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ABSTRACT 

Palm oil mill effluent (POME) is brownish, high organic loading effluent 

produced by palm oil industry. Conventionally used biological treatment has 

successfully reduced the biochemical oxygen demand of POME below 25 ppm, which 

is considered as clean effluent. However, chemical oxygen demand (COD) and colour 

of the aerobically treated palm oil mill effluent (AT-POME) are still high. Therefore, 

tertiary treatment such as membrane processes are used to further polish AT-POME in 

order to reduce its COD and colour to meet discharge standard. However, fouling 

becomes severe issue in restricting the membrane lifespan and usage in this 

application. This work aimed to develop hybrid photocatalytic membranes with self-

cleaning properties to mitigate the membrane fouling and also photodegrades the 

chemical compounds in AT-POME. First, coupled zinc-iron oxide (ZIO) was 

synthesized from its precursor, i.e. zinc nitrate and iron (III) nitrate through solution 

combustion by varying the molar ratio between zinc and iron (ranging from 1:1 to 1:4 

with respect to zinc to iron ratio). Second, the optimum molar ratio of ZIO was calcined 

at temperature ranging from 400C to 800C. Third, the self-synthesised ZIO was 

incorporated into polyvinylidene fluoride (PVDF) polymer matrix to produce mixed 

matrix photocatalytic ultrafiltration membrane (MMMs) for decolourisation of AT-

POME. Five membranes were formulated by varying ZIO from 0.0 wt % to 2.0 wt%. 

The fabricated membranes were subjected to physico-chemical analysis, i.e. field 

emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray 

diffraction, Brunauer-Emmett-Teller, ultraviolet-visible-near infrared, absorption test, 

filtration process, photodegradation test to identify the self-cleaning properties, 

separation performance and fouling mitigation properties. Based on the experimental 

results, ZIO with 1:4 zinc to iron ratio was the optimum ZIO which provided large 

surface area (30.9130 m2/g), lowest band gap energy (2.07 eV), high photocatalytic 

activity (achieved 35% of mineralisation in 6.5 hours and 100% degradation in 3.5 

hours). On the other hand, as calcination temperature increased, the particle size of 

ZIO increased gradually. This phenomenon led to the decrease of surface area of ZIO 

that reduced its performance in absorption and photodegradation of organic 

compounds. The results demonstrated that calcination temperature of 500C was the 

optimum temperature to provide the highest photodegradation. For the MMMs, as the 

ZIO loading increased, the porosity decreased, and surface negativity increased. 

However, when higher loading of ZIO was used, the mechanical strength of the 

membrane structure deteriorated and cannot withstand long-term operation. Therefore, 

the optimum loading was identified as 0.5 wt% ZIO in which the membrane achieved 

75% colour removal efficiency with flux of 20 – 25 LMH (L.m-2.hr-1). Furthermore, 

the self-fabricated MMMs photocatalytic ultrafiltration (UF) membrane possess the 

high flux recovery after ultraviolet and visible light cleaning, i.e. 92.3% and 90.3%, 

respectively. The addition of ZIO in polymeric matrix enabled the photodegradation 

of colour pigments in AT-POME. After 16 hours of operation, the colour of AT-POME 

reduced by 8%. In a nutshell, PVDF/ZIO photocatalytic UF membrane had 

successfully decolourised AT-POME and reduced its COD. 
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ABSTRAK 

Efluen minyak kelapa sawit (POME) merupakan efluen berwarna perang dan 

mempunyai kandungan bahan organik yang tinggi yang dibebaskan dari kilang kelapa 

sawit. Secara lazimnya, rawatan biologi digunakan untuk merawat POME supaya 

keperluan oksigen biokimia di bawah 25 ppm, yang dikatakan sebagai efluen bersih. 

Walaubagaimanapun, keperluan oksigen kimia (COD) dan warna bagi efluen minyak 

kelapa sawit selepas rawatan anaerobik (AT-POME) masih tinggi. Jadi, rawatan tertier 

seperti proses membran digunakan untuk merawat AT-POME supaya COD dan 

warnanya dapat dikurangkan supaya mencapai tahap piawai. Pengotoran membran 

menjadi isu yang mengehadkan penggunaan proses membran dalam aplikasi ini. 

