kajian pelunturan
menunjukkan pelepasan zeolit kurang daripada 1 mgL™ dan dikategorikan selamat. Pada
fasa akhir kajian, HF-MMM telah dinilai dari segi ujian keserasian-bio, iaitu keserasian
hemo dengan menggunakan ujian penjerapan protein, lekatan platelet, ujian masa
pembekuan darah, masa tromboplastin separa teraktif, masa protrombin, dan penilaian
sitotoksisitas dengan menggunakan 3-(4,5-dimetilthiazol-2yl)-5(3-karboksimetoksifenil)-
2-(4-sulfofenil)-2H-tetrazolium (Ujian MTT). Berdasarkan penilaian keserasian-bio, HF-
MMM hanya menjerap sedikit protein, kurang aktif untuk lekatan platelet, bukan toksik
untuk sel darah merah, memanjangkan masa pembekuan darah dan masa hidup sel limfosit
lebih dari 60%. Keputusan ini membuktikan bahawa membran yang dibangunkan adalah
selamat untuk aplikasi membran hemodialisis.
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CHAPTER 1

INTRODUCTION

1.1  Research Background

Membrane technology is widely applied to support the development of science
and technology, both in terms of theoretical physics and chemistry. The application
starts from secondary human needs, such as water filters and gas separation to primary
human needs, such as an artificial kidney. Regarding its application, the membrane
technology is used to treat kidney disease via hemodialysis (HD) treatment. Various
membranes have been developed by researchers for the HD treatment. There are two
types of membranes that are commercially available and widely consumed in hospitals

and dialysis clinics to treat patient with a kidney failure.

The first one is low-flux dialysis membrane, in which the membrane can
remove much of the water-soluble uremic toxins (WSUT), such as urea, creatinine,
and uric acid, among others. However, it is difficult to remove the middle molecular-
weight water-soluble of uremic toxins (MWUT), such as Cystatin C, po-
Microglobulin, and pB-Endorphin, as well as protein-bounded uremic toxins (PBUT),
such as indoxyl sulfate, p-cresol, and phenol (Henrich, 2009). Meanwhile, the MWUT
and PBUT are dangerous if accumulated into the blood, as it may cause endothelial or
leukocyte dysfunction and exert proinflammatory and hepatotoxic effects that
contribute to increased mortality (Ketteler, 2006). The second type of HD membrane
is high-flux dialysis membrane. This membrane is able to remove some uremic toxins,
which cannot be eliminated by low-flux dialysis membrane (Chelamcharla et al.,
2005). This membrane use a higher pressure under larger pores compared to low-flux
dialysis membrane. Though this, the removal of MWUT and PBUT are forced using
high pressure and large pore size (Yamamoto et al., 2016). Regarding HD, the
adequacy of dialysis fulfilled by a high-flux dialysis compared to the low-flux dialysis
has been reported (Oshvandi et al., 2014).



Besides the high-flux membrane, another treatment that can be applied to
remove MWUT and PBUT in blood purification is by using an adsorption mechanism
called hemoperfusion (HP). Basically, the mechanism of HP is the hydrophobic
properties of the sorbents or by chemical affinity (Botella et al., 2000). Carbon-based
adsorbents, such as activated carbon (AC), have been used internally by oral or in
extracorporeal devices (Mikhalovsky and Nikolaev, 2006). HP column is a simple
device, in which a plastic column is filled by the adsorbent powder. The uncoated and
coated charcoal were evaluated as adsorbent to eliminate the MWUT and PBUT.
When the uncoated charcoal is used, the MWUT and PBUT can clearly be adsorbed
better by the adsorbents than the coated charcoal can. Nonetheless, the main problem
is the biocompatibility. The uncoated charcoal is highly incompatible with blood
through direct contact, as it adsorbs not only the MWUT and PBUT, but also other
proteins that are still needed by the body due to the hydrophobic properties of the
sorbent. Based on the previous works, they stated that one hour of HP treatment was
as effective as four hours using HD treatment (YYamamoto et al., 2016; Cheah et al.,
2017). In the past, HP is rarely used for blood purification application primarily due to
the biocompatibility issue of materials, particles release, and limitation to removing
the WSUT despite having a very strong capability to remove MWUT and PBUT. By
advanced manufacturing processes and improved biocompatibility, sorbent has an
enormous potential to be developed (Ronco, 2006). Hence, the type of materials
applied for HP application needs to be improved and innovated. The high selectivity
of hydrophilic sorbents might also be very effective and beneficial for eliminate the
MWUT and PBUT.

