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Abstract. Estimated relative permittivity performed on soil is essential for forecasting the 

performance of Ground Penetrating Radar (GPR) in an in-depth manner. This study investigated 

and verified the empirical relationship model between relative permittivity and volumetric water 

content in soil to predict the relative permittivity of contaminated laterite soil. In this study, a 

24-hour measurement involving 800 MHz shielded antenna GPR was carried out in a concrete 

simulation field tank filled with Terap Red soil (1.5 m x 2.6 m x 1.5 m) at UiTM Perlis, Malaysia. 

Embedded moisture content probe was simultaneously measured to monitor the response of 

volumetric water content in contaminated soil in order to formulate an empirical relationship 

between relative permittivity and moisture content. The GPR data were pre-processed and 

filtered with Reflexw 7.5, while regression analysis was performed to evaluate the empirical 

relationship model. The model outcomes were retrieved from a number of cross-validation 

schemes, including correlation analysis (R2), root mean square error (RMSE), and calibrated 

Agilent Technologies Automated Vector Analyser (VNA). A third-order polynomial for analysis 

of variance (ANOVA) best fitted the model with positively strong correlation (R2=0.989, N=24, 

P < 0.01) and RMSE 0.003< RMSEpredicted < 0.19. Verification of the proposed model using 

calibrated VNA displayed exceptional agreement between 0.06% comparisons. 

Keywords: Empirical model, prediction, relative permittivity, VNA, GPR 

1.  Introduction 

Ground Penetrating Radar (GPR) has been reckoned as an effective tool to monitor non-destructive soil 

contamination [1-2]. The function of GPR, which is dictated by electromagnetic (EM) properties 

response, is reliant on relative permittivity (εr). Relative permittivity refers to the ratio of electric-field 

storage capacity for a material that is highly related to soil moisture content [3]. The value of relative 
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permittivity differs across soil type as it depends on volumetric moisture content. The presence of diesel 

fuel in soil substitutes the water retained in soil and gets trapped in the soil particle, thus affecting the 

permittivity value indirectly. Typically, relative permittivity has a crucial role in determining the 

velocity values for depth accuracy control of a material at subsurface level. Additionally, it is common 

to apply models for estimating the relative permittivity of soil to forecast the performance of EM sensors, 

such as GPR [4].  

A number of outstanding models for estimation of relative permittivity are based on empirical 

relationship model stemming from field-based correlation, apart from volumetric and phenomenological 

methods [5]. It is noteworthy to highlight that most of the empirical models are initiated in Time Domain 

Reflectometry (TDR), particularly in light of velocity and soil water content. The models discussed 

include Topp’s model [6] and Complex Refractive Index Model (CRIM) [7]. Topp’s model uses the 

third-order polynomial to define the correlation between volumetric water content and relative 

permittivity of the bulk material using a range of materials [6]. Topp’s model is derived from three types 

of fine grain, namely sandy, loam, and clay.  

Karim, Kamaruddin, and Hasan proposed the third-order polynomial to develop an empirical 

relationship model derived from GPR measurement in order to estimate water content in peat soil [8]. 

The model prediction of relative permittivity, nonetheless, is applied for soil with similar deposit. In this 

present study, the empirical relationship model was enhanced to estimate the relative permittivity of 

laterite soil contaminated by diesel fuel using GPR. The model outcomes were recovered using the 

following cross-validation schemes: correlation analysis (R2), root mean square error, and calibrated 

Agilent Technologies Automated Vector Analyser (VNA). 

2.  Materials and methods 

2.1.  Materials 

Moisture content test and GPR measurements were carried out on a laterite soil mixture in dedicated 

test-bed located at Universiti Teknologi MARA Perlis (UiTMPs). Ambient temperature at a monthly 

average of 30°C/24°C was set with non-controlled moisture. A larger scale was constructed from a 

concrete block with the following dimension: 1.5 m x 2.6 m x 1.5 m, and 5 cm thickness. The concrete 

block served as a high conductivity material [9] after weighing in the reduction of EM wave reflection 

effects, and the controlled propagation of EM wave over the boundary of simulation site that 

distinguishes the areas between simulation sites. Laterite soil filling was obtained from an area located 

in the Harum Manis cultivation of Agrotechnology Farm, UiTMPs (6.2659N, 100.1648E). Particle sizes 

that ranged from 2.000 to 0.015 mm were gained from the sieved analysis of grain size distribution by 

adhering to British Standard (BS) 1377-2:1990 [10].  

A test-bed was prepared by burying a PVC pipe (diameter: 4.5 cm) at 50 cm depth. Next, 30-litre 

diesel leak was released at once from a hole made in the middle of a PVC pipe with a diameter of 0.5cm.  