Kajian ini bertujuan untuk menghasilkan membran fotopemangkinan hibrid dengan 

ciri pencucian sendirian untuk meringankan pengotoran membran fotopemangkinan 

serta menguraikan sebatian organik dalam AT-POME. Pertama, zink-ferum oksida 

(ZIO) berganding diolah dengan menggunakan zink nitrat dan ferum (III) nitrat 

sebagai prekursor melalui kaedah pembakaran larutan dengan mengubah nisbah molar 

antara zink dengan ferum (julat dari 1:1 ke 1:4). Kedua, nisbah molar ZIO optimum 

dikalsinat pada suhu 400C hingga 800C. Ketiga, ZIO ditambah ke dalam matriks 

polimer polivinilidene difluorida (PVDF) untuk menghasilkan membran ultraturasan 

fotopemangkinan matriks bercampur (MMMs) untuk penyahwarnaan AT- POME. 

Lima membran diformulasi dengan mengubah kandungan ZIO dari 0.0 wt% ke 2.0 

wt%. Membran yang dihasilkan dikaji dari segi analisis fisiko-kimia seperti mikroskop 

elektron imbasan pancaran medan, spektroskopi dispersif tenaga sinar-X, belauan 

sinar-X, Brunauer-Emmett-Teller dan ultraungu-nampak-dekat inframerah, ujian 

penyerapan, ujian penurasan dan ujian fotopemangkinan untuk menentukan 

keupayaan membran untuk pembersihan sendirian, penurasan dan pengurangan 

pengotoran membran. Daripada keputusan eksperimen, ZIO dengan nisbah 1:4 zink 

kepada ferum merupakan ZIO optimum yang menunjukkan luas permukaan yang 

besar (30.9130 m2/g), tenaga sela jalur yang rendah (2.07 eV), aktiviti 

fotopemangkinan yang tinggi (35% mineralisasi dalam 6.5 jam dan 100% degradasi 

dalam 3.5 jam). Di samping itu, peningkatan suhu kalsinasi menyebabkan saiz partikel 

ZIO bertambah. Fenomena ini menyebabkan penurunan luas permukaan ZIO dan 

menurunkan prestasi penyerapan dan fotodegradasi sebatian organik. Keputusan 

eksperimen menunjukkan suhu 500C adalah suhu kalsinasi optimum yang 

memberikan fotodegradasi yang tertinggi. Untuk MMMs, apabila ZIO bertambah, 

keliangan dan cas permukaan semakin negatif. Walaubagaimanapun, semakin tinggi 

kandungan ZIO yang digunakan, kekuatan mekanikal bagi struktur membran 

termusnah dan tidak dapat menahan operasi jangka masa panjang. Oleh itu, optimal 

telah ditentukan iaitu 0.5 % berat ZIO di mana membran mencapai 75 % 

penyahwarnaan dengan flux 20 – 25 LMH (L.m-2.j-1). Selain itu, MMMs 

fotopemangkinan ultraturasan menunjukkan perolehan fluks yang tinggi selepas 

pencucian ultraungu dan cahaya nampak, iaitu masing-masing 92.3 % dan 90.3 %. 

Penambahan ZIO dalam matriks PVDF dapat menguraikan pigmen warna dalam AT-

POME. Selepas 16 jam operasi, warna AT-POME diturunkan sebanyak 8 %. 

Kesimpulannya, membran ultraturasan fotopemangkinan PVDF/ZIO telah berjaya 

menyahwarnakan AT-POME dan mengurangkan CODnya. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Oil palm (Elaeis guineensis) is one of the most versatile crops in the tropical 

region, notably in Malaysia and Indonesia. As reported by World Wildlife Fund 

(WWF), more than 65 per cent of all vegetable oil traded internationally is palm oil. 