Combination of the strengthness of HD and HP can be very beneficial for blood
purification. The module is a polymer membrane used to combine the diffusion and
adsorption mechanism at one step called mixed-matrix membrane (MMM) (Tijink et
al., 2012). MMM exhibits many advantages, such as flexible large-scale operation,
simple, time efficiency, minimum membrane fouling and flux decline, and energy
saving (Suen, 2015). The principal of MMM is the synergetic of different functions by
different materials (Ulbricht, 2006). The purpose of developing this membrane is to
harness its time efficiency during HD application, since it is able to remove WSUT,
MWUT, and PBUT in a one-step dialysis. Besides that, MMM is also able to improve



the biocompatibility of a polymer. Apart from that, there can also be a combination of
main polymer and inorganic material, such as multi-walled carbon nanotubes
(Nidzhom et al., 2016); activated carbon (Tijink et al., 2012; Pavlenko et al., 2016);
nano-hydroxyapatite (Sun and Wu, 2014a; Sun and Wu, 2014b); and silicalite or
zeolite (Tantekin-Ersolmaz et al., 2000). However, there are requirements that need to
be fulfilled for material used as additive, such as containing hydrophilic group, and is
biocompatible and non-toxic. When a main polymer, such as polyethersulfone (PES),
is in direct contact with blood during HD process, the proteins tend to be adsorbed
onto the polymer surface. Then, this protein layer causes fouling on the inner surface
of the HD membrane and decreases the function of pores in the inner membrane
surface (Irfan and Idris, 2015). This membrane is a problem-solving for many cases
and weaknesses occured during blood purification treatment. Therefore, there is a need
to further study the MMM to provide the best solution in blood purification.

The porous structure of zeolites makes them true shape-selectivity molecular
sieves with wide-ranging applications in catalysis, ion exchange, and adsorption
processes (Cejka et al., 2010; Zaarour et al., 2014). Other than that, zeolites can be
modified through its selectivity pore size by molecularly imprinting polymer (MIP)
concept. Khasanah et al. (2013) has managed to produce the imprinted zeolite for the
improvement of the selectivity of a voltammetric sensor in uric acid analysis. This
imprinting zeolite-modified glass carbon has showed a good performance and high
sensitivity, precision, accuracy, and low detection limit. Zeolite be synthesized with a
three-dimensionally ordered mesoporous-imprinted structure using a carbon template
to improve the catalytic and separation performance (Chen et al., 2011). Furthermore,
combination of zeolite with PES as HD membrane is prabably solution for efficient
removal of WSUT, MWUT, and PBUT during treatment in order to provide a better
quality of life for a patient with kidney failure.



1.2 Problem Statement

On the discussion of HD, reported that adequacy of dialysis be achieved by
using high-flux compared to the low-flux dialysis (Oshvandi et al., 2014). However,
the high-flux dialysis has several weaknesses, such as higher cost compared to that of
a low-flux dialysis, and there are many requirements that have to be fulfilled by
patients prior to receiving the treatment, such as body weight, hemoglobin level,
phosphate concentration, and blood pressure (Yilmaz et al., 2014). It causes the blood
and dialysate flow under a high-pressure pass to the HD membrane, thus resulting in
a dangerous drop in blood pressure, causing fewer symptoms to the patients (Oshvandi
et al., 2014). Furthermore, not every patient can be treated by a high-flux dialysis.
Based on these problems, there needs to be an enhanced alternative membrane on low-
flux dialysis that is capable of removing the WSUT, MWUT, and PBUT

simultaneously.

Based on the selectivity problem for the sorbents used for PBUT removal
applied into HP treatment as described previously, this study aims to develop zeolite
Y to be more selective on p-cresol uremic toxin by using the MIP concept prior to
fabricating it to the HF-MMM with polyethersulfone (PES) and polyvinylpyrrolidone
(PVP) by using dry/wet inversion spinning system (Luo et al., 2015; Trotta et al.,
2012). This study aims to develop a combination of HD and HP in one-step dialysis
by combining PES/PVP with modified zeolite Y to produce excellent membrane to
remove p-cresol as PBUT. The adsorbent used is an innovation of zeolite Y through
the MIP concept to produce a more selective zeolite Y. This is caused by the pores size
of zeolite that have been imprinted and fitted onto the p-cresol. The zeolite Y was
chosen because of its suitable pore size (0.6 to 0.8 nm) for p-cresol, which had a size
of 0.66 nm in large; 0.76 nm in length; and 0.39 nm in thickness (Wernert et al., 2005).
The zeolite Y was imprinted by using p-cresol as a representative of PBUT called the
imprinted zeolite Y/p-cresol (IZC). The p-cresol was chosen as a target uremic toxin
because of its higher toxicity compared to other types of PBUT. Additionally, the
modification of zeolite through 1ZC could significantly improve the p-cresol removal
as a powder form for it to be embedded into the HF-MMM. So far there have been no

reported regarding MMM containing highly selective adsorbents for special toxins.