2.2.  Data collection 

The GPR measurement was performed before and 24 hours of continuous scanning after diesel fuel 

injection using a high 800 MHz shielded antenna. The shielded antenna was operated in a common 

offset (CO) GPR survey method with MALA GroundVision 2 acquisition software system and ProEx 

control unit. Notably, the acquisition software system was built by using the Mala Geoscience AB of 

Guideline Geo. The measurement was conducted on five profile lines along a single transect at the site 

with 50 cm space lines (see Figure 1 (a) and (b)). In order to yield optimum collection of GPR data, the 

2.6 m trace, along with each of the four rows set apart by 0.5 m, was nominally traced. The measurement 

was performed on a single-offset 2D section using the setting parameters prescribed by the manufacturer 

(see Table 1): 
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(a)                                      (b)                                            (c) 

Figure 1. The GPR measurement (a) gridline with 0.5 m interval for each grid and scanning 

direction, (b) gridline marked on the concrete block and filled with laterite soil, and (c) 

moisture content probe test. 

 

Table 1. GPR processing parameters used for laterite soil scanning. 

Measurement Setting Parameter 

Antenna Separation 0.14 m 

Sample 512 

Time Window 52.4128 ns 

Vertical Stack 8 folds 

Sampling Frequency 9600 Mhz 

Trig Interval 0.01 m 

First Arrival 10 sample 

Velocity  100 m/μs 

 

The accuracy of locational for GPR measurement had been maintained by calibrating the distance 

measuring tools called wheel calibration and depth calibration. The calibration line was 10 m long on 

the ground surface, while the survey wheel distance error must not exceed 2%. The depth calibration 

was performed after setting the velocity parameter in a scale setting prior to the measurement. The radar 

velocities were calculated based on the speed of EM wave, 𝑉𝑚 (equation 2).  

 Soil moisture content (θw) was measured on laterite soil using a soil moisture probe that was mounted 

on PMS710 (see Figure (2c)). The probe was inclosed at the contaminated area to optimise the affected 

soil moisture to GPR reflection measurement. Prior to moisture content test, the probe was calibrated 

with θw laboratory analysis using the gravimetric water content (GWC) technique based on the standard 

procedure of classification test stipulated in BS 1377-2:1990. The θw calculation of the soil specimen, 

w, as dry soil mass (m) percentage nearest to 0.1%, is presented in the following equation: 

 

  2 3

3 1

100(%)
m m

w
m m

−
=

−

 
 
 

     (1)  

2.3.  Data processing 

Prior to production of time/depth section and data analysis, the data were filtered during data processing 

by using REFLEXWTM software. This process not only enhanced the features of hyperbola, but also 

eliminated background and ambient noise. Table 1 lists the processing parameters applied for GPR data. 

The initial basic data processing of the GPR dataset began by editing the header file. Prior to processing, 

the header files of each section were viewed in sequence to verify the consistency of the survey 

parameters. The flow of post-acquisition processing operation is as follows: 1) time zero correction, 2) 

dynamic correction, 3) background removal, 4) dewow filtering, 5) automatic gain function, 6) bandpass 

filtering, and 7) hyperbola fitting.  
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Table 2. GPR processing parameters applied in Reflexw Software. 

Process Parameter 

Time zero  - 2.040 ns 

S/R Distance 0.18 m  

Dewow 52.4128 ns 

Bandpass Butterworth Filter 600-1200 

Gain function 7 db/m 

Hyperbola fitting 0.0639 ns 

2.4.  Estimation of relative permittivity 

 

The determination of relative permittivity is also identified as the association between velocity of EM 

wave in medium (ν) and velocity of EM wave in vacuum, which is based on the speed of light in free 

space (c = 0.3 m/ns). This correlation is described in the following equation: 

 

( )
m

r r

c
V =

 
      (2) 

 

Based on the assumption of low-loss material in Terap Red soil, the simplified version of equation 2 

was obtained from the following equation:  

 

( ) ( )( )2
1 1

m

r r

c
V

P

=

  + + +
               (3) 

 

From the equation presented above, relative magnetic permeability (𝜇𝑟 = 1 for non-magnetic 

materials) that is close to unity [11] and loss factor, P, was considered as 0 value (𝑃 ≈ 0).  

2.5.  Empirical analysis 

 

The equation of the empirical model to predict relative permittivity is described by the linear regression 

empirical relationship between θv and εr. Estimated relative permittivity, εr, was obtained from GPR 

data. The model was assessed by using a number of statistical tools, including analysis of variance 

(ANOVA), and t-statistics for model parameter significance testing.  