Also, this number is expected to be increased double by 2020 [1]. In Malaysia, the 

palm oil production grows 12 per cent annually based on the statistics by United States 

Department of Agriculture [2]. Despite the benefits of palm oil industries to the social 

and economic growth, the processing of oil palm generates huge quantity of solid 

waste and wastewater. The solid waste of palm oil mill includes empty fruit bunch 

(EFB) and kernel seed. These wastes can be used to produce energy through 

combustion. Besides, some studies showed that the EFB can be used as the culture 

medium for microorganism growth. The wastewater from palm oil mill is known as 

palm oil mill effluent (POME) which is a brownish liquid with unpleasant smell and 

low pH. The POME is known as one of the major water pollutants in Malaysia due to 

its high organic content [3, 4]. These organic substances that loaded into source water 

may cause the eutrophication and eventually cause death of the aquatic organisms. The 

colour pigment presents in the aerobically or anaerobically treated POME (AT-POME) 

which arise from the biodegradation of lignocellulosic compound in POME. The 

brown colour pigment majorly come from tannin, lignin and carotene [5]. These colour 

pigment prevent the use of AT-POME in the palm oil extraction process because it 

colourises the pipeline and reduces the lifetime of the pipe. The conventional handling 

method of these AT-POME is discharge into point and source water instead of reusing 

it into the process line. AT-POME is dark brownish in colour. In fact, the darkness of 

the AT-POME is higher than POME due to the degradation of lignocellulose product 

and carotenoid compound in the POME into lignin and tannin. This will further 



 

 

2 

increase the acidity, turbidity and colour of the AT-POME. This restrict the 

reclamation of the treated POME for further reuse.  

 

Generally, there are several technologies available for the removal of colour 

and COD from POME. For instance, ion exchange [6], coagulation [7], adsorption [8], 

and membrane processes [9]. Coagulation is a process that uses chemicals to 

destabilize the impurities (especially macromolecules and suspended solids) in POME. 

Coagulation has been proven to be capable to remove the suspended impurities that 

contribute to the high COD and dark brown colour of POME [7]. For instance, Zahrim 

et al. [10] showed that the use of dual-coagulants, i.e. ferric chloride-anionic 

polyacrylamide managed to achieve higher than 90% colour removal in POME 

treatment. The attractiveness of coagulation process is its simplicity in design and 

operation, low energy consumption and high versatility. However, coagulation process 

alone could not attain complete decolourization and treatment of POME due to its 

failure to remove dissolved organic substances in POME. In order to achieve higher 

removal of colour and reduction of COD, adsorption has been proposed for POME 

treatment. Adsorption process utilizes adsorbents (with the most widely used is 

activated carbon) to adsorb and capture the dissolved organic impurities in wastewater 

for decolourization purpose [11]. Mohammed et al. [8] reported that the use of 

activated carbon adsorbent could reduce the colour intensity of POME with removal 

efficiency of 96.46%. Though the high decolourization efficiency is quite encouraging, 

the widespread of adsorption for POME treatment and decolourization has not been 

well accepted by industry due to the high expenditure associated with the regeneration 

of activated carbon for reuse and the replacement cost of spent activated carbon. On 

the other hand, membrane technologies such as NF and RO could be used to remove 

both suspended and dissolved organic substances in POME [9]. Both NF and RO 

membranes could reduce the COD down to less than 10 mg/L and colour intensity to 

less than 5 Pt.Co. The performance of membrane technologies is very convincing yet 

it is not employed in POME treatment due to membrane fouling issue, where 

impurities will deposit on the membrane surface and block the passage of water from 

passing through the membrane. Hence, unless membrane fouling could be resolved or 

minimized, the fouling issue will continue to hinder the application of membrane in 

POME treatment and decolourization. 
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Another emerging technology for colour removal is photocatalysis [12]. 

Photocatalyst is a semiconductor nanoparticle that can generate electrons and holes 

through the excitation by solar or light energy. Photocatalyst can photodegrade most 

of the organic molecules into less hazardous molecules. Thus, it is widely applied in 

wastewater and water treatment. However, using photocatalyst directly will cause the 

suspension of nanoparticles in the treated solution. This requires additional unit 

operation to recover the nanoparticles for the subsequent usage. Therefore, the 

footprint of the plant will increase, and more construction and maintenance cost will 

be involved. In order to enhance the photocatalysis, nanosized photocatalyst has been 

normally used. However, it is very tedious to separate nanoparticles with low cost 

process.  