The MMM that has been developed contains less selective. Thus, it were adsorb many
potential compound that are still needed and less able to adsorb toxins especially
PBUT. The HF-MMM developed could offer the adequacy removal of WSUT and
PBUT during the performance. Since they have a dual function in the one-step
treatment, the WSUT could be excellently removed by the diffusion process, while the
PBUT was removed by the adsorption mechanism in the one-time step. Additionally,
the comprehensive study of the low-flux membrane fabrication, including the effect of
air gap distance between the spinneret and coagulant bath, percentage loading of main
polymer (PES), additive (PVP), and adsorbent filler (IZC) could eventually produced

the low flux superior membrane to remove urea and p-cresol uremic toxins.

1.3 Research Objectives

The work aims to synthesize the high-capability of 1ZC adsorbent for p-cresol
removal then fabricated to PES to produce an excellent hybrid MMM. The specific

objectives of this study are:

1. To investigate the adsorption properties of 1ZC towards p-cresol by varying

adsorption time and p-cresol concentration and selectivity to phenol.

2. To examine the effects of air gap and loadings of PES, PVP, and 1ZC on the
characteristics and separation performance of PES/PVP/1ZC HF-MMM.

3. To investigate the hemocompatibility and cytotoxicity properties of PES/PVP/IZC
HF-MMM compare to that of neat PES membrane.



1.4 Scope of the Study

To realize the above-mentioned objectives, the subsequent scopes of studies
have been finalized as follows:

(1)  Synthesizing zeolite Y (ZeoY-S) and 1ZC by using NaAlIO2, NaOH, and SiO;
under aging at room temperature for 24h and hydrothermal crystallization
treatment at 100°C for 24h by molar ratio 4Na>0:10SiO,:Al>03:180H20 then
adding p-cresol for 1ZC (to accomplish objective 1).

2 Characterizing synthesized zeolite Y (ZeoY-S), non-imprinted zeolite (NI1Z),
IZC and commercialized zeolite Y-CBV100 (ZeoY-C) by using X-ray
Diffraction (XRD), Fourier Transform Infrared (FTIR), and Thermal
gravimetry analysis (TGA) (to accomplish objective 1).

3 Characterizing the morphology, pore structure and size of ZeoY-S, 1ZC and
ZeoY-C by using scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and Brunauer-Emmet-Teller (BET) (to accomplish

objective 1).

4 Studying of adsorption time on ZeoY-C, ZeoY-S, and 1ZC for 5 to 240 min
using synthetic p-cresol solution, by ranging the initial concentration of p-
cresol from 10 to 50 ppm at fixed adsorbent weight of 50 mg (to accomplish

objective 1).

(5) Analysing the adsorption studies by Nuclear magnetic resonance for *H and
29Si (NMR) by comparison of 1ZC and NIZ (to accomplish objective 1).

(6) Analysing the adsorption isotherm of Langmuir and Freundlich parameter and
adsorption Kinetics for Pseudo first-order, second-order and intra-particle
diffusion (IPD) models for ZeoY-C, ZeoY-S and IZC (to accomplish

objective 1).

@) Measuring the selectivity of the ZeoY-C, ZeoY-S, and 1ZC by using phenol as

influence analyte (to accomplish objective 1).



(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Preparing several spinning dope solutions for the fabrication of HF-MMM at
different PES, PVP, and 1ZC loading (to accomplish objective 2).

Fabricating of HF-MMM using dry/wet phase inversion technique between
PES/PVP and 1ZC with a study of air gap distance between spinneret and
coagulation bath during spinning process varying from 10 to 50 cm; PES
loading ranging from 14, 16, and 18 wt.%; PVP loading ranging from 1.6; 2;
and 3 wt.%, and different loading of 1ZC ranging from 1; 2.5; 5; and 7.5 wt.%
(to accomplish objective 2).