2.6.  Verification of soil relative permittivity 

 

The performance displayed by the empirical model equation in predicting relative permittivity for 

contaminated laterite soil was verified via cross-validation schemes, which involved root-mean-squared 

error (RMSE) and in-situ measuring. A series permittivity analysis probe was conducted using VNA 

E8562B to measure the actual relative permittivity of the subsurface soil as a reference to the 

independent relative permittivity of GPR. In this sense, the VNA measurements yielded the actual 

permittivity values upon assessing the GPR data [12]. Besides, a number of published studies have 

proven the superior use of VNA in verifying relative permittivity values, such as that reported by Mishra, 

Bore, Jiang, Scheuermann, and Li [13]. They had placed focus on calibration via VNA for the calculated 

permittivity behaviour of kaolin suspensions in tap and deionised water using CRIM equation.   
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3.  Results and discussion 

3.1.  Model fitting of empirical relative permittivity relationship 

Empirical relationship appears to be the most accurate model to describe correlated θv and εr based on 

TDR data [6]. Such relationship that describes εr (θv) can be established from four linear regression 

analyses: (i) simple linear, (ii) logarithmic, (iii) second-order, and (iv) third-order polynomial. A model 

that suggests higher-order regression is depicted in the following relationship: 

 
2 3

1 2 3r v v v
       = + + +      (4) 

 

where εr is real relative permittivity element, while β denotes constant coefficient for each predictor 

variable of θv (volumetric moisture content) and  (constant of intercept in εr (θv) plot) to represent the 

value of εr at θv = 0. 

Figure 2(d) illustrates the best fitting model plotted for predictive relative permittivity, εr, of laterite 

soil contaminated by diesel. The exceptional agreement displayed by the third-order polynomial model, 

as presented in Table 3 for the best-fit model, exhibited a positively strong correlation with R2 = 0.989, 

which implies 98.9% of the variation in volumetric moisture content, θv, is ascribed to determine relative 

permittivity, εr. This best-fit model (third-order polynomial) outperformed the rest for goodness of fit 

with a standard error of 0.076212 (see Table 4).  

 

 
(a)                                                                           (b) 

 
   (c)                                                                          (d) 

Figure 2. Line of a fit plot of the empirical relation model: (a) simple linear model, (b) logarithmic 

model, (c) second-order polynomial model, and (d) third-order polynomial model. 
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Table 3. Model summary of empirical relationship model. 

Type of Regression Equation R2 

Linear  53.6954 8 0.34 469 4
r v
 +−=  0.959901 

Logarithmic  0.59852 3.393909
r v

ln = − +  0.935246 

2nd Order 

Polynomial 

2

6.21647 0.16638 0.025066
r v v

  = + +  
0.974282 

3rd Order 

Polynomial  

2 3

9.2058 4.58583 0.4518 0.0156
r v v v

   = − + − +  
0.989184 

 

Table 4. A summary of empirical relationship model outputs and ANOVA analysis. 

Type of Regression Significant F Standard Error R squared 

Linear Regression 7.38497E-17 0.139914 0.959901 

Logarithmic  1.45552E-14 0.177799 0.935246 

2nd-order 

polynomial 2.03007E-17 0.114688 0.974282 

3rd-order 

polynomial 8.06719E-20 0.076212 0.989184 

 

The third-order polynomial model for ANOVA was computed (see Table 4) and yielded a P-value 

of 8.06719E-20, thus implying that null hypothesis, H(0), is rejected at a confident level of 0.01 or 1% 

level of significance. The significance of coefficient value was determined using t-statistics test, which 

gave hypothesis H(0): α = 0 against H(a): α ≠ 0, and H(0): β = 0 against H(a): β ≠ 0. Upon comparing 

this p−value with significance level, as tabulated in Table 5 to be lower than 0.01, it suggested at least 

99% confidence level. Therefore, the null hypothesis is rejected, and the model is indeed significant. 

The model in yield appears to be in agreement the findings reported by Topp et al., Steelman and Endres, 

and Patriarca et al. [6,14-15] which highlighted that the volumetric water content of soil indirectly 

affected and had a significant relationship with the value of relative permittivity.  

 

Table 5. A summary of Best-Fit model by the third-order polynomial coefficient analysis. 
 Coefficients Standard Error t Stat P-value 

Intercept -9.205796574 2.979595 -3.08961 0.005779359 

14.5 4.585829193 0.910753 5.035204 6.33911E-05 

210.25 -0.451848557 0.090982 -4.96636 7.42582E-05 

3048.625 0.015619194 0.002975 5.249368 3.88478E-05 

3.2.  Verification of the model 

Both accuracy and precision of εr predicted values for the contaminated laterite soil were retrieved from 

cross-validation involving RMSEpredicted, as prescribed by Roth, Malicki, and Plagge and Szyplowska et 

al. [7,17]. As illustrated in Figures 3 and 4, εr predicted value obtained from the empirical relationship model 

was generally closer to the εr measured value gained from GPR measurement that was calculated using Eq.3.  
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Figure 3. Frequency of εr predicted value obtained from empirical relationship model compared to εr(m) 

measured value from GPR measurement. 