 

 

In order to harness the advantages of both membrane technology and 

photocatalysis, also to mitigate their undesired limitations, nanocomposite 

ultrafiltration (UF) membrane with photocatalytic properties is developed. UF 

membrane is a membrane technology that is able to separate macromolecule of 103 to 

106 Da. Therefore, UF can give relatively high flux with lower operating pressure. Yet, 

UF cannot remove colour pigment since they are too small. Therefore, a new 

configuration of UF that incorporate with photocatalytic nanoparticles is fabricated to 

overcome this limitation. Nanoparticles with photocatalytic properties are 

incorporated into membrane matrix to enhance it hydrophilicity and also render 

photocatalytic properties to achieve the synergistic effects.  

 

 

In this study, nanocomposite UF membrane with coupled zinc-iron oxide 

nanoparticles was fabricated to enhance the AT-POME colour removal. The coupled 

zinc-iron oxide nanoparticles (ZIO) were synthesised by solution combustion 

technique. The nanoparticles were then incorporated with the polymer dope solution 

to form a flat sheet membrane via phase inversion process. The resultant photocatalytic 

nanocomposite membrane demonstrates the ability of self-cleaning, prolonged 

operation duration and also enhanced performance in colour removal of AT-POME.  
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1.2 Problem Statements 

 

 

The high pollutant content of the POME hampers the direct discharge into the 

water source. Therefore, proper and systematic treatments are highly desired to prevent 

the pollution of water by the palm oil waste. However, the conventional treatment 

method, i.e. biological degradation method is ineffective for colour removal. This is 

due to the dependency of the microorganism on the weather and environment. Besides, 

the biodegradation of lignocellulosic compounds produces tannin and lignin that 

increase the brownness of AT-POME [13]. This raises the public concern about the 

level of toxicity or pollutant in the AT-POME. Besides, the build-up of brown colour 

pigment restricts the reclamation of AT-POME in palm oil industry. Thus, membrane-

based separation holds very promising potential to address this issue as this technology 

can be used to reclaim the water for the plant reuse and reduce the chemical oxygen 

demand (COD) significantly.  

 

 

NF has been widely used in decolourization of wastewater [9, 14, 15]. The 

major drawback of the process is utilization of high pressure and low permeation rate, 

i.e. approximate 11.3 LMH [16, 17]. Therefore, it is not feasible for the palm oil 

industry to handle high output rate of AT-POME. Thus, UF with bigger pore size need 

to be customized so that it can cope the AT-POME production rate. Another drawback 

of NF process is the high fouling tendency. The foulant (i.e. colour pigment) tends to 

block the pore on the membrane and reduce the flux drastically. Therefore, 

nanocomposite membrane is an attractive candidate to solve these problems. 

Photocatalysts can serve as nanoparticles that alter the membrane physical properties 

and also act as antifouling agent. Ideally, photocatalyst in the membrane matrix can 

work in two ways, which are photodegrade foulant that block the membrane pores and 

photodegrade the colour pigment in the AT-POME that close to the membrane surface. 

This can further enhance the membrane separation efficiency by mitigating the fouling 

problem. 

 

 

In this study, UF with near NF properties can be incorporated with bimetallic 

photocatalyst to filter the AT-POME. The photocatalyst in polymeric matrix can tailor 

the surface charge of membrane so that the desired charge can be obtained. Besides, 
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the photocatalyst that embedded into the membrane can give self-cleaning property to 

the membrane and extend it lifespan. Furthermore, when the photocatalytic membrane 

is irradiated under visible light, it can carry out photocatalysis and filtration 

simultaneously. Thus, recycle of photocatalyst can be easily achieved. Figure 1.1 

shows the working mechanism of membrane with photocatalyst. Upon excited by UV 

light source, TiO2 photocatalyst will produce hydroxyl radicals from water molecules. 