Characterizing the physico-chemical composition of PES/PVP/1ZC HF-MMM
by using SEM, Energy-dispersive X-ray spectroscopy (EDX), Atomic force
microscopy (AFM), FTIR, and TGA (to accomplish objective 2).

Determining water flux, BSA retention, WCA, porosity, and pore size in order
to consideration the optimum parameter (to accomplish objective 2).

Determining membrane separation properties using urea and p-cresol removal
by using PBS and BSA solution as well as by a single fiber permeation system

and modulation system (to accomplish objective 2).

Determining concentration of 1ZC leached out during permeation by using
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (to accomplish

objective 2).

Performing hemocompatibility test for PES/PVP/IZC HF-MMM using protein
adsorption, platelet adhesion, hemolysis assay, and blood coagulation test by
Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT)

(to accomplish objective 3).

Conducting toxicity test for PES/PVP/1IZC HF MMM using MTT assay by

using Lymphocytes cell (to accomplish objective 3).



1.5  Significance of the Study

An excellent membrane had been successfully developed, where it was applied
into the HD treatment by increasing its selectivity. The imprinted zeolite as a selective
adsorbent onto the p-cresol as a representative of PBUT was synthesized. The results
proved that the imprinting process was successfully printed on the zeolite framework.
The HF-MMM composite of PES, PVP, and 1ZC was fabricated by dry/wet phase
inversion technique had successfully removed the WSUT and PBUT in a one-time
process. The developed membrane has a high novelty, as there had been no report of
HF membrane combined with a selective adsorbent such as 1ZC. This success became
a basis for the development of selective adsorbents for other uremic toxins to provide
a better quality of life for kidney disease patients. This hybrid membrane will be the
most promising alternative for more adequate uremic toxin removal for life-sustaining
of CKD patients. Thus, the results will be able to be continuously developed by the
Malaysian government to produce own Malaysia’s dialysis membrane, together with
the domestic industry collaboration. As known, Malaysia is still importing dialysis
membranes to meet the needs of dialysis membrane for hospital and clinical use.
Therefore, it will have a positive impact on the country’s economy and give better live

sustainability for kidney failure patients in Malaysia.

1.6 Organization of the Thesis

This thesis is divided into seven chapters. In the first chapter (Chapter 1), the
introduction on the application of membrane technology to the hemodialysis treatment
include a problem statement, objectives, scopes, and the significance of study are
provided. Chapter 2 consists of literature reviews of the topics in line with the interest
of this thesis. The details of kidney, kinds of uremic toxins, hemodialysis mechanism,
including the membranes used, were described. This chapter also deliberates the
zeolite, imprinted zeolite, and its biocompatibility. Meanwhile, the materials and
methods used in this study were described in Chapter 3. This chapter also explains for
the characterization approaches and performance testing for the materials and

membrane developed. Chapter 4 describes the synthesis of ZeoY-S and 1ZC by using



molecularly imprinting polymer concept. Then, those zeolites were characterized by
using XRD, FTIR, TGA, SEM, TEM, NMR, and BET, as well as ZeoY-C as
comparison. Furthermore, the adsorption and selectivity study showed that 1ZC was
proven to improve 20% for adsorption capability and 4.3 times the selectivity, which
is higher than that for ZeoY-C and ZeoY-S. The adsorption behavior under isotherm
and kinetics models was also studied and discussed in depth. On the other hand,
Chapter 5 describes the fabrication of 1ZC incorporated with PES/PVP to produce HF-
MMM by using dry/wet phase inversion technique. The characterization of
PES/PVP/1ZC HF-MMM by using SEM, EDX, AFM, and TGA were also described.
In this section, the spinning parameter, such as the air gap distance between the
spinneret and the coagulation bath and varied loading of PES, PVP, and 1ZC were
studied. Then, the performance result was obtained via water flux, BSA retention,
WCA, porosity, size, and the membrane separation performance for urea and p-cresol
removal. Those performances were measure under a cross-flow single fiber
permeation and modulation system developed. Finally, Chapter 6 describes the
biocompatibility test, including the hemocompatibility evaluation (protein adsorption,
platelet adhesion, hemolysis assay, APTT, and PT), and cytocompatibility evaluation
were tested by using MTT assay for fabricated HF-MMM. This evaluation is very
crucial for the application of the materials applied into a human. Finally, the general
conclusion achieved in this study, together with suggestions and recommendations for

further study, are described in Chapter 7.
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APPENDIX A

Analysis Data for Crystallinity Index (%Cl)
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Crystallinity index for ZeoY-S
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Crystallinity index for 1Z
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Unit cell of ZeoY-C