 

 
Figure 4. Comparison chart for values between εr predicted and εr measured for all type empirical relationship 

models. 

 

As portrayed in Figure 4, the low value of volumetric water content in laterite soil had affected the 

difference of εr predicted value with εr measured value, thus corresponding to interpretation error as denoted in 

low amplitude signal of GPR radargram. The percentage of εr predicted vs. εr measured from third-order 

polynomial was better than the other regression analysis with differences ranging from 0.04% to 2.17% 

and an average of 0.69% (see Table 6). Similarly, Szyplowska et al. reported the deficiency of 

volumetric water content in soil that might be influenced by errors upon retrieving relative permittivity 

[17]. Nevertheless, the results obtained were still in consideration, particularly for the frequent quantitive 

estimations of RMSEpredicted values calculated for third-order polynomial, which was as low as 0.003< 

RMSEpredicted < 0.19.  
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Table 6. Summary of comparison between εr predicted and εr measured for all regression analyses (fitted-

model). 

Different  

(Fit model vs 

Measured) 

3rd-Order 

Polynomial 

2nd-Order 

Polynomial 
Logarithmic 

Linear 

Regression 

Diff (%) Diff (%) Diff (%) Diff (%) 

Min 0.00356 0.04 0.01183 0.16 0.00178 0.02 0.00675 0.10 

Max 0.19473 2.74 0.28309 3.97 0.46546 5.41 0.37708 4.38 

Mean 0.05438 0.69 0.09263 1.197 0.13609 1.71 0.10742 1.32 

 

By referring to the boxplot displayed in Figure 5, the empirical relationship of third-order polynomial 

generated the most accurate prediction for εr predicted of contaminated laterite soil (RMSEaverage = 0.05), 

when compared to the other models. In addition, the empirical relationship model was verified with 

calibrated VNA to achieve good accuracy for εr predicted. 

 

 
Figure 5. Boxplot of comparison chart for RMSE predicted values for all empirical relationship models: 

(i) blue: third-order polynomial, (iii) grey: logarithmic, and (iv) yellow: simple linear. 

 

 
Figure 6. Results of εr values from calibrated VNA measurement. 
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Table 7. A comparison of εr values between all empirical relationship models based on GPR 

and calibrated VNA measurements on contaminated laterite soil. 

Comparison εr 
3rd-Order 

Polynomial 

2nd-Order 

Polynomial 
Logarithmic  

Linear 

Regression 

Min  0.509687999 0.341481536 0.615778391 0.507755653 

Max  -0.505792685 -0.301827676 -0.023537689 -0.138712436 

Mean 0.043512073 0.043512074 0.043512074 0.043512074 

 

 
Figure 7. Percentage comparison of εr values between all empirical relationship models with 

calibrated VNA measurement on contaminated laterite soil. 

 

The calibrated VNA technique was employed in this study to measure the actual relative permittivity 

of subsurface soil as a reference to the independent relative permittivity of GPR. Hence, one can assume 

that the VNA measurements gave the actual permittivity values in evaluating the GPR data [12-13]. 

Figure 6 illustrates the outcomes yielded from the series of calibrated VNA measurement for laterite 

soil contaminated by diesel within 8 hours. The average relative comparison of the εr predicted values 

calculated for all empirical relationship models between GPR and calibrated VNA measurements 

resulted in a slight difference that ranged from 0.043512073 to 0.043512074 (see Table 7), which was 

below 0.60% difference. The third-order polynomial exhibited better accuracy than the other models, as 

illustrated in Figure 7. Having reported that, the agreement of the series of εr predicted yielded from third-

order polynomial validation is deemed acceptable, which is also in agreement with Topp et al. [6].  

4.  Conclusion 

This study is motivated by the need to ascertain the impact of volumetric water content in laterite soil 

on diesel fuel evaporate. Both GPR and soil moisture probe data were analysed for 24 hours to formulate 

the correlation of moisture soil condition with εr. By linear regression, the analysis outcomes portrayed 

the εr significant reliance on volumetric water content in soil, which is in line with those reported by 

Topp et al. and Piuzzi et al. [6,18]. The empirical relationship model based on third-order polynomial 

regression best fit the proposed εr prediction model for contaminated laterite soil by diesel fuel. 

Verification of the proposed model by measuring the actual εr using calibrated VNA exhibited variances 

of 0.06% with positive correlation (R2 = 0.989) and an accuracy of RMSEaverage = 0.05. Model 

enhancement has been proven to improve the performance of estimating εr contaminated laterite soil by 

volumetric moisture content for GPR measurement. 
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