These hydroxyl radicals will then degrade the organic impurities (either present on the 

membrane surface or suspended close to the membrane surface) into harmless 

compounds such as CO2 and H2O. This can help to minimize membrane fouling 

propensity and enhance the separation efficiency since membrane blocking issue by 

impurities will be mitigated through photocatalytic degradation. The photodegradation 

of the colour pigment in the AT-POME can dilute the brownish colour of the AT-

POME and reduce the concentration of colour pigment in AT-POME so that the 

membrane separation can be carried out easily. Another advantage of embedding 

photocatalyst in the membrane matrix is that it can avoid the secondary treatment of 

photocatalyst in heterogenous system. Membrane serves as the binder or holder of the 

photocatalyst to enable the recycle and reuse of the photocatalyst for long term usage.  

 

 

 
Figure 1.1 Working mechanism of membrane embedded with photocatalyst [12] 

 

 

The rate of photocatalysis are depending on the concentration of 

photogenerated holes and electrons and their rate of recombination. Currently, 
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titanium dioxide has been employed as commercial photocatalyst as its high 

photocatalytic activity. However, the use of titanium dioxide requires high 

photoenergy, thus, it can only be activated by ultraviolet (UV) light. Therefore, 

photocatalytic reactor must be properly enclosed to prevent the exposure of ultraviolet 

light to operator. Reducing the band gap energy of photocatalyst can be one of the 

methods to shift the activation light from ultraviolet to visible region. But, this will 

indirectly increase the rate of recombination between the photoexcited holes and 

electrons. This phenomenon could result in the low photocatalytic activity.  Hence, 

bimetallic oxide photocatalyst is developed to solve these two mentioned problems 

above. By constructing bimetallic oxide with different characteristics, a p-n junction 

can be formed. p-n junction will help to hold the photoexcited holes and electrons at 

its respective matrixes. As a result, the rate of recombination could be minimised. 

 

 

 

 

1.3 Objectives of Study 

 

 

The main focus of this study is to develop a photocatalytic nanocomposite 

membrane for AT-POME colour removal. In order to achieve this main goal, several 

sub-objectives have been identified: 

(i) To synthesize and characterize coupled zinc-iron oxide (ZIO) photocatalyst 

that can be activated in both UV and visible light range. 

(ii) To fabricate and characterize nanocomposite UF membrane which 

embedded with ZIO. 

(iii) To evaluate the performance of the photocatalytic nanocomposite UF 

membrane which embedded with different loading of ZIO in terms of 

AT-POME colour removal efficiency, flux, anti-fouling properties, 

photodegradation and separation performance of the nanocomposite UF 

membrane. 

(iv) To study the photocatalytic properties of hybrid membrane. 
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1.4 Scopes of Study 

 

 

The objective of this study can be accomplished by the following scopes: 

 

 

(i) Characterising the average particle size of AT-POME with commercial NF 

and UF membranes. 

(ii) Synthesising ZIO with different zinc to iron molar ratio 1:1, 1:2, 1:3 and 

1:4 via solution combustion method using zinc nitrate and iron (III) nitrate 

as precursor 

(iii) Studying the effect of zinc to iron molar ratio to the reduction in band gap 

energy and AT-POME photocatalytic activity. 

(iv) Synthesising ZIO with optimum molar ratio by varying calcination 

temperature ranging from 400°C to 800°C. 

(v) Studying the effect of calcination temperature to the surface area of coupled 

ZIO and its absorption capacity. 

(vi) Fabricating nanocomposite UF membrane by polyvinylidene fluoride 

(PVDF) (18.0 wt%), polyvinylpyrrolidone (PVP) (1.0 wt%), lithium 

chloride (LiCl) (0.5 wt%), ZIO (0.0 – 2.0 wt%) and n-methyl-2-pyrrolidone 

(NMP) (78.5 – 80.5 wt%). 

(vii) Studying the effect of ZIO loading to the morphology of membrane by field 

emission scanning electron microscope (FESEM), atomic force 

microscope (AFM) and X-ray diffraction (XRD). 

(viii) Evaluating the performance of photocatalyst ZIO in terms of 

photodegradation in visible and UV light.  

(ix) Evaluating the performance of photocatalysis via COD, colour removal and 

total organic carbon (TOC) analysis. 