APPENDIX B

Determination of Unit Cell

Table B.1 Analysis data for determination of unit cell of ZeoY-C

a(A)
Peak | 26 0 d h | k h2+k2+I?
Jd2 x (h2 + k2 + [2)
1 6.172 | 3.086 [ 14306 | 1 | 1 3 24.78
2 15584 | 7.792 |5.6815| 3 | 3 19 24.76
3 23.510 | 11.755 | 3.7710 | 6 | 2 44 25.01
Average unit cell (A) 24.85
Unit cell of ZeoY-S
Table B.2 Analysis data for determination of unit cell of ZeoY-S
a (A)
Peak | 26 0 d h | k h?+k2+12
Jd? x (h? + k2 + 12)
1 6.167 | 3.0884 {14321 | 1 | 1 3 24.81
2 15574 | 7.787 |5.6854 | 3 | 3 19 24.76
3 23.524 | 11.762 | 3.7788 | 5 | 3 43 24.78
Average unit cell (A) 24.78
Unit cell of 1Z
Table B.3 Analysis data for determination of unit cell of 1Z
a (A)
Peak | 26 0 d h | k h+k2+I?
Jd? x (h? + k2 + 12)
1 6.157 | 3.0785 14343 |1 | 1 3 24.84
2 15575 | 7.7875 | 5.6859 | 3 | 3 19 24.78
3 23.586 | 11.793 | 3.7690 | 5 | 3 43 24.71
Average unit cell (A) 24.78
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APPENDIX C

Determination of Si/Al Ratio

Determination of Si/Al ratio based on XRD pattern

The equation for determination of Si/Al ratio of zeolites studies is:

Si 166656
Al a-24.191

Table C.1  Analysis data for Si/Al ratio obtained from XRD pattern

Zeolite Average a (A) Si/Al
ZeoY-C 24.85 1.53
ZeoY-S 24.78 1.83

1Z 24.78 1.83

Determination of Si/Al ratio based on FTIR spectra

The equation for determination of Si/Al ratio of zeolites studies is:

a. N, = [(4.425—4.054x1073) x ][N, + Ng;]

Si 192— Ny

Al Ny

b.

Table C.2 Analysis data for Si/Al ratio obtained from FTIR spectra

Zeolite o Nai + Nsi Nai Si/Al
ZeoY-C 1022 192 72.768 1.64
ZeoY-S 1014 192 72.192 1.66

1Z 1016 192 72.384 1.66
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Determination of Si/Al ratio obtained from EDX analyzer

@ Table C.3 Analysis data for Si/Al ratio obtained from EDX analyzer

Zeolite Silicon (wt.%) Aluminium (wt.%) Si/Al
ZeoY-S 73.16 26.84 2.73
4 73.94 26.06 2.84

Determination of SiO,/Al>O3 ratio obtained from FTIR spectra

The equation for determination of Si/Al ratio of zeolites studies is:

a. Ny = [(4425 — 4.054 x 1073) x 0] [N, + Ng]

Si0, _ 192— Ny
. = N
Al, 03 A/,

Table C.4 Analysis data for SiO2/Al>Oz3 ratio obtained from FTIR spectra

Zeolite c Nai + Ns; Nai SiO2/Al203
ZeoY-C 1022 192 72.768 3.30
ZeoY-S 1014 192 72.192 3.32

1Z 1016 192 72.384 3.31

186



APPENDIX D

Adsorption Test for Zeolites

Standard calibration curve for p-cresol by using UV-Vis Spectrophotometer

Table D.1: Standard calibration curve for p-cresol by UV-Vis spectrophotometer

Concentration (mg/L) Absorbance
10 0.37
20 0.872
30 1.237
40 1.761
50 2.122
..J y = 0.0435x - 0.0455 ]
@ B R*=0.39685 -
= 15
3 .
_E 1 e
<1 05 -
¥
v 0 10 20 30 47 50 &0

Concentration {mg/L)

Figure D.1 Calibration curve for p-cresol
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Adsorption of p-cresol at varying time

Table D.2 Analysis data for zeolites powder for p-cresol removal at varying time of

adsorption

Time Ave(rr?]g(j ()Qads sD Ave(rra;]g(j ()Qads sD Ave(rrarllge/ ()Qads sD
(min) Zeov.e | @ Zeovs | ) 7 (%)
5 2.99 0.08 7.69 0.11 13.90 0.15
10 4.87 1.37 9.09 0.20 16.10 0.21
15 5.61 0.05 11.04 0.20 21.10 0.06
30 6.37 0.33 14.38 0.22 21.12 0.09
45 7.33 0.31 14.52 0.02 21.15 0.06
60 9.84 0.08 14.53 0.21 21.10 0.05
90 10.05 0.15 14.64 0.11 21.09 0.15
120 10.11 0.13 14.69 0.03 21.04 0.09
150 10.03 0.18 14,72 0.07 21.19 0.07
180 10.12 0.11 14.86 0.05 21.14 0.03
210 10.03 0.13 14.85 0.03 21.07 0.18
240 10.16 0.27 14.79 0.07 21.19 0.19

Adsorption of p-cresol at varying concentration

Table D.3 Analysis data for zeolites powder for p-cresol removal at varying

concentration

Concentration Ave(rr?]ge; ()Qads sD Ave(rrarl]ge; ())ads sD Ave(rrarl]ge; ()Qads sD
(mg/g) zevie | P | Zeovs (%) 7z (%)

10 2.74 0.13 3.79 0.17 4.76 0.09

20 5.03 0.09 7.00 0.12 9.28 0.14

30 7.41 0.27 9.88 0.16 13.56 0.07

40 9.12 0.28 12.15 0.08 17.45 0.07

50 9.84 0.08 14.45 0.30 21.10 0.05
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APPENDIX E

Selectivity Measurement

Chromatogram of phenol and p-cresol for HPLC

VWD1 A, Wavelength=254 nm (MIMI2018-09-0414-43-51adi phenol s 4 sep D)

mAU ] §
7 phenol %
254 |

204

p-cresol

Figure E. HPLC Chromatogram of phenol and p-cresol

Analysis data for average area and concentration of phenol and p-cresol obtained after

adsorption test for 50 mg adsorbent, 50 mg/L adsorbate, 1 hour adsorption time, and

210 rpm for agitation.

Table E.1: Analysis data for average area and concentration

Standard ZeoY-S V4
Compound Average Conct. Average Conct. Average Conct.
area area area
(mAU*s) (mg/L) (mAU*s) (mg/L) (mAU*s) (mg/L)
Phenol 474.21 50 394.84 41.63 423.33 44.64
p-Cresol 266.48 50 229.09 42.98 187.69 35.22
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Analysis data for Qads and percentage of removal

Table E.2: Analysis data for Qads and percentage removal

ZeoY-S V4
Compound Qads (o) Percentage Qads (g/c) Percentage
removal (%) removal (%)
Phenol 8.37 16.74 5.36 10.73
p-Cresol 7.02 14.03 14.78 29.57
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APPENDIX F

Zeolite leached out during permeation (1% 1Z loading)

Concentration of zeolite leached out during permeation for varying conditions

. Pressure | Time ppm (mg/L)
Condition
(bar) (hour) | Repl. | Rep2. | Rep 3. | Average SD
Unwashed 1 1 0.1057 | 0.1027 | 0.0824 | 0.0969 | 0.0127
Washed 0.5 1 0.0433 | 0.0515 | 0.0571 | 0.0506 | 0.0069
Washed 0.3 1 0.0195 | 0.0235 | 0.0184 | 0.0204 | 0.0027

Percentage leaching of zeolite during permeation for varying conditions

. Pressure | Time Percentage Leaching (%)
Condition
(bar) (hour) | Repl. | Rep2. | Rep 3. | Average SD
Unwashed 1 1 0.2114 | 0.2054 | 0.1648 | 0.1939 | 0.0254
Washed 0.5 1 0.0867 | 0.1029 | 0.1143 | 0.1013 | 0.0139
Washed 0.3 1 0.0390 | 0.0469 | 0.0367 | 0.0409 | 0.0054
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APPENDIX G

Protein Adsorption Test

BSA and Fibrinogen standard calibration curve

Absorbance

Absorbance

0.001
0.001 o
o001 | o
0.000 e
0.000 e y = 0.0005x + 0.091
0.000 o R2 =0.9928
0.000
0.000

0 200 400 600 800 1000

Concentration (ug/mL)

Figure G.1 Calibration curve of BSA

0.000
0.000 )
0.000 o

0.000 7

0.000 e ¥=0.0003x+0.0878
2_

0.000 ‘.-‘ R%=10.9948

0.000
0.000

0.000
0 500 1000 1500

Concentration (ug/mL)

Figure G.2 Calibration curve of Fibrinogen
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