(x) Investigating the self-cleaning properties of nanocomposite UF membrane 

by membrane-flux recovery ratio over 4 hours continuous operation in 4 

cycles. 

(xi) Studying the effect of ZIO loading to the membrane performance via pure 

water permeation, colour removal of AT-POME and fouling analysis. 
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1.5 Significance of Study 

 

 

This study aims to decolourise brownish AT-POME which is high in COD, 

colour and TOC. Therefore, through the well study and the control of the synthesis 

parameters, it is believed that the ZIO is able to photodegrade colour pigment and other 

organic substances in AT-POME to produce clear water. Besides, ZIO oxide is 

believed can move the activation photon of photocatalyst from UV light region to 

visible light region. Thus, photocatalytic reaction can be easily activated with the 

presence of natural light (i.e. sunlight).  

 

 

Besides, this is the first attempt by incorporating bimetallic oxide into 

polymeric membrane matrix to produce mixed matrix photocatalytic membrane. By 

developing such nanocomposite photocatalytic membrane, the photocatalysis and UF 

of AT-POME can be carried out simultaneously. Thus, the efficiency of 

decolourization will greatly improve and mitigate the water pollution problems. 

Furthermore, the treated AT-POME which is free from colour pigment can be 

reclaimed into the palm oil mill for other purposes. This will further enhance the water 

sustainability in plant and help to mitigate the excessive water use. In a broader text, 

water shortage problem can be mitigated.  

 

 

 

 

1.6 Thesis Outline 

 

 

 This thesis consists of 5 chapters which are introduction, literature review, 

methodology, results and discussion and conclusion and recommendation. Besides, 

raw data for the membrane performance results are attached in the appendices. The 

thesis was written based on UTM Thesis Manual 2018. 

 

 

 Chapter 1 discussed the problem statement of the current AT-POME treatment 

for the colour removal and some drawback of the technologies used currently. Besides, 

objectives and scopes of the research are mentioned. Chapter 2 discussed the literature 

review which are the recent development for POME and AT-POME treatment, 
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advanced oxidation processes and membrane technologies used in decolourisation. 

Chapter 3 discussed the research methodology for the study and chemical and analysis 

used to determine the performance of the membrane. Chapter 4 discussed the results 

based on the experimental and analysis. Chapter 5 concluded the research based on the 

quantitative and qualitative of the experimental results.  
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APPENDIX I 

 

 

 

 

Raw data for Experiment of Nanocomposite UF membrane incorporating ZIO 

(PWP, COD Removal and Colour Removal) 

 

 

 

 

 

(a) Pure water permeation 

 

 

(b) AT-POME permeation 

 

 

 

(c) Colour and COD removal efficiency 

 

 

 

 

 

1 2 3 Average Std Dev.

M0 4.10 4.10 4.00 4.07 0.05 2.00 1.00 85.92 85.92 1.00

M0.1 5.40 5.20 5.30 5.30 0.08 1.00 1.00 223.94 223.94 3.45

M0.5 4.00 3.90 4.00 3.97 0.05 1.00 1.00 167.61 167.61 1.99

M1.0 3.80 3.80 3.90 3.83 0.05 1.00 1.00 161.97 161.97 1.99

M2.0 3.00 2.90 3.00 2.97 0.05 1.00 1.00 125.35 125.35 1.99

MZ 2.80 2.70 2.80 2.77 0.05 10.00 5.00 11.69 2.34 0.20

MF 4.90 5.00 4.90 4.93 0.05 30.00 1.00 6.95 6.95 0.07

Sample PWP (LMH)
PWP (LMH 

Bar)
Std DevPressure (bar)

Flux (mL)
Time (min)

M0 7.5 10 1 31.69

M0.1 9.8 10 1 41.41

M0.5 9.5 10 1 40.14

M1.0 9.8 10 1 41.41

M2.0 7.5 10 1 31.69

MZ 2.6 10 5 10.99

MF 3.1 30 1 4.37

Sample Flux (mL) Time (min)
Pressure 

(bar)

PWP 

(LMH)
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(d) Colour and COD removal efficiency 

 

 

 

 




